
I

Engineering the Computer
Science and IT

Engineering the Computer
Science and IT

Edited by
Safeeullah Soomro

In-Tech
intechweb.org

Published by In-Teh

In-Teh
Olajnica 19/2, 32000 Vukovar, Croatia

Abstracting and non-profit use of the material is permitted with credit to the source. Statements and
opinions expressed in the chapters are these of the individual contributors and not necessarily those of
the editors or publisher. No responsibility is accepted for the accuracy of information contained in the
published articles. Publisher assumes no responsibility liability for any damage or injury to persons or
property arising out of the use of any materials, instructions, methods or ideas contained inside. After
this work has been published by the In-Teh, authors have the right to republish it, in whole or part, in any
publication of which they are an author or editor, and the make other personal use of the work.

© 2009 In-teh
www.intechweb.org
Additional copies can be obtained from:
publication@intechweb.org

First published October 2009
Printed in India

Technical Editor: Zeljko Debeljuh

Engineering the Computer Science and IT,
Edited by Safeeullah Soomro

 p. cm.
ISBN 978-953-307-012-4

V

Preface

It has been many decades, since Computer Science has been able to achieve tremendous rec-
ognition and has been applied in various fields, mainly computer programming and software
engineering. Many efforts have been taken to improve knowledge of researchers, education-
ists and others in the field of computer science and engineering. This book provides a further
insight in this direction. It provides innovative ideas in the field of computer science and
engineering with a view to face new challenges of the current and future centuries.

This book comprises of 25 chapters focusing on the basic and applied research in the field of
computer science and information technology. Authors have made efforts to provide theo-
retical as well as practical approaches to solve open problems through their excellent research
work. This book increases knowledge in the topics such as web programming, logic program-
ming, software debugging, real-time systems, statistical modeling, networking, program
analysis, mathematical models and natural language processing.

Basically this book opens a platform for creative discussion for current and future technolo-
gies in the field of computer science and engineering, these are essential for students, re-
searchers, academicians and industry related people to enhance their capabilities to capture
new ideas. Also they provide valuable solutions regarding information technology to an in-
ternational community.

The editor and authors hope that this book will provide valuable platform for the new re-
searchers and students who are interested to carry out research in the fields of computer sci-
ence and information technology. Finally, we are thankful to I-Tech Education and publishing
organization which provides the best platform to integrate researchers of the whole world
though this book.

Editor

Dr. Safeeullah Soomro
Yanbu University College
Kingdom of Saudi Arabia

VII

Contents

Preface V

1. Extensions of Deductive Concept in Logic Programming and Some Applications 001
Ivana Berkovic, Biljana Radulovic and Petar Hotomski

2. Regular Language Induction with Grammar-based Classifier System 013
Olgierd Unold

3. Fault Localization Models Using Dependences 023
Safeeullah Soomro, Abdul Hameed Memon, Asif Ali Shah and Wajiha Shah

4. Assisted form filling 041
Łukasz Bownik, Wojciech Górka and Adam Piasecki

5. Transatlantic Engineering Programs: An Experience in International Cooperation 065
Andrew J. Kornecki, Wojciech Grega, Thomas B. Hilburn, Jean-Marc Thririet,
Miroslav Sveda, Ondrei Rysavy and Adam Pilat

6. Methodology To Develop Alternative Makespan Algorithm For Re-entrant Flow
Shop Using Bottleneck Approach 085
Salleh Ahmad Bareduan and Sulaiman Hj Hasan

7. Flexible Design by Contract 103
Koen Vanderkimpen and Eric Steegmans

8. Application of semantic networks in natural language issues 127
Wojciech Górka, Adam Piasecki and Łukasz Bownik

9. Towards the Methodological Harmonization of Passive Testing Across ICT
Communities 143
Krzysztof M. Brzeziński

10. Application of Automata Based Approach for Specification of Model
Transformation Strategies 169
Anna Derezińska and Jacek Zawłocki

11. Dissociation of Colloidal Silver into Ionic Form through Membrane under
Electric Field 193
Kuo-Hsiung Tseng, Chih-Yu Liao, Der-Chi Tien and Tsing-Tshih Tsung

VIII

12. SOA and supporting software processes integrated with self-organizing
business networks 213
Francesco Rago

13. Algebraic Algorithms for Image Tomographic Reconstruction from Incomplete
Projection Data 231
Nadiya Gubareni

14. Templates for Communicating Information about Software Requirements and
Software Problems 261
Mira Kajko-Mattsson

15. Ontological description of gene groups by the multi-attribute statistically
significant logical rules 277
Aleksandra Gruca and Marek Sikora

16. Mathematical modeling of the Internet survey 303
Getka-Wilczyńska Elżbieta

17. Toward Personalized RSS Retrieval Service: The Effect of Using User’s Context 329
Haesung Lee and Joonhee Kwon

18. Client-based Relay Infrastructure for WiMAX MAN Networks 347
Gierłowski, Woźniak and Nowicki

19. The Decoding Algorithms as Techniques for Creation the Anomaly Based
Intrusion Detection Systems 369
Evgeniya Nikolova and Veselina Jecheva

20. Transition Parameters For Successful Reuse Business 391
Jasmine K.S.

21. Interactivity of 3D social Internet as a marketing tool 427
Urszula Świerczyńska-Kaczor

22. Performance evaluation of protocols of multiagent information retrieval systems 445
Zofia Kruczkiewicz

23. Measurement of Production Efficiency in Semiconductor Assembly House:
Approach of Data Envelopment Analysis 465
Chien-wen Shen, Ming-Jen Cheng

24. Portable ID Management Framework for Security Enhancement of Virtual
Machine Monitors 477
Manabu Hirano, Takeshi Okuda, Eiji Kawai, Takahiro Shinagawa, Hideki Eiraku,
Kouichi Tanimoto, Shoichi Hasegawa, Takashi Horie, Seiji Mune, Kazumasa Omote,
Kenichi Kourai, Yoshihiro Oyama, Kenji Kono, Shigeru Chiba, Yasushi Shinjo,
Kazuhiko Kato and Suguru Yamaguchi

25. Task Jitter Measurement in Multi-purpose Real-time Systems 489
Pavel Moryc and Jindrich Cernohorsky

Extensions of Deductive Concept in Logic Programming and Some Applications 1

Extensions of Deductive Concept in Logic Programming and Some
Applications

Ivana Berkovic, Biljana Radulovic and Petar Hotomski

X

Extensions of Deductive Concept in Logic
Programming and Some Applications

Ivana Berkovic, Biljana Radulovic and Petar Hotomski

University of Novi Sad, Technical faculty “Mihajlo Pupin” Zrenjanin
Serbia

1. Introduction

Automated reasoning systems are computer programs which have certain “intelligent”
components and can be used as: shells of expert systems, dialog systems, human language
translators, educational software etc. Inferring the conclusion in such systems is often based
on resolution refutation method from a certain set of rules and facts. In order to infer a
conclusion, these systems, apart from negating set query, use rules for deducting facts in
axiom form and working fact base. Automated reasoning systems give answers to a set
query which depend upon the knowledge base and fact base (Hotomski, 2004). In this sense,
“automated reasoning is concerned with the discovery, formulation, and implementation of
concepts and procedures that permit the computer to be used as a reasoning assistant”
(Wos, 1985).
The developing of automated reasoning results into the developing of logic programming
languages, especially PROLOG. In this paper the advantages and applications of changing
one system for automated reasoning by the other are described. The determinate resolution
system for automated theorem proving ATP (OL-resolution with marked literals) is
especially put into the base of prolog-like language, as the surrogate for the concept of the
negation as definite failure (SLDNF resolution) in PROLOG.

2. Ordered Linear Resolution as the Foundation of Automatic Theorem
Proving
The most popular method for automatic theorem proving is the resolution method, which
was discovered by J. A. Robinson in 1965 (Barr et al., 1982, Gevarter, 1985, Wos et al., 1992).
Since 1965, many resolution forms and techniques have been developed because the pure
resolution rule was unable to handle complex problems (Hotomski, 2004).
Here is used the general automatic method for determining if a theorem (conclusion) A
follows from a given set of premises (axioms) F:

F A .

Each formula will be transformed to the clauses form. The clauses have the form:

1

Engineering the Computer Science and IT2

L1 L2 ... Lm
where Li are literals. The symbol for disjunction is: .
The literals Li have the form: P(t1, t2, ... , tn) or P(t1, t2, ... , tn), where P is predicate symbol,
ti is term, is negation. The literal P(t1, t2, ... , tn) is called positive literal, the literal P(t1, t2,
... , tn) is called negative literal.
Resolution method is a syntactic method of deduction. Reduction ad absurdum is in the basis
of resolution method:

F A iff F A contradiction .

Resolution rule will be applied on the set of clauses - axioms which was expanded by
negating the desired conclusion in clause form.

Ordered Linear (OL) resolution rule with marked literals (Hotomski & Pevac, 1991,
Hotomski, 2004, Kowalski & Kuchner, 1971) increases efficiency and doesn't disturb
completeness of pure resolution rule.
The generating process of OL-resolvent from central clause (d1) and auxiliary clause (d2):
1. Redesignate variables (without common variables in the clauses).
2. Determine universal unificator for last literal of d1 and k-literal (k=1,2,...) of d2 (if it

exists for some k, else it is impossible to generate OL-resolvent for specification clauses).
3. Create resolvent with marked last literal in d1 and add the rest of clause d2 without k-

literal (d1 and d2 are clauses, which were formed by universal unificator applied on
d1 and d2, respectively).

4. Eliminate identical non-marked literals and tautology examination (tautologies are not
memorized).

5. The Shortening Operation (delete all ending marked literals)
6. The Compressing Operation (delete the last non-marked literal, which is complemented

in relation to negation, with some marked literal for unificator).
7. Repeat steps: 5 and 6 until the empty clause is got, or the Compressing Operation is not

applied on the last non-marked literal.

The rule of OL-resolution with marked literals is separated in two parts: in-resolution and
pre-resolution. The steps: 1 - 5 are represented in-resolution. The steps: 6 - 7 are represented
pre-resolution. Mid-resolvents are the products of in-resolution and without their
memorizing, the completeness of the method can be lost. This modification of Ordered
Linear resolution rule is served as the base for development of the system for automatic
theorem proving ATP.

3. ATP System for Automatic Theorem Proving

ATP is a system for automatic theorem proving (Berkovic, 1994), which is implemented on
personal computer by Pascal language. The rule of Ordered Linear Resolution with marked
literals presents the system base. The system is developed at Technical Faculty “Mihajlo
Pupin” in Zrenjanin. ATP is projected for scientific - researching, teaching and practical
purpose. ATP system disposes three search strategies: breadth-first, depth-first and their
combination. Numerously experiments with ATP system show that depth-first strategy is

the most efficient. In depth-first search, a new node is generated at the next level, from the
one current, and the search is continuing deeper and deeper in this way until it is forced to
backtracking.
The main characteristics of ATP system:
� This system presents a complete logical deductive base: the clauses-set is unsatisfied

(contradictory) iff the empty clause is generated by finite use of the resolution rule. So, the proof
of conclusion A is completed (F A) when the empty clause is generated by the
resolution from clauses-set F A.

� Besides the theoretical completeness of the system, it has the satisfying practical
efficiency limited by the space-time computer resources.

� The first-order logic is the form of representation in ATP system (each formula is
transformed into the clause form). This deductive base has no restriction in Horn clause
(expansions concerning Horn clauses) and it allows the logical treatment of negation
(escaping negation treatment as a definite failure).

Therefore, the system of automated reasoning ATP is put into the base for development of
the descriptive language for logic programming LOGPRO. This logical complete deductive
base is used for building a new descriptive logical programming language (Berkovic, 1997,
Berkovic & Hotomski , 1997, Berkovic et al., 2003).

4. The Concept of LOGPRO – LOGic PROgramming Language Based on ATP
System
Many logic programming languages have been implemented, but PROLOG is the most
popular language and it is useful for solving many problems. PROLOG as a logic-oriented
language (Bratko, 1986, Malpas, 1987, Pereira & Shieber, 1987) contains a resolution-based
theorem-prover (PROLOG-system). The theorem-prover in PROLOG appears with the
depth-first search approach. It uses the special resolution rule: SLDNF (Linear resolution
with Selection function for Definite clauses and Negation as Failure).

4.1 Formalization on PROLOG
The first-order predicate logic is the form of representation in PROLOG. PROLOG-program
is a set of sentences. Every sentence is finished by full stop. Program in PROLOG consists of
axioms (rules, facts) and a theorem to be proved (goal). The axioms are restricted in Horn
clauses form. Horn clauses (Hotomski & Pevac, 1991), are clauses with at most one positive
literal.
The rules have the form: G :- T1, T2, ... , Tn .
where G is positive literal and Tj (j=1,2,...,n) are literals (positive or negative). The symbol
for conjunction is: , . The element G is presented head of the rule. The elements Tj (j=1,2,...,n)
are presented body of the rule. The separator :- corresponds to implication (). The symbol
for negation is: not.
The facts have the form: G.
where G is positive literal.
The goals (questions) have the form: ?- T1, T2, ... , Tn .
where Ti (i=1,2,...,n) are literals.

Extensions of Deductive Concept in Logic Programming and Some Applications 3

L1 L2 ... Lm
where Li are literals. The symbol for disjunction is: .
The literals Li have the form: P(t1, t2, ... , tn) or P(t1, t2, ... , tn), where P is predicate symbol,
ti is term, is negation. The literal P(t1, t2, ... , tn) is called positive literal, the literal P(t1, t2,
... , tn) is called negative literal.
Resolution method is a syntactic method of deduction. Reduction ad absurdum is in the basis
of resolution method:

F A iff F A contradiction .

Resolution rule will be applied on the set of clauses - axioms which was expanded by
negating the desired conclusion in clause form.

Ordered Linear (OL) resolution rule with marked literals (Hotomski & Pevac, 1991,
Hotomski, 2004, Kowalski & Kuchner, 1971) increases efficiency and doesn't disturb
completeness of pure resolution rule.
The generating process of OL-resolvent from central clause (d1) and auxiliary clause (d2):
1. Redesignate variables (without common variables in the clauses).
2. Determine universal unificator for last literal of d1 and k-literal (k=1,2,...) of d2 (if it

exists for some k, else it is impossible to generate OL-resolvent for specification clauses).
3. Create resolvent with marked last literal in d1 and add the rest of clause d2 without k-

literal (d1 and d2 are clauses, which were formed by universal unificator applied on
d1 and d2, respectively).

4. Eliminate identical non-marked literals and tautology examination (tautologies are not
memorized).

5. The Shortening Operation (delete all ending marked literals)
6. The Compressing Operation (delete the last non-marked literal, which is complemented

in relation to negation, with some marked literal for unificator).
7. Repeat steps: 5 and 6 until the empty clause is got, or the Compressing Operation is not

applied on the last non-marked literal.

The rule of OL-resolution with marked literals is separated in two parts: in-resolution and
pre-resolution. The steps: 1 - 5 are represented in-resolution. The steps: 6 - 7 are represented
pre-resolution. Mid-resolvents are the products of in-resolution and without their
memorizing, the completeness of the method can be lost. This modification of Ordered
Linear resolution rule is served as the base for development of the system for automatic
theorem proving ATP.

3. ATP System for Automatic Theorem Proving

ATP is a system for automatic theorem proving (Berkovic, 1994), which is implemented on
personal computer by Pascal language. The rule of Ordered Linear Resolution with marked
literals presents the system base. The system is developed at Technical Faculty “Mihajlo
Pupin” in Zrenjanin. ATP is projected for scientific - researching, teaching and practical
purpose. ATP system disposes three search strategies: breadth-first, depth-first and their
combination. Numerously experiments with ATP system show that depth-first strategy is

the most efficient. In depth-first search, a new node is generated at the next level, from the
one current, and the search is continuing deeper and deeper in this way until it is forced to
backtracking.
The main characteristics of ATP system:
� This system presents a complete logical deductive base: the clauses-set is unsatisfied

(contradictory) iff the empty clause is generated by finite use of the resolution rule. So, the proof
of conclusion A is completed (F A) when the empty clause is generated by the
resolution from clauses-set F A.

� Besides the theoretical completeness of the system, it has the satisfying practical
efficiency limited by the space-time computer resources.

� The first-order logic is the form of representation in ATP system (each formula is
transformed into the clause form). This deductive base has no restriction in Horn clause
(expansions concerning Horn clauses) and it allows the logical treatment of negation
(escaping negation treatment as a definite failure).

Therefore, the system of automated reasoning ATP is put into the base for development of
the descriptive language for logic programming LOGPRO. This logical complete deductive
base is used for building a new descriptive logical programming language (Berkovic, 1997,
Berkovic & Hotomski , 1997, Berkovic et al., 2003).

4. The Concept of LOGPRO – LOGic PROgramming Language Based on ATP
System
Many logic programming languages have been implemented, but PROLOG is the most
popular language and it is useful for solving many problems. PROLOG as a logic-oriented
language (Bratko, 1986, Malpas, 1987, Pereira & Shieber, 1987) contains a resolution-based
theorem-prover (PROLOG-system). The theorem-prover in PROLOG appears with the
depth-first search approach. It uses the special resolution rule: SLDNF (Linear resolution
with Selection function for Definite clauses and Negation as Failure).

4.1 Formalization on PROLOG
The first-order predicate logic is the form of representation in PROLOG. PROLOG-program
is a set of sentences. Every sentence is finished by full stop. Program in PROLOG consists of
axioms (rules, facts) and a theorem to be proved (goal). The axioms are restricted in Horn
clauses form. Horn clauses (Hotomski & Pevac, 1991), are clauses with at most one positive
literal.
The rules have the form: G :- T1, T2, ... , Tn .
where G is positive literal and Tj (j=1,2,...,n) are literals (positive or negative). The symbol
for conjunction is: , . The element G is presented head of the rule. The elements Tj (j=1,2,...,n)
are presented body of the rule. The separator :- corresponds to implication (). The symbol
for negation is: not.
The facts have the form: G.
where G is positive literal.
The goals (questions) have the form: ?- T1, T2, ... , Tn .
where Ti (i=1,2,...,n) are literals.

Engineering the Computer Science and IT4

Practically, programming in PROLOG is restrictive in a subset of first-order logic. Horn
clauses are represented the first defect of PROLOG. The concept of negation as definite
failure is represented the second defect of PROLOG.

4.1 Formalization on LOGPRO
An other approach to logic programming is implementation of a different deductive
concept. The determinate system ATP for automated theorem proving is especially put into
the base of prolog-like language LOGPRO, as the surrogate for the concept of negation as
definite failure. This logical complete deductive base is used for building a new descriptive
logic programming language.
The first-order logic is the form of representation in ATP system, too. But, this system has
not restriction in Horn clauses. The program on logic language LOGPRO based on the ATP
system is a set of sentences (clauses). There are three kinds of sentences: rules, facts and
goals. Every sentence is finished by full stop.
The rules have the form: G1, G2, ... , Gm :- T1, T2, ... , Tn .
where Gi (i=1,2,...,m) and Tj (j=1,2,...,n) are literals (positive or negative). The symbol for
conjunction is: , . The elements Gi (i=1,2,...,m) present head of the rule. The elements Tj
(j=1,2,...,n) present body of the rule. The separator :- corresponds to implication (). The
symbol for negation is: ~ .
The facts have the form: G.
where G is literal (positive or negative).
The goals (questions) have the form: ?- T1, T2, ... , Tn .
where Ti (i=1,2,...,n) are literals (positive or negative).
The rules and facts (axioms) are presented by auxiliary clauses. The goal (central clause) is
negating the theorem to be proved. Symbol ?- in goal is the substitution for negation. The
execution procedure is ATP system based on OL-resolution with marked literals. This
formulation enables eliminating the defects of PROLOG-system.
The logic programming languages PROLOG and LOGPRO are compared. PROLOG rules
and facts do not allow the explicit statement of negative information. But, the declarative
syntax of the logic programming language LOGPRO allows the expression of negative
information in rules and facts. Also, it is possible to construct the rule with more than one
element in the rule‘s head.

Example 1.
The problem of trying to formulate sentence:
“Alice likes whatever Queen dislikes, and dislikes whatever Queen likes.” into PROLOG
form (Subrahmanyam, 1985).
The representations:

likes(alice,X1) :- not likes(queen,X1).
not likes(alice,X1) :- likes(queen,X1).

are illegal in PROLOG because the second rule has a negation in head (it isn't Horn clause).
It is possible to solve the problem by trick - using a modified predicate likes, and expressing
the statement as:

likes(alice,X1,true) :- likes(queen,X1,false).
likes(alice,X1,false) :- likes(queen,X1,true).

The expansion concerning Horn clauses on the logic programming language based on ATP
system has the possibilities to express the statement as:

likes(alice,X1) :- ~ likes(queen,X1).
~ likes(alice,X1) :- likes(queen,X1).

PROLOG-system has the negation defect (Brtka, 2001). This defect is corrected in ATP
system. It can be illustrated by the following example.

Example 2.
Program in PROLOG:

vegetarian(tom).
vegetarian(ivan).
smoker(tom).
likes(ana,X1) :- not (smoker(X1)), vegetarian(X1).

PROLOG-system gives unconnected answers on the following questions:
?- likes(ana,X1).
no
?- likes(ana,ivan).
yes

If the last clause is now:
likes(ana,X1) :- vegetarian(X1), not (smoker(X1)).

PROLOG-system gives wrong answers on the following questions:
?- likes(ana,X1).
X1=ivan
?- likes(ana,ivan).
yes

These answers are incorrect because we have not data about Ivan and smoking. We don't
know if Ivan is a smoker or not. The correct answer will be: “I don't know”.
The program in LOGPRO:

vegetarian(tom).
vegetarian(ivan).
smoker(tom).
likes(ana,X1) :- ~ smoker(X1), vegetarian(X1).

ATP-system gives answers on the following questions:
?- likes(ana,X1).
Success=0

The proof isn't completed
?- likes(ana,ivan).
Success=0

The proof isn't completed
When the last clause is:

likes(ana,X1) :- vegetarian(X1), ~smoker(X1).
ATP system also gives the correct answers: “Success=0, the proof isn't completed”.
In fact, the system generates resolvents, but can not complete the proof with depth-first
strategy. The treatment of negation as definite failure in this system is escaped. The concept
of LOGPRO allows eliminating of endless branches, recursion using and works with

Extensions of Deductive Concept in Logic Programming and Some Applications 5

Practically, programming in PROLOG is restrictive in a subset of first-order logic. Horn
clauses are represented the first defect of PROLOG. The concept of negation as definite
failure is represented the second defect of PROLOG.

4.1 Formalization on LOGPRO
An other approach to logic programming is implementation of a different deductive
concept. The determinate system ATP for automated theorem proving is especially put into
the base of prolog-like language LOGPRO, as the surrogate for the concept of negation as
definite failure. This logical complete deductive base is used for building a new descriptive
logic programming language.
The first-order logic is the form of representation in ATP system, too. But, this system has
not restriction in Horn clauses. The program on logic language LOGPRO based on the ATP
system is a set of sentences (clauses). There are three kinds of sentences: rules, facts and
goals. Every sentence is finished by full stop.
The rules have the form: G1, G2, ... , Gm :- T1, T2, ... , Tn .
where Gi (i=1,2,...,m) and Tj (j=1,2,...,n) are literals (positive or negative). The symbol for
conjunction is: , . The elements Gi (i=1,2,...,m) present head of the rule. The elements Tj
(j=1,2,...,n) present body of the rule. The separator :- corresponds to implication (). The
symbol for negation is: ~ .
The facts have the form: G.
where G is literal (positive or negative).
The goals (questions) have the form: ?- T1, T2, ... , Tn .
where Ti (i=1,2,...,n) are literals (positive or negative).
The rules and facts (axioms) are presented by auxiliary clauses. The goal (central clause) is
negating the theorem to be proved. Symbol ?- in goal is the substitution for negation. The
execution procedure is ATP system based on OL-resolution with marked literals. This
formulation enables eliminating the defects of PROLOG-system.
The logic programming languages PROLOG and LOGPRO are compared. PROLOG rules
and facts do not allow the explicit statement of negative information. But, the declarative
syntax of the logic programming language LOGPRO allows the expression of negative
information in rules and facts. Also, it is possible to construct the rule with more than one
element in the rule‘s head.

Example 1.
The problem of trying to formulate sentence:
“Alice likes whatever Queen dislikes, and dislikes whatever Queen likes.” into PROLOG
form (Subrahmanyam, 1985).
The representations:

likes(alice,X1) :- not likes(queen,X1).
not likes(alice,X1) :- likes(queen,X1).

are illegal in PROLOG because the second rule has a negation in head (it isn't Horn clause).
It is possible to solve the problem by trick - using a modified predicate likes, and expressing
the statement as:

likes(alice,X1,true) :- likes(queen,X1,false).
likes(alice,X1,false) :- likes(queen,X1,true).

The expansion concerning Horn clauses on the logic programming language based on ATP
system has the possibilities to express the statement as:

likes(alice,X1) :- ~ likes(queen,X1).
~ likes(alice,X1) :- likes(queen,X1).

PROLOG-system has the negation defect (Brtka, 2001). This defect is corrected in ATP
system. It can be illustrated by the following example.

Example 2.
Program in PROLOG:

vegetarian(tom).
vegetarian(ivan).
smoker(tom).
likes(ana,X1) :- not (smoker(X1)), vegetarian(X1).

PROLOG-system gives unconnected answers on the following questions:
?- likes(ana,X1).
no
?- likes(ana,ivan).
yes

If the last clause is now:
likes(ana,X1) :- vegetarian(X1), not (smoker(X1)).

PROLOG-system gives wrong answers on the following questions:
?- likes(ana,X1).
X1=ivan
?- likes(ana,ivan).
yes

These answers are incorrect because we have not data about Ivan and smoking. We don't
know if Ivan is a smoker or not. The correct answer will be: “I don't know”.
The program in LOGPRO:

vegetarian(tom).
vegetarian(ivan).
smoker(tom).
likes(ana,X1) :- ~ smoker(X1), vegetarian(X1).

ATP-system gives answers on the following questions:
?- likes(ana,X1).
Success=0

The proof isn't completed
?- likes(ana,ivan).
Success=0

The proof isn't completed
When the last clause is:

likes(ana,X1) :- vegetarian(X1), ~smoker(X1).
ATP system also gives the correct answers: “Success=0, the proof isn't completed”.
In fact, the system generates resolvents, but can not complete the proof with depth-first
strategy. The treatment of negation as definite failure in this system is escaped. The concept
of LOGPRO allows eliminating of endless branches, recursion using and works with

Engineering the Computer Science and IT6

structures and lists, as well as PROLOG. It is presented in some concrete examples
(Berkovic, 1997).

5. Applications of ATP System and LOGPRO

5.1. Time-Table and Scheduling System DEDUC
This system ATP is incorporated in the system for automatic creating of the combinatorial
disposition DEDUC, where it has presented the satisfying practical efficiency.
DEDUC is a software package that integrates scientific results of Constraint Logic
Programming and practical needs in generating combinatorial schedules. The work on the
system started in 1991. After ten years the powerful system was developed.
System is based on synchronized work of two processes: data storing and optimization of
gaps in the timetable. Theorem prover controls both processes to secure that initial
requirements are not violated
System facilities and performances:
� Automatic and interactive generating of schedules for the initial data and conditions;
� Setting up and maintenance of the initial data and requirements by using the user

friendly interface;
� Setting up various initial requirements like splitting classes into groups, connecting

groups and classes, enabling multiple lessons; setting restrictions in using laboratories
and rooms; setting teachers’ requirements and the other pedagogic obligations and
desirable demands;

� Generating schedules respecting school shifts;
� Screen browsing and printing the general, per-class and per-teacher schedules;
� Generating and archiving different versions of the schedules generated for the same

initial data and conditions;
� Maintenance of the archived versions, data and conditions.
The practical efficiency and system limits can be observed for complicated examples as well
as for the simple ones. Essentially, getting the acceptable version of the schedule depends on
structure of the initial requirements and their connections with data, although the number
of requirements has no influence.
Practical experiences in the real world assure that DEDUC system generates timetables with
quality level higher than quality level of hand-made timetables. The time needed for
generating a timetable varies from few minutes to several hours, and depends on amount of
data, structure of conditions as well as on computer performances. More informations at
http://deduce.tripod.com

5.2. A Technique for the Implicational Problem Resolving for Generalized Data
Dependencies
A mechanism for generalized representation of various data dependency types, such as
functional (fd), multivalued (mvd), join (jd), implied (imd) and inclusion (id) dependencies,
has been developed in the relational data model theory. The initial supposition was that all
the data dependencies (i.e. “rules” which hold among data) can be represented, in unified
manner, by one, or more symbolic data templates, satisfying certain criteria, according to
defined interpretation rules for such symbolic templates. On the basis of that supposition,
the term of generalized data dependency has been introduced, so as to represent the other

dependency types in the same way. One of the important questions, arising when new data
dependency type is introduced, is how it can be stated if a data dependency is a logical
consequence of a given set of data dependencies. This problem in relational databases is
known as the implicational problem.
At the beginning, the terms of: tableau, as a symbolic data template, generalized
dependency (gd) and its interpretation are defined without explanations, because they are
considered as already known. In (Lukovic et al., 1996, Lukovic et al., 1997) is presented a
possible approach to resolving the implicational problem for gds, it is established at the
same time a way of testing the implicational problem for all the specific data dependency
types which can be formalized by means of gds. The proposed approach considers a usage of
the ATP System.
To resolve the implicational problem for a given sets of gds Γ and arbitrary gd γ means to
establish if Γ |= γ holds. It is not practically possible to test he implicational problem Γ |= γ
by exact applying of definition of generalized dependencies by systematic generating of all
the relations form SAT (R) and checking the implication r |= Γ => r |= γ, because SAT(R)
is, in most cases, the set of high cardinality and it can be even infinite. Therefore, the other
methods have to be applied so as to resolve the problem. According to the nature of gds, it is
concluded that for the automations of the test Γ |= γ, the resolution procedure can be
applied. Therefore, the set of Γ and the dependency γ will be represented by appropriate
predicate formulas. According to the resolution theorem and theorem of generalized
dependencies, the test of the condition Γ |= γ, where Γ = {γ1,…, γn}, is performed by
disproving procedure, on the basis of the set of initial assumptions F(Γ) and the negation of
the conclusion ¬F. In that case, the theorem that should be proved by ATP System is of the
form: F(Γ) → F.
To prove the theorem, the clauses should be built from the set of assumptions F(Γ) and
negation ¬F. They represent the input for ATP. Beside that, two additional input parameters
are: (i) maximal searching deep and (ii) maximal clause length. With respect to the
resolution theorem, there are three possible outcomes from ATP. (a) ”positive”; an empty
clause has been reached, which means that the assertion F holds. According to theorem of
generalized dependencies, Γ |= γ holds, too; (b) ”negative”: the empty clause has not been
reached and there are no more possibilities for new clause generating. It means that the
conclusion F cannot be derived from F(Γ). According to theorem of generalized
dependencies, we conclude Γ |= γ does not hold; (c) ”uncertain”: the empty clause has not
been obtained, whereas maximal searching deep and maximal clause length have been
reached, or memory resources have been exhausted.

5.3. Intelligent Tutoring System Based on ATP System
The concept of LOGPRO can be an excellent base for an intelligent tutoring system iTUTOR
(Brtka, 2001, Berkovic et al., 2003). Such deductive logic programming language can perform
tasks that standard PROLOG system could not (Hotomski, 2004).
It is now possible to define predicate:

know(student_name, concept, degree).
where studentname is name of a student, concept is name of a concept that student should
know and degree indicates grade of concept cognition.
Negation in the head of the rule can be implemented as:

~know(student_name, concept, degree):-

Extensions of Deductive Concept in Logic Programming and Some Applications 7

structures and lists, as well as PROLOG. It is presented in some concrete examples
(Berkovic, 1997).

5. Applications of ATP System and LOGPRO

5.1. Time-Table and Scheduling System DEDUC
This system ATP is incorporated in the system for automatic creating of the combinatorial
disposition DEDUC, where it has presented the satisfying practical efficiency.
DEDUC is a software package that integrates scientific results of Constraint Logic
Programming and practical needs in generating combinatorial schedules. The work on the
system started in 1991. After ten years the powerful system was developed.
System is based on synchronized work of two processes: data storing and optimization of
gaps in the timetable. Theorem prover controls both processes to secure that initial
requirements are not violated
System facilities and performances:
� Automatic and interactive generating of schedules for the initial data and conditions;
� Setting up and maintenance of the initial data and requirements by using the user

friendly interface;
� Setting up various initial requirements like splitting classes into groups, connecting

groups and classes, enabling multiple lessons; setting restrictions in using laboratories
and rooms; setting teachers’ requirements and the other pedagogic obligations and
desirable demands;

� Generating schedules respecting school shifts;
� Screen browsing and printing the general, per-class and per-teacher schedules;
� Generating and archiving different versions of the schedules generated for the same

initial data and conditions;
� Maintenance of the archived versions, data and conditions.
The practical efficiency and system limits can be observed for complicated examples as well
as for the simple ones. Essentially, getting the acceptable version of the schedule depends on
structure of the initial requirements and their connections with data, although the number
of requirements has no influence.
Practical experiences in the real world assure that DEDUC system generates timetables with
quality level higher than quality level of hand-made timetables. The time needed for
generating a timetable varies from few minutes to several hours, and depends on amount of
data, structure of conditions as well as on computer performances. More informations at
http://deduce.tripod.com

5.2. A Technique for the Implicational Problem Resolving for Generalized Data
Dependencies
A mechanism for generalized representation of various data dependency types, such as
functional (fd), multivalued (mvd), join (jd), implied (imd) and inclusion (id) dependencies,
has been developed in the relational data model theory. The initial supposition was that all
the data dependencies (i.e. “rules” which hold among data) can be represented, in unified
manner, by one, or more symbolic data templates, satisfying certain criteria, according to
defined interpretation rules for such symbolic templates. On the basis of that supposition,
the term of generalized data dependency has been introduced, so as to represent the other

dependency types in the same way. One of the important questions, arising when new data
dependency type is introduced, is how it can be stated if a data dependency is a logical
consequence of a given set of data dependencies. This problem in relational databases is
known as the implicational problem.
At the beginning, the terms of: tableau, as a symbolic data template, generalized
dependency (gd) and its interpretation are defined without explanations, because they are
considered as already known. In (Lukovic et al., 1996, Lukovic et al., 1997) is presented a
possible approach to resolving the implicational problem for gds, it is established at the
same time a way of testing the implicational problem for all the specific data dependency
types which can be formalized by means of gds. The proposed approach considers a usage of
the ATP System.
To resolve the implicational problem for a given sets of gds Γ and arbitrary gd γ means to
establish if Γ |= γ holds. It is not practically possible to test he implicational problem Γ |= γ
by exact applying of definition of generalized dependencies by systematic generating of all
the relations form SAT (R) and checking the implication r |= Γ => r |= γ, because SAT(R)
is, in most cases, the set of high cardinality and it can be even infinite. Therefore, the other
methods have to be applied so as to resolve the problem. According to the nature of gds, it is
concluded that for the automations of the test Γ |= γ, the resolution procedure can be
applied. Therefore, the set of Γ and the dependency γ will be represented by appropriate
predicate formulas. According to the resolution theorem and theorem of generalized
dependencies, the test of the condition Γ |= γ, where Γ = {γ1,…, γn}, is performed by
disproving procedure, on the basis of the set of initial assumptions F(Γ) and the negation of
the conclusion ¬F. In that case, the theorem that should be proved by ATP System is of the
form: F(Γ) → F.
To prove the theorem, the clauses should be built from the set of assumptions F(Γ) and
negation ¬F. They represent the input for ATP. Beside that, two additional input parameters
are: (i) maximal searching deep and (ii) maximal clause length. With respect to the
resolution theorem, there are three possible outcomes from ATP. (a) ”positive”; an empty
clause has been reached, which means that the assertion F holds. According to theorem of
generalized dependencies, Γ |= γ holds, too; (b) ”negative”: the empty clause has not been
reached and there are no more possibilities for new clause generating. It means that the
conclusion F cannot be derived from F(Γ). According to theorem of generalized
dependencies, we conclude Γ |= γ does not hold; (c) ”uncertain”: the empty clause has not
been obtained, whereas maximal searching deep and maximal clause length have been
reached, or memory resources have been exhausted.

5.3. Intelligent Tutoring System Based on ATP System
The concept of LOGPRO can be an excellent base for an intelligent tutoring system iTUTOR
(Brtka, 2001, Berkovic et al., 2003). Such deductive logic programming language can perform
tasks that standard PROLOG system could not (Hotomski, 2004).
It is now possible to define predicate:

know(student_name, concept, degree).
where studentname is name of a student, concept is name of a concept that student should
know and degree indicates grade of concept cognition.
Negation in the head of the rule can be implemented as:

~know(student_name, concept, degree):-

Engineering the Computer Science and IT8

know(student_name, concept1, degree1),
know(student_name, concept2, degree2),
...
know(student_name, conceptn, degreen),
degree1<c1,
degree2<c2,
...
degreen<cn.

which means that student does not know concept in certain degree if he does not know
minor concepts concept1, concept2, ..., conceptn in degree greater than or equal with c1, c2, ...,
cn where c1, c2, ..., cn are predefined constants. Furthermore, one can calculate degree of
concept cognition by adding a line at the end of previous rule:

degree is (degree1+ degree2+...+ degreen)/n.
Rule:

~nextlesson(student_name, lesson_name):-

know(student_name, concept1, degree1),
know(student_name, concept2, degree2),
...
know(student_name, conceptn, degreen),
degree1>c1,
degree2>c2,
...
degreen>cn.

indicates lessons that particular student should not learn because he knows all belonging
concepts in degree greater than predefined constant.
Similar rule:

~nextlesson(student_name, lesson_name):-

~know(student_name, concept1, degree1),
know(student_name, concept2, degree2),
...
know(student_name, conceptn, degreen),
degree1>c1,
degree2>c2,
...
degreen>cn.

where some predicates in the body of the rule are negated, indicates lessons that student
should not learn because he does not know all belonging concepts in degree greater than
predefined constant. Application of such logic programming language LOGPRO can
overcome some problems during the process of student modelling in an intelligent tutoring
system.

5.4. Baselog System as Deductive Databases
Baselog system concept and its program implementation enabled the integration of good
properties of Datalog, Prolog and ATP system, and so is realized a more flexible system in
reference to the work in the closed, respectively opened world. Specifically needs in the
development for the work with databases ask just development and application of a such
system, and it makes it more superior in reference to Datalog, Prolog and ATP system,
considered separately (Radulovic, 1998, Radulovic & Hotomski, 2000).
Some automated reasoning systems can give incorrect answers if they work in closed world
concept, or correct answers if they work in open world concept where the answer depends
on fact base completeness. If fact, the base is incomplete, some of automated deduction
systems can consult facts from various extension files. In order to enable work with greater
data amount there arose a need to access certain databases which can even be distant and
then take the piece of data which could be used for deducting a conclusion (Hotomski,
2004).

5.4.1. Close/Open World Assumption in Baselog
In (Ceri, 1989, Stonebraker et al., 1990, Ullman, 1994) is described Datalog, the logic
programming language in the field of the database that is implemented in the post-relation
software for database management system PROGRESS. Datalog works on the CWA-
principle, respectively (by) adopting the Closed World Assumption. The CWA-principle
declares (Radulovic, 1998, Radulovic & Hotomski, 2000) :

Definition 1. (The CWA – principle) If a fact does not logically follow from a set of Datalog
clauses, then we conclude that the negation of this fact is true.
For knowledge databases is also characteristic the open world assumption. In the open
world regime work classic systems for the automatic theorem proving, especially, ATP
system (Berkovic, 1994, Berkovic, 1997). The knowledge bases contain limited knowledge
segments from a certain field. They can be incomplete, i.e. they do not present total relevant
knowledge. The applying of the closed world concept on such databases, can bring wrong
answers to the asked questions. Because of that the pure concept of the closed world can not
be applied for the databases used in the education computing software.
Universal resolution systems from theoretic aspect totally support the work with databases
as well, but they show a practical deficiency. It can be seen in the fact that because of the
endeavoring to get a semantically expected answer, it is necessary to give a complete space
description where the solution is claimed.
In the database area it is, for example, exposed through the necessity of proposing following
axiom:

t t1 t t2 ... t tn ~ P(t)

where t1,...,tn are the relation database tuples, and P(t) means the tuple t belonging to the
database relation (~ is negation).

As it can be seen, already for little number of tuples in database, this axiom has big length,
so this theoretic possibility is left in practical applications. Both in Datalog and in Prolog it is
made the attempt for solving this deficiency in specific ways. In Prolog it is the strategy of
definite failure (Bratko, 1986, Berkovic, 1997) and in Datalog the CWA-principle

Extensions of Deductive Concept in Logic Programming and Some Applications 9

know(student_name, concept1, degree1),
know(student_name, concept2, degree2),
...
know(student_name, conceptn, degreen),
degree1<c1,
degree2<c2,
...
degreen<cn.

which means that student does not know concept in certain degree if he does not know
minor concepts concept1, concept2, ..., conceptn in degree greater than or equal with c1, c2, ...,
cn where c1, c2, ..., cn are predefined constants. Furthermore, one can calculate degree of
concept cognition by adding a line at the end of previous rule:

degree is (degree1+ degree2+...+ degreen)/n.
Rule:

~nextlesson(student_name, lesson_name):-

know(student_name, concept1, degree1),
know(student_name, concept2, degree2),
...
know(student_name, conceptn, degreen),
degree1>c1,
degree2>c2,
...
degreen>cn.

indicates lessons that particular student should not learn because he knows all belonging
concepts in degree greater than predefined constant.
Similar rule:

~nextlesson(student_name, lesson_name):-

~know(student_name, concept1, degree1),
know(student_name, concept2, degree2),
...
know(student_name, conceptn, degreen),
degree1>c1,
degree2>c2,
...
degreen>cn.

where some predicates in the body of the rule are negated, indicates lessons that student
should not learn because he does not know all belonging concepts in degree greater than
predefined constant. Application of such logic programming language LOGPRO can
overcome some problems during the process of student modelling in an intelligent tutoring
system.

5.4. Baselog System as Deductive Databases
Baselog system concept and its program implementation enabled the integration of good
properties of Datalog, Prolog and ATP system, and so is realized a more flexible system in
reference to the work in the closed, respectively opened world. Specifically needs in the
development for the work with databases ask just development and application of a such
system, and it makes it more superior in reference to Datalog, Prolog and ATP system,
considered separately (Radulovic, 1998, Radulovic & Hotomski, 2000).
Some automated reasoning systems can give incorrect answers if they work in closed world
concept, or correct answers if they work in open world concept where the answer depends
on fact base completeness. If fact, the base is incomplete, some of automated deduction
systems can consult facts from various extension files. In order to enable work with greater
data amount there arose a need to access certain databases which can even be distant and
then take the piece of data which could be used for deducting a conclusion (Hotomski,
2004).

5.4.1. Close/Open World Assumption in Baselog
In (Ceri, 1989, Stonebraker et al., 1990, Ullman, 1994) is described Datalog, the logic
programming language in the field of the database that is implemented in the post-relation
software for database management system PROGRESS. Datalog works on the CWA-
principle, respectively (by) adopting the Closed World Assumption. The CWA-principle
declares (Radulovic, 1998, Radulovic & Hotomski, 2000) :

Definition 1. (The CWA – principle) If a fact does not logically follow from a set of Datalog
clauses, then we conclude that the negation of this fact is true.
For knowledge databases is also characteristic the open world assumption. In the open
world regime work classic systems for the automatic theorem proving, especially, ATP
system (Berkovic, 1994, Berkovic, 1997). The knowledge bases contain limited knowledge
segments from a certain field. They can be incomplete, i.e. they do not present total relevant
knowledge. The applying of the closed world concept on such databases, can bring wrong
answers to the asked questions. Because of that the pure concept of the closed world can not
be applied for the databases used in the education computing software.
Universal resolution systems from theoretic aspect totally support the work with databases
as well, but they show a practical deficiency. It can be seen in the fact that because of the
endeavoring to get a semantically expected answer, it is necessary to give a complete space
description where the solution is claimed.
In the database area it is, for example, exposed through the necessity of proposing following
axiom:

t t1 t t2 ... t tn ~ P(t)

where t1,...,tn are the relation database tuples, and P(t) means the tuple t belonging to the
database relation (~ is negation).

As it can be seen, already for little number of tuples in database, this axiom has big length,
so this theoretic possibility is left in practical applications. Both in Datalog and in Prolog it is
made the attempt for solving this deficiency in specific ways. In Prolog it is the strategy of
definite failure (Bratko, 1986, Berkovic, 1997) and in Datalog the CWA-principle

Engineering the Computer Science and IT10

(Stonebraker et al., 1990). Meanwhile, no one of these solutions can satisfy education needs
in fullness, for the following reasons.
In reference to possible user’s questions, there are following options:

a) the answer to the question is deducible from the base,
b) the answer to the question is not deducible from the base,
where in b) we differ:

b1) the answer needs to be affirmative,
b2) the answer needs to be negative.

In a) when the answer is deducible from the base, it will be found and presented to a user
either Prolog, Datalog or Logpro based on ATP-system.
Specificities are being reflected in b). According to the adopted the CWA-assumption in
Datalog, respectively the definite failure concept in Prolog, there are possible incorrect or
indefinite answers. So in b1) Datalog can generate the incorrect answer NO, while Prolog’s
answer “NO” can be interpreted as “uncertain”. In b2) Datalog answer “NO” is correct, and
Prolog answer “NO” can be interpreted as “NO”. In both cases b1) and b2) Logpro based on
ATP gives answer “uncertain”.

We observe that in educative meaning Datalog according to the b1) does not satisfy, while
Prolog and Logpro based on ATP give acceptable, but uncertain answers. In b2) Datalog
gives correct and precise answer, while Prolog and Logpro based on ATP gives
inadequately precise answers. From the educative aspect it is desirable to lessen the
indefiniteness of the system answer and it is necessary to eliminate the non-allowed
answers. Otherwise, there is need to keep the definiteness present in Datalog for b2) and
eliminate non-allowed answer from b1). Implementing Baselog - system projected on the list
of the CWA–predicate and the CWA–rule, a flexible concept has been realized. Such system
all predicates which are in the CWA-list treats as Datalog, in closed-world, while all the
other predicates treat in open world, i.e. works as ATP. With it, it is free of Prolog defects in
reference to the negation treatment and the definite failure concept.

The basis for Baselog - system make following components (Radulovic & Hotomski, 2000,
Radulovic, 1998):
 The CWA–predicate list, which is a part of the program,
 The CWA–rule,
 The CWA–controller by which is enlarged ATP resolution system.

The whole Baselog - system is the extension of the resolution method by the concepts of the
opened and closed world. By the CWA–controller one provides dozing a degree of the
world openness/closeness for the program predicates.
Every literal of the form R(w1,...,wm) where R is predicate name mentioned in the CWA-
predicate list, and w1,...,wm are arguments, Baselog - system will treat in the closed system
regime, while all the other predicates that are not in the CWA–predicate list, by the system
will be treated in the open world regime. Here, the CWA–controller of Baselog -system uses
the CWA–rule, formulated in the following way.

The CWA – RULE:
Let D is the clause of the forms L1L2... Lp and let Li, 1 i p is literal of the form R(w1,...,wm),
where the predicate R is declared as the CWA–predicate. If R(w1,...,wm) can not be unified with no
one base element, then R(w1,...,wm) will be deleted from clause D.
If exists unificator for Li and some element from base, then clause D is not changed, there is no
deleting.

The proof of the CWA–rule correctness is described in (Radulovic, 1998).

6. Conclusion

Completeness and universality of the resolution method, as the base of ATP system, enables
it to be applied as the deductive base of prolog-like language. The relationship between
programming language based on ATP system and programming language PROLOG are
emphasized. The logic programming language based on ATP system enables eliminating
the defects of PROLOG-system (the expansion concerning Horn clauses, escaping negation
treatment as definite failure, eliminating of endless branches), keeping the main properties
of prolog-language. In this paper are also described some applications of ATP system and
LOGPRO such as: time-table and scheduling (DEDUC), a technique for the implicational
problem resolving for generalized data dependencies, deductive databases (Baselog System)
and intelligent tutoring system based on ATP system (iTUTOR). Also, ATP system is used
for the development inference system and data mining (Brtka, 2008).

7. References

Barr, A.; Cohen, P.R. & Feigenbaum, E.A. (1982). The Handbook of Artificial Intelligence,
Vol.I,II,III, Heuris Tech Press, W. Kaufmann, Inc., California

Berković, I. (1994). Variable Searching Strategies in the Educationally Oriented System for
Automatic Theorem Proving, M.Sc. Thesis, Technical Faculty "Mihajlo Pupin",
Zrenjanin, (in Serbian)

Berković, I. (1997). The Deductive Bases for the Development of the Descriptive Languages
for the Logical Programming, Ph.D. Thesis, Technical Faculty "Mihajlo Pupin",
Zrenjanin, (in Serbian)

Berković, I. & Hotomski, P. (1997). The concept of logic programming language based on
resolution theorem prover, Proceedings of VIII Conference on Logic and Computer
Science LIRA, pp. 111-120, Sept 1-4 1997, Novi Sad, Serbia

Berković, I.; Hotomski P. & Brtka V. (2003). The Concept of Logic Programming Language
Based on the Resolution Theorem Prover and its Appliance to Intelligent Tutoring
Systems; IEEE Proceedings of 7th International Conference on Intelligent Engineering
Systems, pp 169 - 172; ISSN: 977.246.048.3/1562, Assiut – Luxor, Egypt, March 4 - 6.
2003.

Bratko, I. (1986). PROLOG Programming for Artificial Intelligence, Addison-Wesley Publ.
Comp.

Brtka, V. (2001). Tutoring educational software, M.Sc. Thesis, Technical Faculty "Mihajlo
Pupin", Zrenjanin, (in Serbian).

Extensions of Deductive Concept in Logic Programming and Some Applications 11

(Stonebraker et al., 1990). Meanwhile, no one of these solutions can satisfy education needs
in fullness, for the following reasons.
In reference to possible user’s questions, there are following options:

a) the answer to the question is deducible from the base,
b) the answer to the question is not deducible from the base,
where in b) we differ:

b1) the answer needs to be affirmative,
b2) the answer needs to be negative.

In a) when the answer is deducible from the base, it will be found and presented to a user
either Prolog, Datalog or Logpro based on ATP-system.
Specificities are being reflected in b). According to the adopted the CWA-assumption in
Datalog, respectively the definite failure concept in Prolog, there are possible incorrect or
indefinite answers. So in b1) Datalog can generate the incorrect answer NO, while Prolog’s
answer “NO” can be interpreted as “uncertain”. In b2) Datalog answer “NO” is correct, and
Prolog answer “NO” can be interpreted as “NO”. In both cases b1) and b2) Logpro based on
ATP gives answer “uncertain”.

We observe that in educative meaning Datalog according to the b1) does not satisfy, while
Prolog and Logpro based on ATP give acceptable, but uncertain answers. In b2) Datalog
gives correct and precise answer, while Prolog and Logpro based on ATP gives
inadequately precise answers. From the educative aspect it is desirable to lessen the
indefiniteness of the system answer and it is necessary to eliminate the non-allowed
answers. Otherwise, there is need to keep the definiteness present in Datalog for b2) and
eliminate non-allowed answer from b1). Implementing Baselog - system projected on the list
of the CWA–predicate and the CWA–rule, a flexible concept has been realized. Such system
all predicates which are in the CWA-list treats as Datalog, in closed-world, while all the
other predicates treat in open world, i.e. works as ATP. With it, it is free of Prolog defects in
reference to the negation treatment and the definite failure concept.

The basis for Baselog - system make following components (Radulovic & Hotomski, 2000,
Radulovic, 1998):
 The CWA–predicate list, which is a part of the program,
 The CWA–rule,
 The CWA–controller by which is enlarged ATP resolution system.

The whole Baselog - system is the extension of the resolution method by the concepts of the
opened and closed world. By the CWA–controller one provides dozing a degree of the
world openness/closeness for the program predicates.
Every literal of the form R(w1,...,wm) where R is predicate name mentioned in the CWA-
predicate list, and w1,...,wm are arguments, Baselog - system will treat in the closed system
regime, while all the other predicates that are not in the CWA–predicate list, by the system
will be treated in the open world regime. Here, the CWA–controller of Baselog -system uses
the CWA–rule, formulated in the following way.

The CWA – RULE:
Let D is the clause of the forms L1L2... Lp and let Li, 1 i p is literal of the form R(w1,...,wm),
where the predicate R is declared as the CWA–predicate. If R(w1,...,wm) can not be unified with no
one base element, then R(w1,...,wm) will be deleted from clause D.
If exists unificator for Li and some element from base, then clause D is not changed, there is no
deleting.

The proof of the CWA–rule correctness is described in (Radulovic, 1998).

6. Conclusion

Completeness and universality of the resolution method, as the base of ATP system, enables
it to be applied as the deductive base of prolog-like language. The relationship between
programming language based on ATP system and programming language PROLOG are
emphasized. The logic programming language based on ATP system enables eliminating
the defects of PROLOG-system (the expansion concerning Horn clauses, escaping negation
treatment as definite failure, eliminating of endless branches), keeping the main properties
of prolog-language. In this paper are also described some applications of ATP system and
LOGPRO such as: time-table and scheduling (DEDUC), a technique for the implicational
problem resolving for generalized data dependencies, deductive databases (Baselog System)
and intelligent tutoring system based on ATP system (iTUTOR). Also, ATP system is used
for the development inference system and data mining (Brtka, 2008).

7. References

Barr, A.; Cohen, P.R. & Feigenbaum, E.A. (1982). The Handbook of Artificial Intelligence,
Vol.I,II,III, Heuris Tech Press, W. Kaufmann, Inc., California

Berković, I. (1994). Variable Searching Strategies in the Educationally Oriented System for
Automatic Theorem Proving, M.Sc. Thesis, Technical Faculty "Mihajlo Pupin",
Zrenjanin, (in Serbian)

Berković, I. (1997). The Deductive Bases for the Development of the Descriptive Languages
for the Logical Programming, Ph.D. Thesis, Technical Faculty "Mihajlo Pupin",
Zrenjanin, (in Serbian)

Berković, I. & Hotomski, P. (1997). The concept of logic programming language based on
resolution theorem prover, Proceedings of VIII Conference on Logic and Computer
Science LIRA, pp. 111-120, Sept 1-4 1997, Novi Sad, Serbia

Berković, I.; Hotomski P. & Brtka V. (2003). The Concept of Logic Programming Language
Based on the Resolution Theorem Prover and its Appliance to Intelligent Tutoring
Systems; IEEE Proceedings of 7th International Conference on Intelligent Engineering
Systems, pp 169 - 172; ISSN: 977.246.048.3/1562, Assiut – Luxor, Egypt, March 4 - 6.
2003.

Bratko, I. (1986). PROLOG Programming for Artificial Intelligence, Addison-Wesley Publ.
Comp.

Brtka, V. (2001). Tutoring educational software, M.Sc. Thesis, Technical Faculty "Mihajlo
Pupin", Zrenjanin, (in Serbian).

Engineering the Computer Science and IT12

Brtka, V. (2008). Automated Synthesis of Rule Base in Inference Systems, Ph.D. Thesis,
Technical Faculty "Mihajlo Pupin", Zrenjanin, (in Serbian)

Ceri, S.; Gottlob, G. & Tanza, L. (1989). What You Always Wanted to Know About Datalog
(And Never Dared to Ask), IEEE Transactions on Knowledge and Data Engineering,
Vol. 1, No. 1 March 1989, pp. 146-167

Gevarter, W.B. (1985). Intelligent Machines, Prentice-Hall, Inc., Englewood Cliffs, New Jersey
Hotomski, P. & Pevac, I. (1991). Mathematical and Programming Problems of Artificial Intelligence

in the Field of Automatic Theorem Proving, Naučna knjiga, Belgrade, (in Serbian)
Hotomski, P. (2004). Systems of Artificial Intelligence, University of Novi Sad, Technical

Faculty "Mihajlo Pupin" Zrenjanin, (in Serbian)
Kowalski, P. & Kuchner, D. (1971). Linear Resolution with Selection Function, Artificial

Intelligence, Vol. 2, pp. 227-260
Luković, I.; Hotomski, P.; Radulović, B. & Berković, I. (1996). A Proof of Generalized Data

Dependency Satisfaction by The Automatic Reasoning Method, Proceedings of the
Second Symposium on Comp, Sc. and Informatics YU INFO, Brezovica, 02-05.-4.1996.
(in Serbian)

Luković, I.; Hotomski, P.; Radulović, B. & Berković, I. (1997). A Technique for the
Implicational Problem Resolving for Generalized Data Dependencies, Proceedings of
VIII Conf. on Logic and Computer Science LIRA ’97, pp. 111-119, Novi Sad, 01-
04.09.1997,

Malpas. J. (1987). PROLOG: A Relational Language and Its Applications, Prentice-Hall
International Inc.

Pereira, F.C.N. & Shieber, S.M. (1987). PROLOG and Natural - Language Analysis, CLSI,
Leland Stanford Junior University

Radulović, B. & Hotomski, P. (2000). Projecting of Deductive Databases with CWA
Management in Baselog System, Novi Sad Journal of Mathematics, pp 133-140. Vol 30,
N2, 2000, Novi Sad, Serbia

Radulović, B. (1998). Database Projecting in the Field of Education Computer Software,
Ph.D. Thesis, Technical Faculty “Mihajlo Pupin”, Zrenjanin, (in serbian)

Radulović, B. & Hotomski, P. (1997). Database projecting in the Baselog-system, Proceedings
of VII Conf. “Informatics in eduation and new information technologies”, pp. 71-77, Novi
Sad, 1997, (in serbian)

Radulović, B.; Berković, I.; Hotomski, P. & Kazi, Z. (2008). The Development of Baselog
System and Some Applications, International Review on Computers and Software
(I.RE.CO.S.), pp 390-395, Vol. 3 N. 4, July 2008, Print ISSN: 1828-6003

Stonebraker, M.; Rowe, L. A. & Hirohama, M. (1990). The Implementation of POSTGRES,
IEEE Transactions on Knowledge and Data Engineering, pp. 125-142, Vol. 2, No. 1,
March 1990

Subrahmanyam, P.A. (1985). The "Software Engineering" of Expert Systems: Is Prolog
Appropriate?, IEEE Transactions on Software Engineering, pp. 1391-1400, Vol. SE-11,
No. 11, november 1985.

Ullman, J. (1994). Assigning an Appropriate Meaning to Database Logic With Negation,
www-db.stanford.edu/pub/papers/negation.ps

Wos, L. (1985). Automated Reasoning, The American Mathematical Monthly, pp. 85-93 Vol. 92,
No. 2, february 1985.

Wos, L.; Overbeek, R.; Lusk, E. & Boyle J. (1992). Automated Reasoning: Introduction and
Applications, Prentice-Hall

Regular Language Induction with Grammar-based Classifier System 13

Regular Language Induction with Grammar-based Classifier System

Olgierd Unold

X

Regular Language Induction with
Grammar-based Classifier System

Olgierd Unold

Wroclaw University of Technology
Poland

1. Introduction

In this chapter, we are interested in inducing a grammar that accepts a regular language
(Hopcroft & Ullman, 1969) given a finite number of positive and negative examples drawn
from that language. Learning regular languages is equivalent to the problem of learning
Deterministic Finite Automata (DFA). Both problems have been extensively studied in the
literature and it has been proved that learning DFA or regular languages is a hard task by a
number of criteria (Pitt & Warmuth, 1993). Note, that induced DFA should not only be
consistent with the training set, but also DFA should proper estimate membership function
for unseen examples.
The approaches to learning DFA or equivalent regular languages (RL) base mainly on
evolutionary algorithms (Dupont, 1996), (Luke et al., 1999), (Lucas & Reynolds, 2005),
recurrent neural network (Giles et al., 1990), (Waltrous & Kuhn, 1992) or combination of
these two methods (Angeline et al., 1994). While speaking about DFA/regular grammar
induction, one cannot help mentioning one of the best known algorithm for learning DFA –
EDSM (Cicchello & Kremer, 2002), which relies on heuristic compressing an initially large
DFA down to a smaller one, while preserving perfect classification before and after each
compression.
In this chapter we examine RL induction using Grammar-based Classifier System (GCS) – a
new model of Learning Classifier System (LCS). GCS (Unold, 2005a), (Unold & Cielecki,
2005) represents the knowledge about solved problem in Chomsky Normal Form (CNF)
productions. GCS was applied with success to natural language processing (Unold, 2007a),
biological promoter regions (Unold, 2007b), and toy grammar (Unold, 2005b). In spite of
intensive research into classifier systems in recent years (Lucas & Reynolds, 2005) there is
still a slight number of attempts at inferring grammars using LCS. Although there are some
approaches to handle with context-free grammar (Bianchi, 1996), (Cyre, 2002), (Unold,
2005a), there is no one work on inducing regular languages with LCS. This article describes
GCS approach to the problem of inferring regular languages.
The generic architecture of learning classifier system is presented in the second paragraph.
The third section contains description of GCS preceded by short introduction to context-free
grammars. The fourth paragraph shows some selected experimental results in RL grammar
induction. The chapter is concluded with a summary.

2

Engineering the Computer Science and IT14

2. Learning Classifier System

A Learning Classifier System, introduced by Holland (1976), learns by interacting with an
environment from which it receives feedback in the form of numerical reward. Learning is
achieved by trying to maximize the amount of the reward received. There are many models
of LCS and many ways of defining what a Learning Classifier System is. All LCS models,
more or less, comprise four main components (see Fig. 1): (i) a finite population of
condition-action rules (classifiers), that represent the current knowledge of a system; (ii) the
performance component, which governs the interaction with the environment; (iii) the
reinforcement component, called credit assignment component), which distributes the
reward received from the environment to the classifiers accountable for the rewards
obtained; (iv) the discovery component responsible for discovering better rules and
improving existing ones through a genetic algorithm (GA).

Fig. 1. The generic architecture of Learning Classifier System (Holmes et al., 2002)

Classifiers have two associated measures: the prediction and the fitness. Prediction
estimates the classifier utility in terms of the amount of reward that the system will receive if
the classifier is used. Fitness estimates the quality of the information about the problem that
the classifier conveys, and it is exploited by the discovery component to guided evolution. A
high fitness means that the classifier conveys good information about the problem and
therefore it should be reproduced more trough the genetic algorithm. A low fitness means
that the classifier conveys little or no good information about the problem and therefore
should reproduce less.
On each discrete time step t, the LCS receives as input the current state of the environment st
and builds a match set containing the classifiers in the population, whose condition matches
the current state. Then, the system evaluates the utility of the actions appearing in the match

reward rt action at state st

Environment

Match set

Population

Evaluation
of action utility

Action
selection

Performance Component

Re
in

fo
rc

em
en

t
C

om
po

ne
nt

D
is

co
ve

ry
 C

om
po

ne
nt

Learning Classifier System

set; an action at is selected from those in the match set according to a certain criterion, and
sent to the environment to be performed. Depending on the current state st and on the
consequences of action at, the system eventually receives a reward rt. The reinforcement
component distributes a reward rt among the classifiers accountable of the incoming
rewards. This can be either implemented with an algorithm specifically designed for the
Learning Classifier Systems (e.g. bucket brigade algorithm (Holland, 1986)) or with an
algorithm inspired by traditional reinforcement learning methods (e.g., the modification of
Q-learning (Wilson, 1995)). On a regular basis, the discovery component (genetic algorithm)
randomly selects, with the probability proportional to their fitness, two classifiers from the
population. It applies crossover and mutation generating two new classifiers.
The environment defines the target task. For instance, in autonomous robotics the
environment corresponds roughly to the robot’s physical surroundings and the goal of
learning is to learn a certain behaviour (Katagami & Yamada, 2000). In classification
problems, the environment trains a set of pre-classified examples; each example is described
by a vector of attributes and a class label; the goal of learning is to evolve rules that can be
used to classify previously unseen examples with high accuracy (Holmes et al., 2002) (Unold
& Dabrowski, 2003). In computational economics, the environment represents a market and
the goal of learning is to make profits (Judd & Tesfatsion, 2005).
For many years, the research on LCS was done on Holland’s classifier system. All
implementations shared more or less the same features which can be summarized as
follows: (i) some form of a bucket brigade algorithm was used to distribute the rewards, (ii)
evolution was triggered by the strength parameters of classifiers, (iii) the internal message
list was used to keep track of past input (Lanzi & Riolo, 2000).
During the last years new models of Holland’s system have been developed. Among others,
two models seem particularly worth mentioning. The XCS classifier system (Wilson, 1995)
uses Q-learning to distribute the reward to classifiers, instead of bucket brigade algorithm;
the genetic algorithm acts in environmental niches instead of on the whole population; and
most importantly, the fitness of classifiers is based in the accuracy of classifier predictions,
instead of the prediction itself. Stolzmann’s ACS (Stolzmann, 2000) differs greatly from
other LCS models in that ACS learns not only how to perform a certain task, but also an
internal model of the dynamics of the task. In ACS classifiers are not simple condition-action
rules but they are extended by an effect part, which is used to anticipate the environmental
state.

3. Grammar-based Classifier System

GCS (Unold, 2005a) (Unold & Cielecki, 2005) operates similarly to the classic LCS but differs
from them in (i) representation of classifiers population, (ii) scheme of classifiers’ matching
to the environmental state, (iii) methods of exploring new classifiers (see Fig. 2).
The population of classifiers has a form of a context-free grammar rule set in a Chomsky
Normal Form (population P in Fig. 2). Actually, this is not a limitation, because every CFG
can be transformed into equivalent CNF. Chomsky Normal Form allows only for
production rules, in the form of A→α or A→BC, where A, B, C are the non-terminal symbols
and a is a terminal symbol. The first rule is an instance of terminal rewriting rule. Terminal
rules are not affected by the GA, and are generated automatically as the system meets an
unknown (new) terminal symbol. The left hand side of the rule plays a role of the classifier’s

Regular Language Induction with Grammar-based Classifier System 15

2. Learning Classifier System

A Learning Classifier System, introduced by Holland (1976), learns by interacting with an
environment from which it receives feedback in the form of numerical reward. Learning is
achieved by trying to maximize the amount of the reward received. There are many models
of LCS and many ways of defining what a Learning Classifier System is. All LCS models,
more or less, comprise four main components (see Fig. 1): (i) a finite population of
condition-action rules (classifiers), that represent the current knowledge of a system; (ii) the
performance component, which governs the interaction with the environment; (iii) the
reinforcement component, called credit assignment component), which distributes the
reward received from the environment to the classifiers accountable for the rewards
obtained; (iv) the discovery component responsible for discovering better rules and
improving existing ones through a genetic algorithm (GA).

Fig. 1. The generic architecture of Learning Classifier System (Holmes et al., 2002)

Classifiers have two associated measures: the prediction and the fitness. Prediction
estimates the classifier utility in terms of the amount of reward that the system will receive if
the classifier is used. Fitness estimates the quality of the information about the problem that
the classifier conveys, and it is exploited by the discovery component to guided evolution. A
high fitness means that the classifier conveys good information about the problem and
therefore it should be reproduced more trough the genetic algorithm. A low fitness means
that the classifier conveys little or no good information about the problem and therefore
should reproduce less.
On each discrete time step t, the LCS receives as input the current state of the environment st
and builds a match set containing the classifiers in the population, whose condition matches
the current state. Then, the system evaluates the utility of the actions appearing in the match

reward rt action at state st

Environment

Match set

Population

Evaluation
of action utility

Action
selection

Performance Component

Re
in

fo
rc

em
en

t
C

om
po

ne
nt

D
is

co
ve

ry
 C

om
po

ne
nt

Learning Classifier System

set; an action at is selected from those in the match set according to a certain criterion, and
sent to the environment to be performed. Depending on the current state st and on the
consequences of action at, the system eventually receives a reward rt. The reinforcement
component distributes a reward rt among the classifiers accountable of the incoming
rewards. This can be either implemented with an algorithm specifically designed for the
Learning Classifier Systems (e.g. bucket brigade algorithm (Holland, 1986)) or with an
algorithm inspired by traditional reinforcement learning methods (e.g., the modification of
Q-learning (Wilson, 1995)). On a regular basis, the discovery component (genetic algorithm)
randomly selects, with the probability proportional to their fitness, two classifiers from the
population. It applies crossover and mutation generating two new classifiers.
The environment defines the target task. For instance, in autonomous robotics the
environment corresponds roughly to the robot’s physical surroundings and the goal of
learning is to learn a certain behaviour (Katagami & Yamada, 2000). In classification
problems, the environment trains a set of pre-classified examples; each example is described
by a vector of attributes and a class label; the goal of learning is to evolve rules that can be
used to classify previously unseen examples with high accuracy (Holmes et al., 2002) (Unold
& Dabrowski, 2003). In computational economics, the environment represents a market and
the goal of learning is to make profits (Judd & Tesfatsion, 2005).
For many years, the research on LCS was done on Holland’s classifier system. All
implementations shared more or less the same features which can be summarized as
follows: (i) some form of a bucket brigade algorithm was used to distribute the rewards, (ii)
evolution was triggered by the strength parameters of classifiers, (iii) the internal message
list was used to keep track of past input (Lanzi & Riolo, 2000).
During the last years new models of Holland’s system have been developed. Among others,
two models seem particularly worth mentioning. The XCS classifier system (Wilson, 1995)
uses Q-learning to distribute the reward to classifiers, instead of bucket brigade algorithm;
the genetic algorithm acts in environmental niches instead of on the whole population; and
most importantly, the fitness of classifiers is based in the accuracy of classifier predictions,
instead of the prediction itself. Stolzmann’s ACS (Stolzmann, 2000) differs greatly from
other LCS models in that ACS learns not only how to perform a certain task, but also an
internal model of the dynamics of the task. In ACS classifiers are not simple condition-action
rules but they are extended by an effect part, which is used to anticipate the environmental
state.

3. Grammar-based Classifier System

GCS (Unold, 2005a) (Unold & Cielecki, 2005) operates similarly to the classic LCS but differs
from them in (i) representation of classifiers population, (ii) scheme of classifiers’ matching
to the environmental state, (iii) methods of exploring new classifiers (see Fig. 2).
The population of classifiers has a form of a context-free grammar rule set in a Chomsky
Normal Form (population P in Fig. 2). Actually, this is not a limitation, because every CFG
can be transformed into equivalent CNF. Chomsky Normal Form allows only for
production rules, in the form of A→α or A→BC, where A, B, C are the non-terminal symbols
and a is a terminal symbol. The first rule is an instance of terminal rewriting rule. Terminal
rules are not affected by the GA, and are generated automatically as the system meets an
unknown (new) terminal symbol. The left hand side of the rule plays a role of the classifier’s

Engineering the Computer Science and IT16

action while the right hand side - a classifier’s condition. The system evolves only one
grammar according to the so-called Michigan approach. In this approach, each individual
classifier – or grammar rule in GCS – is subject of the genetic algorithm’s operations. All
classifiers (rules) form a population of evolving individuals. In each cycle a fitness
calculating algorithm evaluates a value (an adaptation) of each classifier and a discovery
component operates only on single classifiers.
The automatic learning CFG is realized with grammar induction from the set of sentences.
According to this technique, the system learns using a training set that in this case consists
of sentences both syntactically correct and incorrect. Grammar which accepts correct
sentences and rejects incorrect ones is able to classify sentences unseen so far from a test set.
Cocke-Younger-Kasami (CYK) parser, which operates in Θ(n3) time (Younger, 1967), is used
to parse sentences from the corpus.

Fig. 2. The environment of Grammar-based Classifier System

The environment of a classifier system is substituted by an array of CYK parser (CYK parser
module in Fig. 2). The classifier system matches the rules according to the current
environmental state (state of parsing, Matching Set M in Fig. 2) and generates an action (or
set of actions in GCS, effectors E in Fig. 2), pushing the parsing process toward the complete
derivation of the analyzed sentence.

Action Set A
(Effectors E)

S, C

sentence a a b b

1 A, C A, C B B
2 S S B
3 C ?

 4
CYK parser

Cove
ring

Population P

A → a
B → b
C → c
C → a
S → AB
S → AC
C → SB
B → BB

Match Set M

S → AB
C → SB

Detectors D
AB, CB, SB

AG

The discovery component in GCS is extended in comparison with a standard LCS. In some
cases, a “covering” procedure may occur, adding some useful rules to the system. It adds
productions that allow continuing of parsing in the current state of the system. This feature
utilizes for instance the fact that accepting 2-length sentences requires separate, designated
rule in grammar in CNF.
Apart from a “covering”, a genetic algorithm also explores the space, searching for new,
better rules. The first GCS implementation used a simple rule fitness calculation algorithm
which appreciated the ones commonly used in correct recognitions. Later implementations
introduced the “fertility” technique, which made the rule fitness dependant on the amount
of the descendant rules (in the sentence derivation tree) (Unold, 2005b). In both techniques
classifiers used in parsing positive examples gain highest fitness values, unused classifiers
are placed in the middle, while the classifiers that parse negative examples gain lowest
possible fitness values.
GCS uses a mutation of GA that chooses two parents in each cycle to produce two offspring.
The selection step uses the roulette wheel selection. After selection a classical crossover or
mutation can occur. The offspring that are created replace existing classifiers based on their
similarity using crowding technique, which preserves diversity in the population and
extends preservation of the dependencies between rules by replacing classifiers by the
similar ones.

4. Regular Language Induction

4.1 Experimental testbed
The datasets most commonly used in DFA learning is Tomita sets (Tomita, 1982). The
definition of Tomita languages is as follows:
L1: a*,
L2: (ab)*,
L3: (b|aa)*(a*|(abb(bb|a)*))

any sentence without an odd number of consecutive a’s after an odd number of
consecutive b’s,

L4: a*((b|bb)aa*)*(b|bb|a*)
 any sentence over the alphabet a,b without more than two consecutive a’s,
L5: ((aa|bb)*((ba|ab)(bb|aa)*(ba|ab)(bb|aa)*)*(aa|bb)*
 any sentence with an even number of a’s and an even number of b’s,
L6: ((b(ba)*(a|bb))|(a(ab)*(b|aa)))*

any sentence such that the number of a’s differs from the number of b’s by 0
modulo 3,

L7: b*a *b*a*.

By the way, it is worth mentioning that the L3 language given in (Luke et al., 1999)
comprises improper, i.e. not according to the definition, two sentences baaabbaaba oraz
aabaaabbaab. The same work gives incorrect definition of L5 language, permitting sentences
which contain odd number of symbols a and b.
Grammatical (grammar) inference methods that employ DFAs as models can be divided
into two broad classes: passive and active learning methods (Bongard & Lipson, 2005). In
passive methods, a set of training data is known before learning. In active learning

Regular Language Induction with Grammar-based Classifier System 17

action while the right hand side - a classifier’s condition. The system evolves only one
grammar according to the so-called Michigan approach. In this approach, each individual
classifier – or grammar rule in GCS – is subject of the genetic algorithm’s operations. All
classifiers (rules) form a population of evolving individuals. In each cycle a fitness
calculating algorithm evaluates a value (an adaptation) of each classifier and a discovery
component operates only on single classifiers.
The automatic learning CFG is realized with grammar induction from the set of sentences.
According to this technique, the system learns using a training set that in this case consists
of sentences both syntactically correct and incorrect. Grammar which accepts correct
sentences and rejects incorrect ones is able to classify sentences unseen so far from a test set.
Cocke-Younger-Kasami (CYK) parser, which operates in Θ(n3) time (Younger, 1967), is used
to parse sentences from the corpus.

Fig. 2. The environment of Grammar-based Classifier System

The environment of a classifier system is substituted by an array of CYK parser (CYK parser
module in Fig. 2). The classifier system matches the rules according to the current
environmental state (state of parsing, Matching Set M in Fig. 2) and generates an action (or
set of actions in GCS, effectors E in Fig. 2), pushing the parsing process toward the complete
derivation of the analyzed sentence.

Action Set A
(Effectors E)

S, C

sentence a a b b

1 A, C A, C B B
2 S S B
3 C ?

 4
CYK parser

Cove
ring

Population P

A → a
B → b
C → c
C → a
S → AB
S → AC
C → SB
B → BB

Match Set M

S → AB
C → SB

Detectors D
AB, CB, SB

AG

The discovery component in GCS is extended in comparison with a standard LCS. In some
cases, a “covering” procedure may occur, adding some useful rules to the system. It adds
productions that allow continuing of parsing in the current state of the system. This feature
utilizes for instance the fact that accepting 2-length sentences requires separate, designated
rule in grammar in CNF.
Apart from a “covering”, a genetic algorithm also explores the space, searching for new,
better rules. The first GCS implementation used a simple rule fitness calculation algorithm
which appreciated the ones commonly used in correct recognitions. Later implementations
introduced the “fertility” technique, which made the rule fitness dependant on the amount
of the descendant rules (in the sentence derivation tree) (Unold, 2005b). In both techniques
classifiers used in parsing positive examples gain highest fitness values, unused classifiers
are placed in the middle, while the classifiers that parse negative examples gain lowest
possible fitness values.
GCS uses a mutation of GA that chooses two parents in each cycle to produce two offspring.
The selection step uses the roulette wheel selection. After selection a classical crossover or
mutation can occur. The offspring that are created replace existing classifiers based on their
similarity using crowding technique, which preserves diversity in the population and
extends preservation of the dependencies between rules by replacing classifiers by the
similar ones.

4. Regular Language Induction

4.1 Experimental testbed
The datasets most commonly used in DFA learning is Tomita sets (Tomita, 1982). The
definition of Tomita languages is as follows:
L1: a*,
L2: (ab)*,
L3: (b|aa)*(a*|(abb(bb|a)*))

any sentence without an odd number of consecutive a’s after an odd number of
consecutive b’s,

L4: a*((b|bb)aa*)*(b|bb|a*)
 any sentence over the alphabet a,b without more than two consecutive a’s,
L5: ((aa|bb)*((ba|ab)(bb|aa)*(ba|ab)(bb|aa)*)*(aa|bb)*
 any sentence with an even number of a’s and an even number of b’s,
L6: ((b(ba)*(a|bb))|(a(ab)*(b|aa)))*

any sentence such that the number of a’s differs from the number of b’s by 0
modulo 3,

L7: b*a *b*a*.

By the way, it is worth mentioning that the L3 language given in (Luke et al., 1999)
comprises improper, i.e. not according to the definition, two sentences baaabbaaba oraz
aabaaabbaab. The same work gives incorrect definition of L5 language, permitting sentences
which contain odd number of symbols a and b.
Grammatical (grammar) inference methods that employ DFAs as models can be divided
into two broad classes: passive and active learning methods (Bongard & Lipson, 2005). In
passive methods, a set of training data is known before learning. In active learning

Engineering the Computer Science and IT18

approaches, the algorithm has some influence over which training data is labeled by the
target DFA for model construction.
Passive methods, and to this class belongs GCS, usually make some assumption about the
training data. In (Pitt, 1989), (Porat & Feldman, 1991), (Dupont, 1996), (Lang et al., 1998) a
learning data was selected at random from sample data, in (Pao & Carr, 1978), (Parekh &
Honavar, 1996) a learning data consisted of a structurally complete set, (Oncina & Garcià,
1992) assume a characteristic sample; and (Angluin, 1981) assumes a live complete set. Luke
et al. (1999) and Lucas & Reynolds (2005) used equal amounts of positive and negative
training examples when inferring the Tomita languages, so a learning set was balanced as in
(Tomita, 1982), (Angeline, 1997), (Waltrous & Kuhn, 1992). In passive methods once the
sample data has been generated and labeled, learning is then conducted.
In this chapter Grammar-based Classifier System, a method which employs evolutionary
computation for search, will be compared against the evolutionary method proposed by
Lucas & Reynolds (2005), and Luke et al. (1999). (Lucas & Reynolds, 2005), as well as (Luke
et al., 1999) present one of the best-known results in the area of DFA/regular language
induction. All of compared evolutionary methods will assume the same training and test
sets. Some comparisons will be made also to EDSM method (Cicchello & Kremer, 2002), the
current most powerful passive approach to DFAs inference.
Table 1 shows the details of applied data sets: number of all learning examples |U|, number
of positive learning examples |U+|, number of negative learning examples |U–|, number
of all test examples |T|, number of positive test examples |T+|, and number of negative
test examples |T–|. Note, that test sets are not balanced, and contain much more negative
sentences than positive once.

Lang. |U | |U +| |U –| |T | |T +| |T –|
L1 16 8 8 65 534 15 65 519
L2 15 5 10 65 534 7 65 527
L3 24 12 12 65 534 9447 56 087
L4 19 10 9 65 534 23 247 42 287
L5 21 9 12 65 534 10 922 54 612
L6 21 9 12 65 534 21 844 43 690
L7 20 12 8 65 534 2515 63 019

Table 1. Learning and test data sets.

4.2 Experiments
A comparison set of experiments with GCS was performed on the above Tomita corpora.
Fifty independent experiments were performed, evolution on each training corpus ran for
5,000 generations, with the following genetic parameters: number of non-terminal symbols
19, number of terminal symbols 7, crossover probability 0.2, mutation probability 0.8,
population consisted of maximal 40 classifiers where 30 of them were created randomly in
the first generation, crowding factor 18, crowding size 3.
In the first attempt GCS was compared to the approach presented in (Luke et al., 1999)
(denoted by GP). GP applies gene regulation to evolve deterministic finite-state automata. In
this approach genes are states in the automaton, and a gene-regulation-like mechanism
determines state transitions. Each gene has Boolean value indicating whether or not it was
an accepting state. The main results are summarized in Table 1. For each learning corpus,

the table shows the target language, and three sets of results. The first indicator nSuccess is
the number of runs with success gained by GCS within 50 experiments and compared
approach presented in (Luke et al., 1999). The second one nEvals indicates the average
number of generations needed to reach the 100% fitness, and the last one nGen is the
percentage of all unseen strings correctly classified.

Lang.
nSuccess nEvals nGen

GP GCS GP GCS GP GCS
L1 31/50 50/50 30 2 88.4 100
L2 7/50 50/50 1010 2 84.0 100
L3 1/50 1/50 12 450 666 66.3 100
L4 3/50 24/50 7870 2455 65.3 100
L5 0/50 50/50 13 670 201 68.7 92.4
L6 47/50 49/50 2580 1471 95.9 96.9
L7 1/50 11/50 11 320 2902 67.7 92.0

Table 2. Comparison of GCS with GP approach (Luke et al., 1999).

For compared methods induction of L3 language appeared to be hard task. Both in GP and
in GCS only the one run over 50 successfully finished. But GP found the solution in 12450
iterations, whereas GCS in only 666 steps. For the same language GCS correctly classified all
of the unseen examples, while GP achieved 66%. As to an indicator nGen, GP was not able
correctly classified unseen strings for any language from the tested corpora, while GCS
induced a grammar fully general to the language in 4 cases. It is interesting to compare the
results of induction for L5 language. GP approach could not find the proper grammar (DFA)
for any run, while GCS found the solution in all runs, on average in 201 steps. While
learning L1 and L2 languages, GP found the proper grammars not in all runs, whereas for
GCS this task appeared to be trivial (100% nGen, 50/50 nSuccess, and nEvals 2 steps).
Table 3 shows the cost of induction (an indicator nEvlas) for the methods Plain, Smart, and
nSmart taken from (Lucas & Reynolds, 2005), GP approach, and GCS.

Lang. Plain Smart nSmart GP GCS
L1 107 25 15 30 2
L2 186 37 40 1010 2
L3 1809 237 833 12 450 666
L4 1453 177 654 7870 2455
L5 1059 195 734 13 670 201
L6 734 93 82 2580 1471
L7 1243 188 1377 11 320 2902

Table 3. Cost of induction (nEvals) for different evolutionary methods.

Lucas and Reynolds (Lucas & Reynolds, 2005) used different method to evolving DFA. In
contrary to (Luke et al., 1999), only transition matrix was evolved, supported by a simple
deterministic procedure to optimally assign state labels. This approach is based on
evolutionary strategy (1+1). Three versions of induction algorithm were prepared: an
approach in which both the transition matrix and the state label vector evolve (Plain), so-
called Smart method evolving only the transition matrix and the number of the states was
fixed and equal to 10, and finally nSmart method in which the number of the DFA states is

Regular Language Induction with Grammar-based Classifier System 19

approaches, the algorithm has some influence over which training data is labeled by the
target DFA for model construction.
Passive methods, and to this class belongs GCS, usually make some assumption about the
training data. In (Pitt, 1989), (Porat & Feldman, 1991), (Dupont, 1996), (Lang et al., 1998) a
learning data was selected at random from sample data, in (Pao & Carr, 1978), (Parekh &
Honavar, 1996) a learning data consisted of a structurally complete set, (Oncina & Garcià,
1992) assume a characteristic sample; and (Angluin, 1981) assumes a live complete set. Luke
et al. (1999) and Lucas & Reynolds (2005) used equal amounts of positive and negative
training examples when inferring the Tomita languages, so a learning set was balanced as in
(Tomita, 1982), (Angeline, 1997), (Waltrous & Kuhn, 1992). In passive methods once the
sample data has been generated and labeled, learning is then conducted.
In this chapter Grammar-based Classifier System, a method which employs evolutionary
computation for search, will be compared against the evolutionary method proposed by
Lucas & Reynolds (2005), and Luke et al. (1999). (Lucas & Reynolds, 2005), as well as (Luke
et al., 1999) present one of the best-known results in the area of DFA/regular language
induction. All of compared evolutionary methods will assume the same training and test
sets. Some comparisons will be made also to EDSM method (Cicchello & Kremer, 2002), the
current most powerful passive approach to DFAs inference.
Table 1 shows the details of applied data sets: number of all learning examples |U|, number
of positive learning examples |U+|, number of negative learning examples |U–|, number
of all test examples |T|, number of positive test examples |T+|, and number of negative
test examples |T–|. Note, that test sets are not balanced, and contain much more negative
sentences than positive once.

Lang. |U | |U +| |U –| |T | |T +| |T –|
L1 16 8 8 65 534 15 65 519
L2 15 5 10 65 534 7 65 527
L3 24 12 12 65 534 9447 56 087
L4 19 10 9 65 534 23 247 42 287
L5 21 9 12 65 534 10 922 54 612
L6 21 9 12 65 534 21 844 43 690
L7 20 12 8 65 534 2515 63 019

Table 1. Learning and test data sets.

4.2 Experiments
A comparison set of experiments with GCS was performed on the above Tomita corpora.
Fifty independent experiments were performed, evolution on each training corpus ran for
5,000 generations, with the following genetic parameters: number of non-terminal symbols
19, number of terminal symbols 7, crossover probability 0.2, mutation probability 0.8,
population consisted of maximal 40 classifiers where 30 of them were created randomly in
the first generation, crowding factor 18, crowding size 3.
In the first attempt GCS was compared to the approach presented in (Luke et al., 1999)
(denoted by GP). GP applies gene regulation to evolve deterministic finite-state automata. In
this approach genes are states in the automaton, and a gene-regulation-like mechanism
determines state transitions. Each gene has Boolean value indicating whether or not it was
an accepting state. The main results are summarized in Table 1. For each learning corpus,

the table shows the target language, and three sets of results. The first indicator nSuccess is
the number of runs with success gained by GCS within 50 experiments and compared
approach presented in (Luke et al., 1999). The second one nEvals indicates the average
number of generations needed to reach the 100% fitness, and the last one nGen is the
percentage of all unseen strings correctly classified.

Lang.
nSuccess nEvals nGen

GP GCS GP GCS GP GCS
L1 31/50 50/50 30 2 88.4 100
L2 7/50 50/50 1010 2 84.0 100
L3 1/50 1/50 12 450 666 66.3 100
L4 3/50 24/50 7870 2455 65.3 100
L5 0/50 50/50 13 670 201 68.7 92.4
L6 47/50 49/50 2580 1471 95.9 96.9
L7 1/50 11/50 11 320 2902 67.7 92.0

Table 2. Comparison of GCS with GP approach (Luke et al., 1999).

For compared methods induction of L3 language appeared to be hard task. Both in GP and
in GCS only the one run over 50 successfully finished. But GP found the solution in 12450
iterations, whereas GCS in only 666 steps. For the same language GCS correctly classified all
of the unseen examples, while GP achieved 66%. As to an indicator nGen, GP was not able
correctly classified unseen strings for any language from the tested corpora, while GCS
induced a grammar fully general to the language in 4 cases. It is interesting to compare the
results of induction for L5 language. GP approach could not find the proper grammar (DFA)
for any run, while GCS found the solution in all runs, on average in 201 steps. While
learning L1 and L2 languages, GP found the proper grammars not in all runs, whereas for
GCS this task appeared to be trivial (100% nGen, 50/50 nSuccess, and nEvals 2 steps).
Table 3 shows the cost of induction (an indicator nEvlas) for the methods Plain, Smart, and
nSmart taken from (Lucas & Reynolds, 2005), GP approach, and GCS.

Lang. Plain Smart nSmart GP GCS
L1 107 25 15 30 2
L2 186 37 40 1010 2
L3 1809 237 833 12 450 666
L4 1453 177 654 7870 2455
L5 1059 195 734 13 670 201
L6 734 93 82 2580 1471
L7 1243 188 1377 11 320 2902

Table 3. Cost of induction (nEvals) for different evolutionary methods.

Lucas and Reynolds (Lucas & Reynolds, 2005) used different method to evolving DFA. In
contrary to (Luke et al., 1999), only transition matrix was evolved, supported by a simple
deterministic procedure to optimally assign state labels. This approach is based on
evolutionary strategy (1+1). Three versions of induction algorithm were prepared: an
approach in which both the transition matrix and the state label vector evolve (Plain), so-
called Smart method evolving only the transition matrix and the number of the states was
fixed and equal to 10, and finally nSmart method in which the number of the DFA states is

Engineering the Computer Science and IT20

equal to the size of minimal automata. Recall that both GP and GCS belong to the so-called
variable size methods, whereas Plain, Smart, and nSmart approaches represent the fixed-
size structure methods. In general, the second group of methods gains better results.
GCS obtained the best results for the L1 and L2 languages among comparable methods. The
result 201 steps for L5 is comparable with the best result of 195 reached by nSmart.
Although GCS reached similar result for language L3 as the best method (666 for GCS, and
237 for Smart), it is hard to compare for this language these methods, because of low value
of nSuccess for GCS – only one run over 50 finished with success (see table 2). For the
languages L4, L6, and L7 fixed-size structured methods achieved better results than
variable-size methods.

Lang. Smart nSmart EDSM GP GCS
L1 81.8 100 52.4 88.4 100
L2 88.8 95.5 91.8 84 100
L3 71.8 90.8 86.1 66.3 100
L4 61.1 100 100 65.3 100
L5 65.9 100 100 68.7 92.4
L6 61.9 100 100 95.9 96.9
L7 62.6 82.9 71.9 67.7 92

Table 4. Percentage of all unseen strings correctly classified (nGen) for different methods.

Table 4 shows the percentage of all unseen strings correctly classified (an indicator nGen)
for the methods Smart, nSmart, EDSM, GP, and GCS. Recall that the EDSM, as a heuristic
and non-evolutionary method, was single-time executed during learning phase. Model GCS
achieved the best results from all tested approaches for L1, L2, L3, and L7 languages. For the
language L4 the same 100% accuracy was obtained by proposed method, nSmart, and
EDSM. For the L5 and L6 languages GCS obtained the second result, higher than 90%.

5. Summary
Our experiments attempted to apply a Grammar-based Classifier System to evolutionary
computation in evolving an inductive mechanism for the regular language set. Near-optimal
and/or better than reported in the literature solutions were obtained. Moreover,
performance of GCS was compared to the Evidence Driven State Merging algorithm, one of
the most powerful known DFA learning algorithms. GCS with its ability of generalizations
outperforms EDSM, as well as other significant evolutionary method.

6. References

Angeline, P. (1994). Evolutionary Algorithms and Emergent Intelligence. PhD Thesis. Computer
Science Department, Ohio State University

Angeline, P. (1997). An alternative to indexed memory for evolving programs with explicit
state representations, In: Koza, J.R. et al (eds.) Proc. 2nd Conf. Genetic Programming
(GP97), pp. 423–430, Morgan Kaufmann, San Francisco, CA

Angeline, P.; Saunders, G.M. & Pollack, J.P. (1994). An Evolutionary Algorithm that
Constructs Recurrent Neural Networks, IEEE Trans. Neural Networks, vol. 5, no. 1,
54–65

Angluin, D. (1981). A note on the number of queries needed to identify regular languages,
Information and Control, 51, 76–87

Bianchi, D. (1996). Learning Grammatical Rules from Examples Using a Credit Assignement
Algorithm, In: Proc. of The First Online Workshop on Soft Computing (WSC1), pp. 113–
118, Nagoya

Bongard, J. & Lipson, H. (2005). Active Coevolutionary Learning of Deterministic Finite
Automata, J. of Machine Learning Research, 6, 1651–1678

Cicchello, O. & Kremer, S.C. (2002). Beyond EDSM, In: Proc. Int’l Colloquium Grammatical
Inference, vol. 2484, pp. 37–48

Cyre, W.R. (2002). Learning Grammars with a Modified Classifier System, In: Proc. 2002
World Congress on Computational Intelligence, pp. 1366–1371. Honolulu, Hawaii

Dupont, P. (1996). Incremental regular inference. In: Miclet, L. & de la Higuera, C. (eds.)
Proc. 3rd ICGI-96, pp. 222–237, LNAI, vol. 1147

Dupont, P.; Miclet L. & Vidal, E. (1994). What Is the Search Space of the Regular Inference?
In: Carrasco, R.C. & Oncina, J. (eds.) Proc. Grammatical Inference and Applications:
Second Int’l Colloquium (ICGI-94), pp. 25–37

Giles, C.; Sun, G.; Chen, H.; Lee Y. & Chen, D. (1990). Higher order Recurrent Neural
Networks and Grammatical Inference, In: Touretzky, D. (ed.) Advances in Neural
Information Processing Systems 2, pp. 380–387. San Mateo, Calif.: Morgan Kaufman

Holland, J. (1976). Adaptation. In: Rosen, R. & Snell, F.M. (eds.) Progress in theoretical biology,
Plenum, New York

Holland, J. (1986). Escaping Brittleness: The possibilities of General-Purpose Learning
Algorithms Applied to Parallel Rule-Based Systems. In: Michalski, R.S. et al. (eds.)
Machine Learning, an Artificial Intelligence Approach, vol. II, 593–623. Morgan
Kaufmann

Holmes, J.H.; Lanzi, P.L.; Stolzmann, W. & Wilson, S.W. (2002). Learning classifier systems:
new models, successful applications, Information Processing Letters 82(1), 23–30

Hopcroft, J.E. & Ullman, J.D. (1969). Formal Languages And Their Relation to Automata,
Reading, Mass.: Addison-Wesley

Judd, K.L. & Tesfatsion, L. (2005). Agent-Based Computational Economics, Handbook of
Computational Economics, vol. 2, Elsevier, North-Holland

Katagami, D. & Yamada, S. (2000). Interactive Classifier System for Real Robot Learning. In:
IEEE International Workshop on Robot-Human Interaction ROMAN-2000, pp. 258–263,
Osaka, Japan

Lang, K.; Pearlmutter, B. & Price R. (1998). Results of the Abbadingo One DFA Learning
Competition and a New Evidence Driven State Merging Algorithm. In: Proc. Int.
Colloquium on Grammatical Inference ICGA-98, pp. 1–12, LNAI, vol. 1433, Springer,
Berlin, Heidelberg

Lanzi, P.L. & Riolo, R.L. (2000). A Roadmap to the Last Decade of Learning Classifier
System Research, In: LNAI, vol. 1813, pp. 33–62. Springer Verlag

Lucas, S. & Reynolds, T.J. (2005). Learning Deterministic Finite Automata with a Smart State
labeling Evolutionary Algorithm, IEEE Trans. on Pattern Analysis and Machine
Intelligence, 27 (7), 1–12

Regular Language Induction with Grammar-based Classifier System 21

equal to the size of minimal automata. Recall that both GP and GCS belong to the so-called
variable size methods, whereas Plain, Smart, and nSmart approaches represent the fixed-
size structure methods. In general, the second group of methods gains better results.
GCS obtained the best results for the L1 and L2 languages among comparable methods. The
result 201 steps for L5 is comparable with the best result of 195 reached by nSmart.
Although GCS reached similar result for language L3 as the best method (666 for GCS, and
237 for Smart), it is hard to compare for this language these methods, because of low value
of nSuccess for GCS – only one run over 50 finished with success (see table 2). For the
languages L4, L6, and L7 fixed-size structured methods achieved better results than
variable-size methods.

Lang. Smart nSmart EDSM GP GCS
L1 81.8 100 52.4 88.4 100
L2 88.8 95.5 91.8 84 100
L3 71.8 90.8 86.1 66.3 100
L4 61.1 100 100 65.3 100
L5 65.9 100 100 68.7 92.4
L6 61.9 100 100 95.9 96.9
L7 62.6 82.9 71.9 67.7 92

Table 4. Percentage of all unseen strings correctly classified (nGen) for different methods.

Table 4 shows the percentage of all unseen strings correctly classified (an indicator nGen)
for the methods Smart, nSmart, EDSM, GP, and GCS. Recall that the EDSM, as a heuristic
and non-evolutionary method, was single-time executed during learning phase. Model GCS
achieved the best results from all tested approaches for L1, L2, L3, and L7 languages. For the
language L4 the same 100% accuracy was obtained by proposed method, nSmart, and
EDSM. For the L5 and L6 languages GCS obtained the second result, higher than 90%.

5. Summary
Our experiments attempted to apply a Grammar-based Classifier System to evolutionary
computation in evolving an inductive mechanism for the regular language set. Near-optimal
and/or better than reported in the literature solutions were obtained. Moreover,
performance of GCS was compared to the Evidence Driven State Merging algorithm, one of
the most powerful known DFA learning algorithms. GCS with its ability of generalizations
outperforms EDSM, as well as other significant evolutionary method.

6. References

Angeline, P. (1994). Evolutionary Algorithms and Emergent Intelligence. PhD Thesis. Computer
Science Department, Ohio State University

Angeline, P. (1997). An alternative to indexed memory for evolving programs with explicit
state representations, In: Koza, J.R. et al (eds.) Proc. 2nd Conf. Genetic Programming
(GP97), pp. 423–430, Morgan Kaufmann, San Francisco, CA

Angeline, P.; Saunders, G.M. & Pollack, J.P. (1994). An Evolutionary Algorithm that
Constructs Recurrent Neural Networks, IEEE Trans. Neural Networks, vol. 5, no. 1,
54–65

Angluin, D. (1981). A note on the number of queries needed to identify regular languages,
Information and Control, 51, 76–87

Bianchi, D. (1996). Learning Grammatical Rules from Examples Using a Credit Assignement
Algorithm, In: Proc. of The First Online Workshop on Soft Computing (WSC1), pp. 113–
118, Nagoya

Bongard, J. & Lipson, H. (2005). Active Coevolutionary Learning of Deterministic Finite
Automata, J. of Machine Learning Research, 6, 1651–1678

Cicchello, O. & Kremer, S.C. (2002). Beyond EDSM, In: Proc. Int’l Colloquium Grammatical
Inference, vol. 2484, pp. 37–48

Cyre, W.R. (2002). Learning Grammars with a Modified Classifier System, In: Proc. 2002
World Congress on Computational Intelligence, pp. 1366–1371. Honolulu, Hawaii

Dupont, P. (1996). Incremental regular inference. In: Miclet, L. & de la Higuera, C. (eds.)
Proc. 3rd ICGI-96, pp. 222–237, LNAI, vol. 1147

Dupont, P.; Miclet L. & Vidal, E. (1994). What Is the Search Space of the Regular Inference?
In: Carrasco, R.C. & Oncina, J. (eds.) Proc. Grammatical Inference and Applications:
Second Int’l Colloquium (ICGI-94), pp. 25–37

Giles, C.; Sun, G.; Chen, H.; Lee Y. & Chen, D. (1990). Higher order Recurrent Neural
Networks and Grammatical Inference, In: Touretzky, D. (ed.) Advances in Neural
Information Processing Systems 2, pp. 380–387. San Mateo, Calif.: Morgan Kaufman

Holland, J. (1976). Adaptation. In: Rosen, R. & Snell, F.M. (eds.) Progress in theoretical biology,
Plenum, New York

Holland, J. (1986). Escaping Brittleness: The possibilities of General-Purpose Learning
Algorithms Applied to Parallel Rule-Based Systems. In: Michalski, R.S. et al. (eds.)
Machine Learning, an Artificial Intelligence Approach, vol. II, 593–623. Morgan
Kaufmann

Holmes, J.H.; Lanzi, P.L.; Stolzmann, W. & Wilson, S.W. (2002). Learning classifier systems:
new models, successful applications, Information Processing Letters 82(1), 23–30

Hopcroft, J.E. & Ullman, J.D. (1969). Formal Languages And Their Relation to Automata,
Reading, Mass.: Addison-Wesley

Judd, K.L. & Tesfatsion, L. (2005). Agent-Based Computational Economics, Handbook of
Computational Economics, vol. 2, Elsevier, North-Holland

Katagami, D. & Yamada, S. (2000). Interactive Classifier System for Real Robot Learning. In:
IEEE International Workshop on Robot-Human Interaction ROMAN-2000, pp. 258–263,
Osaka, Japan

Lang, K.; Pearlmutter, B. & Price R. (1998). Results of the Abbadingo One DFA Learning
Competition and a New Evidence Driven State Merging Algorithm. In: Proc. Int.
Colloquium on Grammatical Inference ICGA-98, pp. 1–12, LNAI, vol. 1433, Springer,
Berlin, Heidelberg

Lanzi, P.L. & Riolo, R.L. (2000). A Roadmap to the Last Decade of Learning Classifier
System Research, In: LNAI, vol. 1813, pp. 33–62. Springer Verlag

Lucas, S. & Reynolds, T.J. (2005). Learning Deterministic Finite Automata with a Smart State
labeling Evolutionary Algorithm, IEEE Trans. on Pattern Analysis and Machine
Intelligence, 27 (7), 1–12

Engineering the Computer Science and IT22

Luke, S.; Hamahashi, S. & Kitano, H. (1999). ‘Genetic’ Programming”. In: Banzhaf, W. et al.
(eds.) Proc. Genetic and Evolutionary Computation Conf., pp. 1098–1105

Oncina, J. & Garcià, P. (1992). Inferring regular languages in polynomial update time, In:
Perez, N. et al. (eds.) Pattern recognition and image analysis, pp. 49–61, Singapore,
World Scientific

Pao, T. & Carr, J. (1978). A solution of the syntactic induction-inference problem for regular
languages, Computer Languages, 3, 53–64

Parekh, R.G. & Honavar, V.G. (1996). An incremental interactive approach for regular
grammar inference. In: Proc. 3rd ICGI-96, pp. 238–250, LNAI, vol. 1147, Springer,
Berlin, Heidelberg

Pitt, L. (1989). Inductive inference, DFAs and computational complexity. In: Proc. Int.
Workshop on Analogical and Inductive Inference, pp. 18–44, LNAI, vol. 397, Springer,
London, UK

Pitt, L. & Warmuth, M. (1993). The Minimum Consistent DFA Problem Cannot Be
Approximated within Any Polynomial, J. ACM, vol. 40, no. 1, 95–142

Porat, F. & Feldman, J. (1991). Learning automata from ordered examples, Machine Learning,
7, 109–138

Stolzmann, W. (2000). An Introduction to Anticipatory Classifier Systems, In: LNAI, vol.
1813, pp. 175–194, Springer-Verlag

Tomita, M. (1982). Dynamic construction of finite automata from examples using hill
climbing, In: Proc. 4th Annual Cognitive Science Conf., pp. 105–108, USA

Unold, O. (2005a). Context-free grammar induction with grammar-based classifier system,
Archives of Control Science, vol. 15 (LI) 4, 681–690

Unold, O. (2005b). Playing a toy-grammar with GCS, In: Mira, J & Álvarez, J.R. (eds.)
IWINAC 2005, pp. 300–309, LNCS, vol. 3562,. Springer Verlag

Unold, O. (2007a). Learning classifier system approach to natural language grammar
induction, In: Shi, Y. et al. (eds.) ICCS 2007, pp. 1210–1213 Part II, LNCS, vol. 4488

Unold, O. (2007b). Grammar-based classifier system for recognition of promoter regions, In:
Beliczynski B. et al. (eds.) ICANNGA07, pp. 798–805, Part I, LNCS, vol. 4431

Unold, O. & Cielecki, L. (2005). Grammar-based Classifier System, In: Hryniewicz, O. et al.
(eds.) Issues in Intelligent Systems: Paradigms, EXIT Publishing House, Warsaw, 273–
286

Unold, O. & Dabrowski, G. (2003) Use of learning classifier system for inferring natural
language grammar. In: Abraham, A et al. (eds.) Design and application of hybrid
intelligent, Amsterdam, IOS Press, 272–278

Waltrous, R. & Kuhn, G. (1992). Induction of finite state automata using second-order
recurrent networks. In: Moody, J. et al. (eds.) Advances in Neural Information
Processing 4 , pp. 309–316, Morgan Kaufmann, San Francisco, CA

Wilson, S.W. (1995). Classifier Fitness Based on Accuracy, Evolutionary Computation 3 (2),
147–175

Younger, D. (1967). Recognition and parsing of context-free languages in time n3, University of
Hawaii Technical Report, Department of Computer Science (1967)

Fault Localization Models Using Dependences 23

Fault Localization Models Using Dependences

Safeeullah Soomro, Abdul Hameed Memon, Asif Ali Shah and Wajiha Shah

X

Fault Localization Models Using Dependences

Safeeullah Soomro1, Abdul Hameed Memon2,
Asif Ali Shah3, 4 and Wajiha Shah3, 4

Emails: safee@ieee.org, memon@yic.edu.sa &
{asif.shah,wajiha.shah}@tuwien.ac.at

 1Yanbu University College, KSA
 2Yanbu Industrial College, KSA

 3Vienna University of Technology, Austria
 4Mehran University of Engineering & Technology Jamshoro, Pakistan

Abstract

In recent years Mode-Based Diagnosis has an acheived a tremendous recognition and has
been applied to variety of disgnosis problems, mainly software debugging. Many efforts
have been taken to improve software development and prevent faults. Still software faults
pose challenging problems to software designers. Fault localization is next step after
detecting faults in programs. This chapter makes use of dependences between program
variables to detecting and localization faults from strucural programs. Further more we
discuss the relationship between the FDM (functional-dependences model) and VBM
(verification-based model) under presence of partial specifications artifacts like assertions
are pre and post conditions by exemplifying specific scenarios in software debugging.
Moreover, we discuss the relationship between VBM model and the well-known functional-
dependence model particularly under presence of partial specification artifacts like
assertions or pre- and post conditions. In the last we present the summary regarding
dependences models that helps us to choose which model is detecting and locating errors
from different type of data structures. Finally we discuss the case studies between FDM and
VBM with some test programs.

Keywords: Model Based Software Debugging, Software Debugging, Model-Based Diagnosis, Fault
Detection and Localization.

1. Introduction

Within the last decades several techniques for debugging, i.e., detecting, locating, and
repairing faults in programs, have been proposed. Some of the techniques make use of
models of the program's structure and behavior like algorithmic debugging or model-based
debugging. Other techniques try to find bugs by examining code for suspects, i.e., code
fragments that do not obey given rules, by finding differences between different program
runs, or by finding (structural) differences between a program and another implementation.

3

Engineering the Computer Science and IT24

The latter technique is used mainly for tutoring systems where the desired implementation
is known in advance.

We introduce the basic idea of automated fault localization in software by means of a small
Java program example. The program given in Figure 1. multiplies two integer variables x
and y and returns the product and the product's sign. In line 11 we assign 0-y to the loop
counter i, thus our program is buggy. For the test case x=-2 and y=+4 we obtain that result is
0, which contradicts our expectation result = -8.

In localizing the misbehavior's cause we start with static code analysis techniques. For
example, we compute a static slice in line 18 with respect to the variable result. This rules
out irrelevant statements by considering solely statements influencing the variable result.
Our static slice contains the statements [2,6,7,8,9,11,12,14,15,16] - that is, we can exclude the
statements 5 and 10 from causing the result's wrong value.

In addition we know that our loop counter i is always bigger or equal to 0 thus we might
add the assertion in line 13. When executing the program with the test case x=-2 and y=+4
the variable i becomes -4 which causes the assertion to fail. At this point we again compute
the static slice obtaining the lines [2,7,9,11]. Thus at this point we definitely know that one of
the statements given in this slice causes the misbehavior with regard to variable i. Moreover,
the second slice is a subset of the first one, thus we suspect the same error being responsible
for both assertion violations, line 13 and 17.

In the next step we incorporate the specific test case's outcome. Notably, dynamic slices
cannot localize the fault's real cause, thus the authors (Gyimothy et al, 1999 ; Agrawal et al,
1993) extend this notion to a so called relevant slice. A relevant slice is a dynamic slice
augmented with potentially affecting conditions and their data dependences. We employ
this notion of a slice for the given test case and the slicing criterion (13,{result =0}). When
taking into account this kind of slice we can further rule out line 7. Since, for the given test
case, the condition in line 8 is true, line 11 rather than 7 determines the value of i in line 13.

In our example, slicing techniques alleviate localizing the misbehavior's cause. In general,
fault localization is a difficult task and requires the incorporation of various models (the
spectrum ranges from abstract models relying on dependences (Jackson, 1995) to concrete
value-level models) and techniques (e.g. algorithmic debugging (Shapiro, 1983), model-
based debugging (Wotawa, 2000 ; Kleer & Williams, 1987) into a debugging environment.

Fault Localization Models Using Dependences 25

The latter technique is used mainly for tutoring systems where the desired implementation
is known in advance.

We introduce the basic idea of automated fault localization in software by means of a small
Java program example. The program given in Figure 1. multiplies two integer variables x
and y and returns the product and the product's sign. In line 11 we assign 0-y to the loop
counter i, thus our program is buggy. For the test case x=-2 and y=+4 we obtain that result is
0, which contradicts our expectation result = -8.

In localizing the misbehavior's cause we start with static code analysis techniques. For
example, we compute a static slice in line 18 with respect to the variable result. This rules
out irrelevant statements by considering solely statements influencing the variable result.
Our static slice contains the statements [2,6,7,8,9,11,12,14,15,16] - that is, we can exclude the
statements 5 and 10 from causing the result's wrong value.

In addition we know that our loop counter i is always bigger or equal to 0 thus we might
add the assertion in line 13. When executing the program with the test case x=-2 and y=+4
the variable i becomes -4 which causes the assertion to fail. At this point we again compute
the static slice obtaining the lines [2,7,9,11]. Thus at this point we definitely know that one of
the statements given in this slice causes the misbehavior with regard to variable i. Moreover,
the second slice is a subset of the first one, thus we suspect the same error being responsible
for both assertion violations, line 13 and 17.

In the next step we incorporate the specific test case's outcome. Notably, dynamic slices
cannot localize the fault's real cause, thus the authors (Gyimothy et al, 1999 ; Agrawal et al,
1993) extend this notion to a so called relevant slice. A relevant slice is a dynamic slice
augmented with potentially affecting conditions and their data dependences. We employ
this notion of a slice for the given test case and the slicing criterion (13,{result =0}). When
taking into account this kind of slice we can further rule out line 7. Since, for the given test
case, the condition in line 8 is true, line 11 rather than 7 determines the value of i in line 13.

In our example, slicing techniques alleviate localizing the misbehavior's cause. In general,
fault localization is a difficult task and requires the incorporation of various models (the
spectrum ranges from abstract models relying on dependences (Jackson, 1995) to concrete
value-level models) and techniques (e.g. algorithmic debugging (Shapiro, 1983), model-
based debugging (Wotawa, 2000 ; Kleer & Williams, 1987) into a debugging environment.

Fig. 1. Multiplication of two integer values.

The chapter is organized as follows. In Section 2 we present our Verification Based Model
(VBM). The comparison between VBM and (Functional Dependence Model) FDM is given in
Section 3. In Section 4 we present case studies regarding debugging model. In section five
we present the related research work of dependences based models. Finally we summarize
the chapter including furure research.

2. Verification Based Model

Our novel debugging model allows one for reasoning about functions over dependence
relations under given assumptions. Therefore the notion of a dependence relation is
fundamental to our approach:

Definition 1 (Dependence Relation) Given a program with variables V, and a set of model
variables M={ξ1…}. A dependence relation is a subset of the set D = 2V X ((M υ V).
The key idea is to abstract over the actual state transitions of the program and instead view
its behavior as a dependence relation between inputs and outputs. Any pair (x,y) Є D says
that the value of x after depends on the value of y before statement execution.

We obtain the dependence relation of compound statement by putting together the
dependence relation of its constituent parts. Given two statement S1 and S2, the dependence

1 // pre true
2 public int mult (int x,y) {
3 int add,i,result;
4
5 sign = 1;
6 add = y;
7 i = x;
8 result = 0;
9 if (x < 0) {
10 sign = -1;
11 i = 0 - y; // should be 0 - x
12 add = 0 - y; }
13 ASSERT (i >= 0)

14 while (0 < i) {
15 i = i - 1;
16 result = result + add;}
17 ASSERT (result = xy);
18 output result, sign;
19 }
20 // post result = xy
21 // post sign = sign xy

Engineering the Computer Science and IT26

relation of the compound statement S1 ; S2 is given by D(S1 ; S2)=D(S1) •D(S2). To reflect this
we define two composition operators:

Definition 2 (Composition1) Given two dependence relations R1, R2 Є Don V and M. The
composition of R1 and R2 is defined as follows:

{ (x,y) | exists (z,y) in R1 & (x,z) Є R2 } υ
R1 • R2 = { (x,y) | exists (z,y) in R1 & (x,z) Є R2 } υ

{ (x,y) | exists (z,y) in R1 & (x,z) Є R2 }

This definition ensures that no information is lost during computing the overall dependence
relation for a procedure or method. Hence, the first line of the definition of composition
handles the case where there is a transitive dependence. The second line states that all
dependences that are not re-defined in R2 are still valid. In the third line all dependences
that are defined in R2 are in the new dependence set provided that there is no transitivity
relation.

Note that functional composition is not a commutative operation and that { } is the identity
element of composition. For example, the combined dependences of our below examples
are:

r1 • r2 = {(c,r),(d,r)} = r' and r' • r3 = {(a,r), (a, pi), (c,r),(d,r)} = r''

In the following we explain the basic ideas using the following small program which
implements the computation of the circumference and area of a circle. The program contains
one fault in line 2 where a multiplication by Π (pi) is missing.

0. // pre true
1. d = r * 2;
2. c = d; // BUG! a = d * pi;
3. c = r * r * pi;
4. // post c = r2 · Π ^ a = 2 · r · Π

These dependences solely are given by a statement whenever we assume that the statement
is correct (w.r.t. the dependences). If a statement is assumed to be incorrect, the
dependences are not known. We express the latter fact by introducing a new type of
variable, the so called model variables. Model variables are variables that work as place-
holder for program variables. For example, if we assume statement 2 to be incorrect, we
introduce a model that says that program variable a depends on model variable ε2 (where ε2
is unique).

To point out intricacies with the previous definition we further need to define relation
composition as follows:

Definition 3 (Relational Composition) Given two dependence relations R1, R2 Є D on V and M.
Given two statement S1 and S2, the dependences of the compound statement S1; S2 in terms of

Fault Localization Models Using Dependences 27

relation of the compound statement S1 ; S2 is given by D(S1 ; S2)=D(S1) •D(S2). To reflect this
we define two composition operators:

Definition 2 (Composition1) Given two dependence relations R1, R2 Є Don V and M. The
composition of R1 and R2 is defined as follows:

{ (x,y) | exists (z,y) in R1 & (x,z) Є R2 } υ
R1 • R2 = { (x,y) | exists (z,y) in R1 & (x,z) Є R2 } υ

{ (x,y) | exists (z,y) in R1 & (x,z) Є R2 }

This definition ensures that no information is lost during computing the overall dependence
relation for a procedure or method. Hence, the first line of the definition of composition
handles the case where there is a transitive dependence. The second line states that all
dependences that are not re-defined in R2 are still valid. In the third line all dependences
that are defined in R2 are in the new dependence set provided that there is no transitivity
relation.

Note that functional composition is not a commutative operation and that { } is the identity
element of composition. For example, the combined dependences of our below examples
are:

r1 • r2 = {(c,r),(d,r)} = r' and r' • r3 = {(a,r), (a, pi), (c,r),(d,r)} = r''

In the following we explain the basic ideas using the following small program which
implements the computation of the circumference and area of a circle. The program contains
one fault in line 2 where a multiplication by Π (pi) is missing.

0. // pre true
1. d = r * 2;
2. c = d; // BUG! a = d * pi;
3. c = r * r * pi;
4. // post c = r2 · Π ^ a = 2 · r · Π

These dependences solely are given by a statement whenever we assume that the statement
is correct (w.r.t. the dependences). If a statement is assumed to be incorrect, the
dependences are not known. We express the latter fact by introducing a new type of
variable, the so called model variables. Model variables are variables that work as place-
holder for program variables. For example, if we assume statement 2 to be incorrect, we
introduce a model that says that program variable a depends on model variable ε2 (where ε2
is unique).

To point out intricacies with the previous definition we further need to define relation
composition as follows:

Definition 3 (Relational Composition) Given two dependence relations R1, R2 Є D on V and M.
Given two statement S1 and S2, the dependences of the compound statement S1; S2 in terms of

relational composition is given by D(S1; S2) = D(S2) o D(S1). The relational composition of R1
and R2 is defined as follows:

R1 o R2 ={ (x,y) | (x,y) Є R1 & (z,y) Є R2 }

Note, that as long as we rely on the simple dependence definition given previously, this
operator suffers from information loss since it solely preserves transitive relationships. For
our running example we obtain r1 o r2 ={(c,r)} = r' and r3 o r' = { } = r''.

In order to allow the direct comparison of specified dependences with the computed ones
we introduce a projection operator which deletes all dependences for variables that are not
of interest like the internal variable d.

Definition 4 (Projection) Given a dependence relations R Є D and a set of ariables A ⊆ M υ V.
The projection of R on A written as ∏ A(R) is defined as follows:

∏ A(R) = { (x,y) | (x,y) Є R & x Є A}

For example, ∏{r,c,a,pi} (r'') is {a,r), (c, r),(c, pi)} which is equivalent to the specification.

From here on we assume that the computed dependence relation is always projected onto
the variables used within the specification before comparing it with the specification - that
is, A= {x|(x,y) Є SPEC denotes the specified dependences.

Definition 5 (Grounded dependence relation) A dependence relation is said to be grounded (or
variable-free) if it contains no model variables.

We assume that all specification are grounded dependencerelations. Thus, we have to
compare dependence relations containing model variables with grounded dependence
relations. Wepropose a similar solution to that employed in the resolution calculus of first-
order logic, namely substitution and finding the most general unifier. However, in contrast
to variable substitution in first-order logic, we do not only replace one variable by one term
but one model variable by a set of program variables.

Definition 6 (Substitution) A substitution σ is a function which maps model variables to a
set of program variables, i.e., σ: M→ 2v. The result of the application of the substitution σ on
a dependence relation R is a dependence relation where all model-variables x from R have
been replaced by σ (x).

For the purpose of finding an efficient algorithm for computing asubstitution that makes a
dependence set equivalent to its specification we first map the problem to an equivalent
constraint satisfaction problem (CSP). A CSP (Dechter, 1992 & Dechter 2003) comprises
variables Vars, their domains Dom, and a set of constraints Cons that have to be fulfilled
when assigning values to the variables. A value assignment that fulfills all constraints is said
to be a σ solution of the CSP. Every solution to the corresponding CSP is a valid substitution.
For more details about how make use of standard CSP algorithms for computing
substitutions. we refer the reader to (Jackson, 1995).

Engineering the Computer Science and IT28

Finally, we are now able to define the equivalence of a dependence set and its grounded
specification.

Fig. 2. The Verification-Based Model.

Definition 7 (Equivalence) A dependence set R is equivalent to its grounded specification S iff
there exists a σ = findSubstitution (R,S) ≠ ┴ and σ (R) = S.

Formally, it remains to introduce how to extract dependence information from the source
code. Figure 2 shows the appropriate rules. In the figure function D returns the dependences
for a given statement and function M returns the variables employed within a given
statement. Moreover, function var returns a given expression's variables. For more details
about how to extract dependences we refer the reader to (Jackson, 1995). In Figure 2 we
presented rules of of extracting dependences from multiples statements and more details
about how to extract dependences from procedures we refer to reader (Soomro., S. 2007).

3. Comparison Between VBM and FDM

In order to compare different models of programs for fault detection and localization, we
first introduce the debugging problem formally. Similar to Reiter's definition of a diagnosis
problem (Wotawa, 2002) a debugging problem is characterized by the given program and
its expected behavior. In contrast to Reiter we assume the existence of a specification that

1. Assignmnts:
¬Ab(x = e) →D(x = e) = {(x,v) | v Є vars(e) where vars is assumed to return all
variables which are used in exression e.
M(x = e)= {x}
Ab(x = e) → D(x =e) ={(x,ξi)}

2. Conditionals:
¬Ab(if e then S1 else S2) → D(if e then S1 else S2) = D(S1) υ D(S2) υ {(x,x) | x Є
(M(S1) υ M(S2))} υ ((M(S1) υ M(S2)) x vars(e))

 M(if e then S1 else S2) = M(S1) υ M(S2)
 Ab(if e then S1 else S2) D(if e then S1 else S2)= D(S1) υ D(S2) υ {(x,x)|x Є(M(S1) υ M
 (S2))} υ ((M(S1) υ M(S2)) x { ξi })
3. Loops:

¬Ab(while e {S}) →D(while e { S }) = D(S)+ υ (M(S) x vars(e))) • D(S)+

 M (while e {S}) = M(S)
 Ab(while e { S }) → D(while e { S }) = D (S)+ υ (M(S) X { ξi }) • D(S) +
 In the above rules D(S) + is the transiive closure of D(S).

4. No-operation (NOP):
 D((nop)= I where I ={(x,x) | x Є V}
 M(nop) = { }

5. Sequence of statements:
 D(S1; S2) = D(S1) • D(S2)
 M(S1 ;S2) = M(S1) υ M(S2)

Fault Localization Models Using Dependences 29

Finally, we are now able to define the equivalence of a dependence set and its grounded
specification.

Fig. 2. The Verification-Based Model.

Definition 7 (Equivalence) A dependence set R is equivalent to its grounded specification S iff
there exists a σ = findSubstitution (R,S) ≠ ┴ and σ (R) = S.

Formally, it remains to introduce how to extract dependence information from the source
code. Figure 2 shows the appropriate rules. In the figure function D returns the dependences
for a given statement and function M returns the variables employed within a given
statement. Moreover, function var returns a given expression's variables. For more details
about how to extract dependences we refer the reader to (Jackson, 1995). In Figure 2 we
presented rules of of extracting dependences from multiples statements and more details
about how to extract dependences from procedures we refer to reader (Soomro., S. 2007).

3. Comparison Between VBM and FDM

In order to compare different models of programs for fault detection and localization, we
first introduce the debugging problem formally. Similar to Reiter's definition of a diagnosis
problem (Wotawa, 2002) a debugging problem is characterized by the given program and
its expected behavior. In contrast to Reiter we assume the existence of a specification that

1. Assignmnts:
¬Ab(x = e) →D(x = e) = {(x,v) | v Є vars(e) where vars is assumed to return all
variables which are used in exression e.
M(x = e)= {x}
Ab(x = e) → D(x =e) ={(x,ξi)}

2. Conditionals:
¬Ab(if e then S1 else S2) → D(if e then S1 else S2) = D(S1) υ D(S2) υ {(x,x) | x Є
(M(S1) υ M(S2))} υ ((M(S1) υ M(S2)) x vars(e))

 M(if e then S1 else S2) = M(S1) υ M(S2)
 Ab(if e then S1 else S2) D(if e then S1 else S2)= D(S1) υ D(S2) υ {(x,x)|x Є(M(S1) υ M
 (S2))} υ ((M(S1) υ M(S2)) x { ξi })
3. Loops:

¬Ab(while e {S}) →D(while e { S }) = D(S)+ υ (M(S) x vars(e))) • D(S)+

 M (while e {S}) = M(S)
 Ab(while e { S }) → D(while e { S }) = D (S)+ υ (M(S) X { ξi }) • D(S) +
 In the above rules D(S) + is the transiive closure of D(S).

4. No-operation (NOP):
 D((nop)= I where I ={(x,x) | x Є V}
 M(nop) = { }

5. Sequence of statements:
 D(S1; S2) = D(S1) • D(S2)
 M(S1 ;S2) = M(S1) υ M(S2)

captures the whole expected behavior and not only behavioral instances like given by the set
of observations OBS in Reiter's original definition.

Definition 8 (Debugging Problem) A debugging problem is characterized by a tuple (∏ , SPEC)
where ∏ is a program written in a certain programming language and SPEC is a (formal)
specification of the program's intended behavior. The debugging problem now can be separated into
three parts:

1. Fault Detection: Answer the question: Does ∏ fulfill SPEC?. In case a program fulfills
(does not fulfill) its specifications we write ∏ υ SPEC V ┴ (∏υ SPEC ╞ ┴ respectively).

2. Fault Localozation : Find the root cause in ∏ which explains a behavior not given in
SPEC.

3. Fault Correction : Change the program such that ∏ fulfills SPEC.

Note that SPEC is not required to be a formal specification. It might represent an oracle, i.e.,
a uman, which is able to give an answer to all questions regarding program ∏. In this
section we focus on the first two tasks of the debugging problem. Because fault localization
and correction can only be performed when identifying a faulty behavior, from here on we
assume only situations where (∏, SPEC) ╞ ┴. The question now is how such situations can
be detected in practice.

The availability of a specification that is able to answer all questions is an assumption which
is hardly (and not to say impossible) to fulfill. What we have in practice is a partial
specification. Therefore, we are only able to detect a faulty behavior and not to prove
correctness. Obviously different kind of specifications may lead to different results to the
first task of the debugging problem, i.e., identifying a faulty behavior. In the context of this
chapter the question about the satisfiability of ∏ υ SPEC ╞ is reduced to checking the
satisfiability of two entences, i.e., FDM(∏) υ SPECFDM ╞ ┴ and VBM(∏)υ SPECVBM ╞ ┴
where SPECVBM and SPECFDM are the partial specification which belong to the FDM and
VBM respectively.

Fig. 3. Code Snippet, FD model, Specified and Computed Dependences.

The model comparison we present in the following relies on a couple of (reasonable)
assumptions. First, for the FDM we need to have a test case judging the correctness of

1. proc (a,b) {.....
2. x= a+b;
3. y = a / b; //instead of y= a * b
4. assert (y = = a * b)
5. }...

┐AB(2) Λ ok (a) Λ ok(b)→ ok(x) SPEC(proc) = {(y,a), (y,b)}
┐AB(3) Λ ok (a) Λ ok(b)→ ok(y) dep(proc) = {(y,a), (y,b)
 dep(proc) ⊇ SPEC(proc)
→ok(a), →ok(b), → ┐ok(y) DIAG = { }
DIAG = {{AB(3)}}

Engineering the Computer Science and IT30

specific variables. In general, finding an appropriate test case revealing a misbehavior w.r.t.
specific variables is a difficult task, however, the presence of such a single test case is a
requirement for the applicability of the FDM. For the VBM, we assume an underlying
assertion language, and a mechanism for deducing dependence specifications from this
language. Dependences are further oriented according to last-assigned variables and
specified in terms of inputs or input parameters rather than intermediate variables. For
simplicity, we further assume that there are no disjunctive post conditions.

In the following we illustrate the introduced models' strength and weaknesses in terms of
simple scenarios. In the figures the left hand side is a summary of the FDM model including
the observations obtained from running the test case and the left hand side outlines the
VBM. For both columns we summarize the obtained diagnosis candidates in terms of the set
DIAG. Note that we only focus on single-fault diagnosis throughout the following
discussion.

Figure 3 outlines a code snippet together with the assertion checking a certain property, the
FDM, and the specified computed dependences. Obviously, the VBM is unable to detect and
thus localize this specific (functional) fault. In contrast to this, the FDM is able to localize this
specific fault. Due to the failed assertion we can conclude that there is something wrong
with variable y, thus ¬ ok(y) holds. We also can assume that inputs a and b are correct, thus
the assumptions ok(a) and ok(b) directly deliver line 3 (AB(3)) as the sole single-fault
diagnosis.

Fig. 4. The misplaced Left-hand Side Variable.

Moreover, as Figure 4 illustrates, although the FDM allows for detecting misplaced left-
hand side variables, the VBM cannot localize these kind of faults. Assume that a=1,b=1,x=2
thus y=4. Our assertion suggests to assume the dependences {(y,a),(y,b),(x,a),(x,b)}. Both
models allow for detecting the fault. When employing the FDM, from the raised assertion
we know that ¬ ok(x) holds. In order to conclude that the outcome of statement 3 is correct,

1. proc (a,b,x,y) {.....
2. x= a+b;
3. x = +2; //instead of y= x+2
4. assert (y = = x +2, x = = a+b)
5. }...

┐AB(2) Λ ok (a) Λ ok(b)→ ok(x‘) SPEC = {(y,a), (y,b)(x,a)(x,b)}
┐AB(3) Λ ok (a) Λ ok(b)→ ok(y) dep(proc) = {(x,a), (x,b)
→ok(x), →ok(a); →ok(b) dep(proc) ⊆ SPEC(proc)
 σ (ξ2) ={ }; σ (ξ3)= { }
 → ┐ok(x‘‘);→ok(a), →ok(b)
DIAG = {{AB(3)}, {AB(3)}} DIAG = { }

Fault Localization Models Using Dependences 31

specific variables. In general, finding an appropriate test case revealing a misbehavior w.r.t.
specific variables is a difficult task, however, the presence of such a single test case is a
requirement for the applicability of the FDM. For the VBM, we assume an underlying
assertion language, and a mechanism for deducing dependence specifications from this
language. Dependences are further oriented according to last-assigned variables and
specified in terms of inputs or input parameters rather than intermediate variables. For
simplicity, we further assume that there are no disjunctive post conditions.

In the following we illustrate the introduced models' strength and weaknesses in terms of
simple scenarios. In the figures the left hand side is a summary of the FDM model including
the observations obtained from running the test case and the left hand side outlines the
VBM. For both columns we summarize the obtained diagnosis candidates in terms of the set
DIAG. Note that we only focus on single-fault diagnosis throughout the following
discussion.

Figure 3 outlines a code snippet together with the assertion checking a certain property, the
FDM, and the specified computed dependences. Obviously, the VBM is unable to detect and
thus localize this specific (functional) fault. In contrast to this, the FDM is able to localize this
specific fault. Due to the failed assertion we can conclude that there is something wrong
with variable y, thus ¬ ok(y) holds. We also can assume that inputs a and b are correct, thus
the assumptions ok(a) and ok(b) directly deliver line 3 (AB(3)) as the sole single-fault
diagnosis.

Fig. 4. The misplaced Left-hand Side Variable.

Moreover, as Figure 4 illustrates, although the FDM allows for detecting misplaced left-
hand side variables, the VBM cannot localize these kind of faults. Assume that a=1,b=1,x=2
thus y=4. Our assertion suggests to assume the dependences {(y,a),(y,b),(x,a),(x,b)}. Both
models allow for detecting the fault. When employing the FDM, from the raised assertion
we know that ¬ ok(x) holds. In order to conclude that the outcome of statement 3 is correct,

1. proc (a,b,x,y) {.....
2. x= a+b;
3. x = +2; //instead of y= x+2
4. assert (y = = x +2, x = = a+b)
5. }...

┐AB(2) Λ ok (a) Λ ok(b)→ ok(x‘) SPEC = {(y,a), (y,b)(x,a)(x,b)}
┐AB(3) Λ ok (a) Λ ok(b)→ ok(y) dep(proc) = {(x,a), (x,b)
→ok(x), →ok(a); →ok(b) dep(proc) ⊆ SPEC(proc)
 σ (ξ2) ={ }; σ (ξ3)= { }
 → ┐ok(x‘‘);→ok(a), →ok(b)
DIAG = {{AB(3)}, {AB(3)}} DIAG = { }

we need to know that x is correct prior to this statement's execution. Thus, to obtain the
contradiction we have to assume that both statements are correct.

By reverting the correctness assumption about statement 2 we obviously can remove the

contradiction. Moreover, reverting the assumption about statement 3 also resolves the
contradiction. Thus, we obtain two single-fault diagnosis AB(2) and AB(3). In contrast to
this, since y never appears as target variable, we cannot obtain dependences for variable y
and thus the VBM cannot localize these kind of (structural) faults.

Fig. 5. A Typical (Structure) Fault Inducing Additional Dependences.

The next example points out that the VBM fails in case the fault introduces additional
dependences. In Figure 5 we assign x +c +d instead of x + c to the variable y. Our assertion
indicates that y depends upon x and c, thus SPEC(proc) = {(y,a),(y,b),(y,c)}. Computing the
program's actual dependences dep(proc), however, yields to {(y,a),(y,b),(y,c),(y,d)} �
{(y,a),(y,b),(y,c)} and thus VBM cannot detect this specific malfunctioning nor locate the
misbehavior's cause. By employing the FDM under the assumption ┐ok(y) we obtain two
single-fault diagnosis AB(2) and AB(3).

Figure 6 illustrates an example where the fault manifests itself in inducing less dependences
than specified. Our specification is SPEC(proc) = {(y,a),(y,b),(y,c)}. Obviously, the computed
dependences {(y,a),(y,b)} ⊇ SPEC(proc). As the figure outlines, we obtain two single-fault
diagnosis candidates, AB(2) and AB(3). In this case, the FDM is also capable of delivering the
misbehavior's real cause, it returns two single-fault diagnosis candidates: AB(2) and AB(3).

The Author (Stumptner, 2001) shows that localizing structural faults requires exploiting
design information like assertions, and pre- and post conditions. Again, we outline this in
terms of a few small examples. Although the previous examples show that the VBM cannot
detect neither locate certain types of faults, it may provide reasonable results in capturing
structural faults.

1. proc (a,b,x,y) {.....
2. x= a+b;
3. y = x+c+d; //instead of y= x+c
4. assert (y = = x +c)
5. }...

┐AB(2) Λ ok (a) C)→ ok(x)
┐AB(3) Λ ok (x) → ok(c) Λ ok(d) → ok(y)
→ ┐ok(y),→ok(a), →ok(b)
DIAG = {{AB(2)}, {AB(3)}}

SPEC(proc) = {Y,a),(y,b)(y,c)}
Dep(proc) = {(y, a), (y, b), (y, c), (x, a), (x, b)}
Dep(proc) ⊇SPEC(proc)
DIAG = { }

Engineering the Computer Science and IT32

Our final example in Figure 7 illustrates that both approaches might deliver reasonable but
different results. We assume a=1,b=1,e=0, thus we expect z=2 and d=0. However, due to the
introduced fault, we obtain z=1 and d=0. Since the value of z is incorrect, but d=0, we
conclude that ┐ok(z) and ok(d) holds. Thus, we btain AB(2) and AB(4) as diagnosis
candidates. Note that this result primarily roots in the coincidental correctness of variable d.

Fig. 6. A Typical (Structural) Fault Inducing Fewer Dependences than Specified

Given the assertion in Figure 7 we are aware of the dependences {(d,a),(d,b),(d,e),(z,a) ,(z,b),
(z,e)}. As the figure outlines, we obtain two single-fault diagnosis AB(2) and AB(3). As is also
indicated in the figure, when solely employing a single assertion requiring z == c + d, we
obtain SPEC'(proc)={ (z,a),(z,b),(z,e)} and dep'(proc) ⊇ SPEC'(proc). Consequently, we obtain
3 diagnoses (AB(2), AB(3) and AB(4)) in this case. However, even when employing the FDM
we cannot exclude a single statement, thus, in this specific case, both models deliver the
same accuracy.

The examples outlined above should have made clear that a comparison of both models in
terms of their diagnostic capabilities inherently depends on how we deduce observations
from violated properties. Note that the FDM itself cannot detect any faults, rather faults are
detected by evaluation of the assertions on the values obtained from a concrete test run.

The VBM can reliably detect and localize faults that manifest in missing dependences on the
right-hand side of an assignment statement. Due to the over-approximation of dependences
we cannot locate faults manifesting in additional dependences as it is impossible to
distinguish if (1) the specification is incomplete, (2) the model computes spurious
dependences, or (3) an unwanted dependence is present due to a fault.

Table 1 summarizes the illustrated examples by listing the individual models' fault detection
and localization capabilities. For those examples, where both models deliver diagnosis
candidates, we checked whether the diagnoses provided by the VBM are a subset of those
provided by the FDM.

1. proc (a,b,c) {.....
2. x= a+b;
3. y = x; //instead of y= x+c
4. assert (y = = a+b +c)
5. }...
6.

 ┐AB(2) Λ ok (a) Λ ok(b)→ ok(x) SPEC = {(y,a), (y,b)(y,c)}
 ┐AB(3) Λ ok (a) → ok(y) dep(proc) = {(y,a), (y,b)}
 → ┐ok(y), →ok(a), →ok(b) dep(proc) ⊇ SPEC(proc)
 σ (ξ2) ={a,b,c }, σ (ξ3)= {a,b,c}

 DIAG = {{AB(2)}, {AB(3)}} DIAG = { {AB(2)}, {AB(3)}}

Fault Localization Models Using Dependences 33

Our final example in Figure 7 illustrates that both approaches might deliver reasonable but
different results. We assume a=1,b=1,e=0, thus we expect z=2 and d=0. However, due to the
introduced fault, we obtain z=1 and d=0. Since the value of z is incorrect, but d=0, we
conclude that ┐ok(z) and ok(d) holds. Thus, we btain AB(2) and AB(4) as diagnosis
candidates. Note that this result primarily roots in the coincidental correctness of variable d.

Fig. 6. A Typical (Structural) Fault Inducing Fewer Dependences than Specified

Given the assertion in Figure 7 we are aware of the dependences {(d,a),(d,b),(d,e),(z,a) ,(z,b),
(z,e)}. As the figure outlines, we obtain two single-fault diagnosis AB(2) and AB(3). As is also
indicated in the figure, when solely employing a single assertion requiring z == c + d, we
obtain SPEC'(proc)={ (z,a),(z,b),(z,e)} and dep'(proc) ⊇ SPEC'(proc). Consequently, we obtain
3 diagnoses (AB(2), AB(3) and AB(4)) in this case. However, even when employing the FDM
we cannot exclude a single statement, thus, in this specific case, both models deliver the
same accuracy.

The examples outlined above should have made clear that a comparison of both models in
terms of their diagnostic capabilities inherently depends on how we deduce observations
from violated properties. Note that the FDM itself cannot detect any faults, rather faults are
detected by evaluation of the assertions on the values obtained from a concrete test run.

The VBM can reliably detect and localize faults that manifest in missing dependences on the
right-hand side of an assignment statement. Due to the over-approximation of dependences
we cannot locate faults manifesting in additional dependences as it is impossible to
distinguish if (1) the specification is incomplete, (2) the model computes spurious
dependences, or (3) an unwanted dependence is present due to a fault.

Table 1 summarizes the illustrated examples by listing the individual models' fault detection
and localization capabilities. For those examples, where both models deliver diagnosis
candidates, we checked whether the diagnoses provided by the VBM are a subset of those
provided by the FDM.

1. proc (a,b,c) {.....
2. x= a+b;
3. y = x; //instead of y= x+c
4. assert (y = = a+b +c)
5. }...
6.

 ┐AB(2) Λ ok (a) Λ ok(b)→ ok(x) SPEC = {(y,a), (y,b)(y,c)}
 ┐AB(3) Λ ok (a) → ok(y) dep(proc) = {(y,a), (y,b)}
 → ┐ok(y), →ok(a), →ok(b) dep(proc) ⊇ SPEC(proc)
 σ (ξ2) ={a,b,c }, σ (ξ3)= {a,b,c}

 DIAG = {{AB(2)}, {AB(3)}} DIAG = { {AB(2)}, {AB(3)}}

In comparing both models, we start by contrasting the well-known artifacts in the area of
MBSD. Table 2 summarizes the most notable differences in employing the VBM and FDM
for fault localization. In both models we employ a partial specification (e.g. test case,
assertion, invariant) for deducing a number of observations. Whereas the VBM encodes
observations in terms of dependence relations, the FDM relies on a program's execution and
subsequent classification of the observed variables. Variables are merely classified as being
correct or incorrect with respect to a given (partial) specification.

Fig. 7. A Degenerated Example (Error Masking), Diags (FDM) (symbol) diags(VBM)

Example FDM loc VMB Diags (FDM)
diags (VBM) det. loc

Fig. 3 X X -
Fig. 4 X X -
Fig. 5 x -
Fig. 6
Fig. 7 x

Table 1. Summary on the Outline Scenarios

1. proc (a,b,c) {.....
2. c= a;// should be c=a+b
3. d=c * e;
4. z =c+d;
5. assert (z = =c+d, [d = = c * e])
6. }...

 ┐AB(2) Λ ok (a) → ok(c)
 ┐AB(3) Λ ok (c) Λ ok(e) →┐ ok(d)
 [→ ┐ok(d]),→ ┐ok(z)
 DIAG = {{AB(2)}, {AB(4)}}
 DIAG‘ = {{AB(2)}, {AB(3)},{AB(4)}}

 SPEC(proc) = {(z,a), (z,b), (z,e), (d,a), (d,b), (d,e)}
 dep(proc) = {(z,a), (z,e), (d,a), (d,e)}
 dep(proc) ⊇ SPEC(proc)
 σ(ξ2) = {a,b}, σ (ξ3) = {a,b,e}, σ (ξ4) = { }
 DIAG = {{AB(2)}, {AB(3)}}
 SPEC‘(proc) = {(z,a), (z,b), (z,e)}
 dep‘(proc)={(z,a),(z,e)}
 dep‘(proc) ⊇ SPEC‘(proc)
 σ (ξ‘2) = {a,b}, σ (ξ‘3) = {a,b,e}, σ σ(ξ4) = {a,b,e}

Engineering the Computer Science and IT34

Furthermore, the VBM models the program in terms of functions over ependence relations,
the FDM captures the programs behavior by a number of logical sentences, in particular we
employ a Horn clause theory. The VBM detects a fault by checking whether the system
description fulfills the given specification. In case this relationship does not hold, a fault has
been detected. In contrast, we detect a fault with the FDM if the system description together
with the specification yields to logical contradiction.

artifact VBM FDM
observatuibs
systemn descr

fault detect.
fault localiz.
assumptions
theorem prover
structureal faults
functional faults

dependence relations
function over dependences
relation VBM ()
VBM () SPEC
VBM () SPEC
Varible substitution ξ = …
CSP solver
detect., localiz,
no detect., no localiz

Ok, ¬ (ok)
Horn clauses FDM()

-
FDM() υ Spec ≠ ┴
¬ AB
Horn clauses theorem prover
detect, localiz.
detect., localiz.

Table 2. Comparing the Most Common Artifacts

The VBM locates possible causes for detected misbehavior by assuming that specific
statements depend on model variables, and checking whether there is a valid substitution.
As authros outlined in (Peischl et al, 2006), this process is an efficiently done by solving a
CSP. Instead, the FDM employs a Horn clause theorem prover under the assumption of
statement abnormality in computing diagnosis candidates. Note, that whereas the FDM
does not assume any faulty behavior for specific statements, the VBM assumes specific
dependences guided by the specification.

As indicated by the example above, the VBM is tailored towards detection and localization
of structural faults, whereas the FDM may capture structural but particularly functional
faults. Similar to static slicing capturing control as well as data flow dependences, the FDM
must comprise all statements responsible for the computation of an erroneous variable.
Thus, the FDM always provides diagnosis candidates under presence of an erroneous
variable. The author (Wotawa, 2002) points out that the FDM delivers at least the same
results as static slicing. Moreover, we know that the misbehavior's real cause is always
among the delivered diagnosis candidates when employing the FDM. This perspective is
supported by theoretical foundation (Friedrich et al, 1999) as well as practical evidence in
numerous case studies.

Particularly, a comparison w.r.t. the accuracy and completeness of the obtained diagnosis is
of interest. Figure 8 summarizes the relationship of the FDM and the VBM regarding their
abilities of checking satisfiability. The lines between the nodes building up the lattice denote
a subset relationship. As illustrated by the examples, there are debugging problems where
the VBM allows for finding a discrepancy but the FDM does not and vice versa.

Fault Localization Models Using Dependences 35

Furthermore, the VBM models the program in terms of functions over ependence relations,
the FDM captures the programs behavior by a number of logical sentences, in particular we
employ a Horn clause theory. The VBM detects a fault by checking whether the system
description fulfills the given specification. In case this relationship does not hold, a fault has
been detected. In contrast, we detect a fault with the FDM if the system description together
with the specification yields to logical contradiction.

artifact VBM FDM
observatuibs
systemn descr

fault detect.
fault localiz.
assumptions
theorem prover
structureal faults
functional faults

dependence relations
function over dependences
relation VBM ()
VBM () SPEC
VBM () SPEC
Varible substitution ξ = …
CSP solver
detect., localiz,
no detect., no localiz

Ok, ¬ (ok)
Horn clauses FDM()

-
FDM() υ Spec ≠ ┴
¬ AB
Horn clauses theorem prover
detect, localiz.
detect., localiz.

Table 2. Comparing the Most Common Artifacts

The VBM locates possible causes for detected misbehavior by assuming that specific
statements depend on model variables, and checking whether there is a valid substitution.
As authros outlined in (Peischl et al, 2006), this process is an efficiently done by solving a
CSP. Instead, the FDM employs a Horn clause theorem prover under the assumption of
statement abnormality in computing diagnosis candidates. Note, that whereas the FDM
does not assume any faulty behavior for specific statements, the VBM assumes specific
dependences guided by the specification.

As indicated by the example above, the VBM is tailored towards detection and localization
of structural faults, whereas the FDM may capture structural but particularly functional
faults. Similar to static slicing capturing control as well as data flow dependences, the FDM
must comprise all statements responsible for the computation of an erroneous variable.
Thus, the FDM always provides diagnosis candidates under presence of an erroneous
variable. The author (Wotawa, 2002) points out that the FDM delivers at least the same
results as static slicing. Moreover, we know that the misbehavior's real cause is always
among the delivered diagnosis candidates when employing the FDM. This perspective is
supported by theoretical foundation (Friedrich et al, 1999) as well as practical evidence in
numerous case studies.

Particularly, a comparison w.r.t. the accuracy and completeness of the obtained diagnosis is
of interest. Figure 8 summarizes the relationship of the FDM and the VBM regarding their
abilities of checking satisfiability. The lines between the nodes building up the lattice denote
a subset relationship. As illustrated by the examples, there are debugging problems where
the VBM allows for finding a discrepancy but the FDM does not and vice versa.

4. Case Studies

Authors (Peischl et al, 2006) present first experimental results indicating the approaches'
applicability. The results presented there solely stem from small programs. In evaluating the
model's fault localization capabilities under presence of procedural abstraction, we
decompose a program into several procedures in a step by step fashion. This procedure
allows for a first evaluation of both, the model for (1) parameter passing and (2) handling of
return values.

Table 3 summarizes our most recent results. Specifically, the program eval evaluates the
arithmetic expression z ←(r x h)+(c /d) - (d+h) x (e+f). The specification says that the left-hand
side z depends on the variables r,h,c,d,e, and f. We introduced a single structural fault and
decomposed this program by adding procedures computing specific subexpressions in a
step by step fashion. A specific subexpression is thus evaluated by a single procedure and
replaced by the variable capturing this procedure's evaluation. We refer to the decomposed
programs comprising i ethods by eval(i). In the remaining programs, which perform simple
computations like taxes or evaluate simple arithmetic expressions, we also introduced a
single structural fault.

Removing certain dependences from the specification allows for evaluating our odel's
capabilities in localizing structural faults under presence of partial knowledge of the
dependences of the output variables. Thus, we observed a subset of the output dependences
involving up to 5 variables and recorded the minimum and maximum number of diagnosis
candidates.

Fig. 8. The (Open) Relationship Between VBM and FDM

Engineering the Computer Science and IT36

Method no LOC Total
dep.no

Min-Max no. Diagnosis Candidates
5 4 3 2 1

eval (1)
eval (2)
eval (3)
eval (4)
eval (5)

10
14
18
22
26

9
10
11
12
13

-
-
-
-
4

-
-
-
4

4-17

-
-
4

4-15
4-26

-
4

4-13
4-22
4-26

4
4-11
4-18
4-22
4-26

sum
arithmetic
tax comp.
calculator

22
26
30
40

11
12
13
12

-
-
4

1-31

-
4

4-17
1-31

4
4-15
4-26
1-33

4-13
4-15
4-26
1-34

4-18
4-22
4-26
1-34

Table 3. Number of single-Faults Diagnosis with Decreasing Number of Specified Output
Variables.

For example, regarding the program eval(3) we obtained 4 diagnosis candidates when
observing all outputs. Afterwards we selected 2 output variables out of the 3 output
variables, and for all possible combinations of selecting 2 out of 3 outputs, we recorded the
number of diagnoses. The table specifies the minimal and maximal number of diagnosis
candidates obtained in this way (in this specific case of considering 2 output variableswe
obtain at least 4 and at most 13 diagnosis andidates). We checked whether or not the
introduced faults appear among the delivered diagnosis candidates. Regarding all our
experiments, we have been able to locate the misbehavior's real cause.

Furthermore, the table lists the number of total dependences (column 3) and the program's
size in terms of the lines of code (column 2). Our experiments indicate an increase in the
number of candidates with a decreasing number of outputs being considered. In the table,
we did not take into account cases where the reduced output dependences are not capable
of detecting the fault. In this case our approach obviously returns { }. In summary, the
obtained results, confirm the findings in (Hamscher & Davis 1984): As our problem becomes
under-constrained by removing certain output dependences, the number of diagnosis
candidates may increase drastically. As our experiments indicate, this also appears to hold
for the novel model introduced herein.

5. Related Research

We present related work which provides an overview of related research of our chapter.

5.1 Model-Based Software Debugging
Model-based diagnosis(MBD) is a well-known Artificial Intelligence(AI) Technique for the
localization and malfunctioning parts in (mostly physical) systems. The definitions of MBD
as given in (Reiter, 1987; Kleer & Williams 1987) and show how this approach can be used
to locate faulty components in a given system. First-order logic produced formal model for
MBD and covers sound framework. Test cases are uses to examine the specifications and
diagnostic engine locates single or multiple faults from derived system. Several authors
(Hamscher, W.C 1991, Greiner, R et. al. 1989) provides the well-founded theory underlying

Fault Localization Models Using Dependences 37

Method no LOC Total
dep.no

Min-Max no. Diagnosis Candidates
5 4 3 2 1

eval (1)
eval (2)
eval (3)
eval (4)
eval (5)

10
14
18
22
26

9
10
11
12
13

-
-
-
-
4

-
-
-
4

4-17

-
-
4

4-15
4-26

-
4

4-13
4-22
4-26

4
4-11
4-18
4-22
4-26

sum
arithmetic
tax comp.
calculator

22
26
30
40

11
12
13
12

-
-
4

1-31

-
4

4-17
1-31

4
4-15
4-26
1-33

4-13
4-15
4-26
1-34

4-18
4-22
4-26
1-34

Table 3. Number of single-Faults Diagnosis with Decreasing Number of Specified Output
Variables.

For example, regarding the program eval(3) we obtained 4 diagnosis candidates when
observing all outputs. Afterwards we selected 2 output variables out of the 3 output
variables, and for all possible combinations of selecting 2 out of 3 outputs, we recorded the
number of diagnoses. The table specifies the minimal and maximal number of diagnosis
candidates obtained in this way (in this specific case of considering 2 output variableswe
obtain at least 4 and at most 13 diagnosis andidates). We checked whether or not the
introduced faults appear among the delivered diagnosis candidates. Regarding all our
experiments, we have been able to locate the misbehavior's real cause.

Furthermore, the table lists the number of total dependences (column 3) and the program's
size in terms of the lines of code (column 2). Our experiments indicate an increase in the
number of candidates with a decreasing number of outputs being considered. In the table,
we did not take into account cases where the reduced output dependences are not capable
of detecting the fault. In this case our approach obviously returns { }. In summary, the
obtained results, confirm the findings in (Hamscher & Davis 1984): As our problem becomes
under-constrained by removing certain output dependences, the number of diagnosis
candidates may increase drastically. As our experiments indicate, this also appears to hold
for the novel model introduced herein.

5. Related Research

We present related work which provides an overview of related research of our chapter.

5.1 Model-Based Software Debugging
Model-based diagnosis(MBD) is a well-known Artificial Intelligence(AI) Technique for the
localization and malfunctioning parts in (mostly physical) systems. The definitions of MBD
as given in (Reiter, 1987; Kleer & Williams 1987) and show how this approach can be used
to locate faulty components in a given system. First-order logic produced formal model for
MBD and covers sound framework. Test cases are uses to examine the specifications and
diagnostic engine locates single or multiple faults from derived system. Several authors
(Hamscher, W.C 1991, Greiner, R et. al. 1989) provides the well-founded theory underlying

Model-Based Diagnosis (MBD). Traditionally MBD focuses on diagnosing physical systems
(Console, L. et. al. 1993, Cascio., F. et. al. 1999, Williams., B.C. 1996 & Malik., A. 1996),
however several authors (Console, L. et. al. 1993, Bond., G. W. 1994, Stumptner., M &
Wotawa., F. 1999a, Stumptner., M & Wotawa., F. 1999b, Stumptner., M & Wotawa., F.1999c
& Stumptner., M & Wotawa., F. 1999d) employing model-based diagnosis techniques in
software debugging.

Authors (Stumptner., M & Wotawa., F. 1999a & Stumptner., M & Wotawa., F. 1999b) covers
model-based software debugging of functional programs and the other authors of these
publications (Mayer., W. & Stumptner., M. 2003, Mayer., W. et. al 2002a & Wieland., D.
2001) focus on software debugging of Java programs, particularly objected-oriented
programming features. These authors work together JADE project to develop functional
dependency model and value based model for software debugging. The comparison
between two models are presented in (Mayer., W. et. al 2002a, Mayer., W. et. al 2002b,
Stumptner., M. et. al. 2001a & Stumptner., M. et. al. 2001b) where they discussed capabilities
of both models in respect with advantages and weaknesses.

The work described in this chapter is solely based on diagnosis from first principle (Reiter,
1987). According to Reiter's (Reiter, 1987) a precise theoretical foundation of diagnostic
reasoning from first principle will be a essential ingredient in any common theory of
diagnostic reasoning.Applying theory of model-based diagnosis to software debugging first
requires an adaption of the diagnosis theory. We wrote some articles (Wotawa., F. &
Soomro., S. 2005, Peischl., B., et. al. 2005, Soomro., S. 2007., Soomro., S. 2008, ., Soomro., S. et.
al. 2008; Soomro., S. & Wotawa., F. 2009) for software debugging to localize faults using
model-based diagnosis technique.

5.2 Aspect System: Abstract Dependencies
Aspect is a static analysis technique for detecting bugs in imperative programs, consisting of
an annotation language and a checking tool. This system introduced by (Jackson, 1995)
which is based on the abstract dependencies that are used by the Aspect system (Jackson,
1995) for detecting faults.The Aspect system analysis the dependences between variables of
a given program and compares them with the specified dependences.The computed
dependencies are compared to expected ones specified by software engineer. After
comparing these dependencies with derived ones this system pinpoint the missing
dependencies. This work employs abstract dependences for detecting rather than for
localizing a fault.Aspect system (Jackson, 1995) which has been used for dependency based
verification of C programs. Aspect system provides a very simple way to specify and verify
properties of software system, even though the results of this approach is limited,as the
correctness of program is hardly expressable due to terms of variable dependences.

The work described in this thesis is based on the abstract dependencies that are used by the
Aspect system (Jackson, 1995) for detecting faults.The verification-based model for
debugging is an extension of the dependence model from Jackson's Aspect system (Jackson,
1995) which has been used for dependency based verification of C programs. The Aspect
system analysis the dependences between variables of a given program and compares them
with the specified dependences. In case of a mismatch the program is said to violate the

Engineering the Computer Science and IT38

specification. Otherwise, the program fulfills the specification. Unfortunately, the Aspect
system does not allow to locate the source of a mismatch. In the following we extend
Jackson's idea towards not only detecting misbehavior but also localizing the
malfunctioning's real cause.

5.3 Program Slicing
The author (Weiser, 1982 & 1984) introduces program slicing towards debugging systems.
Program slicing is an approach for reduce to complexity of programs by focusing on
selected aspects of semantics. The process of slicing deletes those parts of the program
which can be determined to have no effect upon the semantics of interest. Slicing has
applications in testing and debugging, re-engineering, program comprehension and
software measurement. The author (Tip, 1995) scrutinize various approaches of slicing with
respect with static and dynamic slicing.

Program slicing is a general, widely-used, and accepted technique applicable to different
software engineering tasks including debugging, whereas model-based diagnosis is an AI
(Artificial Intelligence) technique originally developed for finding faults in physical systems.
During the last years it has been shown that model-based diagnosis can be used for software
debugging (Console, L. et. al. 1993, Bond., G. W. 1994, Stumptner., M & Wotawa., F. 1999a,
Stumptner., M & Wotawa., F. 1999b, Stumptner., M & Wotawa., F.1999c & Stumptner., M.)
The author (Wotawa, 2002) clarifies that model-based diagnosis is related to program
slicing. In case of diagnosis it proves that slices of a program in a fault situation are
equivalent to conflicts in model-based debugging. This result helps debugging community
to compute diagnosis faster and gives more information about possible bugs in certain
situations.

6. Conclusion and Future Research

In this chapter we focused on verification-based model (VBM) specifically tailored towards
detecting and localizing structural faults. We discussed the relationship between this model
and the well-known functional dependence model (FDM) by exemplifying the weaknesses
and strengths of both models. Our examples show, that there are debugging problems
where the verification-based model (VBM) delivers different diagnoses than the functional-
dependence model (FDM) and vice versa. Furthermore, we present case studies conducted
recently. Notably, whenever our novel model detects a structural fault, it also appears to be
capable of localizing the misbehavior’s real cause.

A future research challenge is the empirical evaluation of the modeling approaches
discussed herein. Also include another extensions of the Verifcation Based Model, e.g, to
handle object oriented features and to provide an emprical anaylsis. Another open issued
which is the connection with program slicing that is also based on abstract dependences.

Fault Localization Models Using Dependences 39

specification. Otherwise, the program fulfills the specification. Unfortunately, the Aspect
system does not allow to locate the source of a mismatch. In the following we extend
Jackson's idea towards not only detecting misbehavior but also localizing the
malfunctioning's real cause.

5.3 Program Slicing
The author (Weiser, 1982 & 1984) introduces program slicing towards debugging systems.
Program slicing is an approach for reduce to complexity of programs by focusing on
selected aspects of semantics. The process of slicing deletes those parts of the program
which can be determined to have no effect upon the semantics of interest. Slicing has
applications in testing and debugging, re-engineering, program comprehension and
software measurement. The author (Tip, 1995) scrutinize various approaches of slicing with
respect with static and dynamic slicing.

Program slicing is a general, widely-used, and accepted technique applicable to different
software engineering tasks including debugging, whereas model-based diagnosis is an AI
(Artificial Intelligence) technique originally developed for finding faults in physical systems.
During the last years it has been shown that model-based diagnosis can be used for software
debugging (Console, L. et. al. 1993, Bond., G. W. 1994, Stumptner., M & Wotawa., F. 1999a,
Stumptner., M & Wotawa., F. 1999b, Stumptner., M & Wotawa., F.1999c & Stumptner., M.)
The author (Wotawa, 2002) clarifies that model-based diagnosis is related to program
slicing. In case of diagnosis it proves that slices of a program in a fault situation are
equivalent to conflicts in model-based debugging. This result helps debugging community
to compute diagnosis faster and gives more information about possible bugs in certain
situations.

6. Conclusion and Future Research

In this chapter we focused on verification-based model (VBM) specifically tailored towards
detecting and localizing structural faults. We discussed the relationship between this model
and the well-known functional dependence model (FDM) by exemplifying the weaknesses
and strengths of both models. Our examples show, that there are debugging problems
where the verification-based model (VBM) delivers different diagnoses than the functional-
dependence model (FDM) and vice versa. Furthermore, we present case studies conducted
recently. Notably, whenever our novel model detects a structural fault, it also appears to be
capable of localizing the misbehavior’s real cause.

A future research challenge is the empirical evaluation of the modeling approaches
discussed herein. Also include another extensions of the Verifcation Based Model, e.g, to
handle object oriented features and to provide an emprical anaylsis. Another open issued
which is the connection with program slicing that is also based on abstract dependences.

7. References

Bond., G. W. (1994). Logic Programs for Consistency Based Diagnosis. Phd. Thesis
Dissertation, Carleton University, Faculty of Engineering, Ottawa, Canada.

Cascio., F., Console., L, Guagliumi., M, Osella., M., Panato., A., Cauvin., S., Cordier. M.,
Theseider, D & Sottano. S. (1999) . Generating on-board diagnostics of dynamic
automotive systems based on qualitative models. Artificial Intelliegence
Communication, Vol., No. 12, 1999.

Cauvin., S., Cordier. M. & Dousson.C (1998). Monitoring and Alarm Interpretation in
Industrial Environments. Artificial Intelliegence Communication, Vol., No. 11, 1998.

Console, L., Friedrich, G. & Theseider, D. (1993). Model-Based Diagnosis Meets Error
Diagnosis in Logic Programs, Proceedings of Joint International Conference on Artifical
Intelligence, pp. 1494-1499, Chambery, August and 1993.

Greiner, R., Smith, B & Ralph, W. (1989). A Correction to the Algorithm in Reiter's Theory of
Diagnosis. Artificial Intelliegence, Vol., No., 41, pp. 79-88.

Hamscher, W.C (1991). Modeling Digital Circuits for Troubleshooting. Artificial Intelliegence,
Vol., No., 51 (October & 1995) pp. 223-271.

Hamscher, W.C; Console, L. & Kleer, J. (1992). Readings in Model-Based Diagnosis. Morgan
Pulisher, (October & 1992).

Jackson, D. (1995). Aspect Detecting Bugs with Abstract Dependences. Transaction on
Software Engineering and Mrthodology, Vol., No., 3, (April & 1995) pp. 109-145.

Kleer, J. & Williams, B C (1987). Diagnosing multiple faults. Artificial Intelligence, pp. 97–130.
Malik., A., Struss., P. & Sachenbacher., M. (1996). Case Studies in Model-based Diagnosis

and Fault Analysis of Car-Subsystems. Proceedings of European Conference ofArtifical
Intelligence. Pp. 1322-1334. 1996.

Mayer., W. & Stumptner., M. (2003). Extending Diagnosis to Debug Programs with
Exceptions. Proceedings of 18th International IEEE Conference on Automated Software
Engineering, pp. 240-244, Montreal, Canada, October 2003.

Mayer., W., Stumptner., M., Wieland., D. & Wotawa., F (2002a). Can AI help to improve
debugging substantially? Debugging experiences with value-based models.
Proceedings of European Conference ofArtifical Intelligence. Pp. 417-421. IOS Press,
Lyon, France 2002.

Mayer., W., Stumptner., M., Wieland., D. & Wotawa., F (2002b). Towards an Integrated
Debugging Environment Proceedings of European Conference ofArtifical Intelligence.
Pp. 422-426. IOS Press, Lyon, France 2002.

Peischl., B., Soomro., S. & Wotawa., F. (2006). Towards Lightweight Fault Localization in
Procedural Programs. Proceedings of the 19th Conference on International Conference on
Industrial, Engineering and Applications of Applied Intelligent Systems (IEA/AIE).
Lecture Notes in Compter Science, Springer 2006.

Reiter, R. (1987). A theory of diagnosis from first principles. Artificial Intelligence, pp. 57–95.
Stumptner., M & Wotawa., F. (1999a). Debugging Functional Programs. Proceedings of Joint

International Conference on Artifical Intelligence, pp. 1074-1097, August, Stockholm,
Sweden, 1999.

Stumptner., M & Wotawa., F. (1999b). Reconfiguration Using Model-Based Diagnosis.
Proceedings of Diagnosis Worksshop Series , Loch Awe, Scotland.

Stumptner., M & Wotawa., F. (1999c). Detecting and Locating Faults in Hardware Designs.
Proceeding AAAI 99 Workshop on Intelligent Software Engineering, Orlando, Florida.

Engineering the Computer Science and IT40

Stumptner., M & Wotawa., F. (1999d). Jade -- Java Diagnosis Experiments -- Status and
Outlook. IJCAI '99 Workshop on Qualitative and Model Based Reasoning for Complex
Systems and their Control August, Stockholm,Sweden, 1999.

Stumptner., M., Wieland., D. & Wotawa., F. (2001a). Analysis Models of Software
Debugging.Proceedings of Diagnosis Worksshop Series , Sansicario, Italy.

Stumptner., M., Wieland., D. & Wotawa., F. (2001b). Comparing Two Models for Software
Debugging. Proceedings of the Joint German/Austrian Conference on Artificial
Intelligence (KI), Vienna, Austria.

Soomro., S. (2007). Using Abstract Dependences to localize faults from procedural Programs
Proceeding of Artificial Intelligence and Applications. pp. 180-185, Inssbruck, Austria

Soomro., S., Shah. A.A & Shah., Wajiha (2008). Localize Faults from ALias-free Programs
using Verification Based Model. Proceeding of Artificial Intelligence and Soft
Computing ASC 2008. pp. 190-196, Palma-DelMalorca, Spain. 2008.

Soomro., S. (2008). Verification Based Model Localizes Faults from Procedural Programs.
Frontiers in Robotics and Automation Control International Book of Advanced Robotic
System. ISBN 978-953-7619-17-6, October 2008.

Soomro. S. & Wotawa. F. (2009). Detect and Localize Faults in Alias-free Programs using
Specification Knowledge. Proceedings of the 19th Conference on International
Conference on Industrial, Engineering and Applications of Applied Intelligent Systems
(IEA/AIE). Lecture Notes in Compter Science, Springer, Taina,, Taiwan 2009.

Tip, F. (1995). A Survey of Program Slicing Techniques. Journal of Programming Languages,
Vol., No., 3, (September & 1995) pp. 121-189.

Wieland., D. (2001). Model Based Debugging of Java Programs Using Dependencies. Phd.
Thesis Dissertation, Vienna University of Technology, Computer Science
Department, Institute of Information Systems (184), Database and Artificial
Intelligence Group (184/2) Austria , November 2001.

Williams., B.C. & Nayak., P.P. (1996). Immobile Robots -- AI in the New Millennium.
Artificial Intelligence Magzine, AAAI Press, pp. 16-35.

Weiser. M. (1982). Programmers Use Slices when Debugging. Communication of The ACM,
Vol. No. (7), pp. 446-452. July 1982.

Weiser. M. (1984). Programmers Use Slices when Debugging. IEEE Transaction of Software
Engineering, Vol. No. (4) , pp. 352-357. July 1984.

Wotawa., F. & Soomro., S. (2005). Using abstract dependencies in debugging. Proceedings of
19th International Workshop on Qualitative Reasoning QR-05 pp. 23-28., Graz-Austria.

Assisted form filling 41

Assisted form filling

Łukasz Bownik, Wojciech Górka and Adam Piasecki

X

Assisted form filling

Łukasz Bownik, Wojciech Górka and Adam Piasecki
Centre EMAG

Poland

1. Introduction

Semantic technologies that form the basis of the idea of the Semantic Web (Berners-Lee et al.
2001) are currently one of the most popular points of interest in the field of computer
science. The main emphasis here is on issues related to the logical layer of semantic
applications, that is exploring the methods of machine reasoning within an ever wider range
of logic, and the issues of data exploration and integration. This article features a practical
application of semantic technologies for solving problems more closely affecting an average
computer user. We present a solution to the issue of accelerating the filling of electronic
forms based on previous achievements in this field, which combines the capabilities of
inference engines with the expressiveness of ontologies stored in OWL (Web Ontology
Language) (OWL Guide 2004) and flexibility of data stored in RDF (Resource Description
Language) (RDF Primer 2004). The article assumes that the reader has a basic knowledge on
the construction and use of the RDF and OWL languages.

1.1. Objective of the article
The objective of this article is to describe ways to facilitate electronic form filling. At the
beginning we described the issue and the requirements placed on the solution. Then we
described the solution. We characterized the reasons for the selection of specific techniques
and architecture of the proposed solution, as well as two alternative approaches to the
interaction with the user. Finally, we presented the investigated results of the acceleration of
assisted form filling, which was compared with other existing solutions of the stated issue.

1.2. The Issue
The basic issue associated with the concept of public services is the need to fill the forms
containing repeated data. Most forms require entering the same data, similar data sets or
data dependent on other data contained in another part of the form. This causes
psychological discomfort associated with repeated, from the user’s perspective, contents.
Such an approach is not only unproductive but also increases the risk of errors. Errors in the
completed forms, if not detected during the interaction with the system, may have serious
and far-reaching consequences, including legal ones. A mechanism capable of assisting in
the process of electronic form filling would not only result in a positive acceleration of the
process but could also potentially reduce the risk of errors.

4

Engineering the Computer Science and IT42

1.3. Requirements
The proposed solution of the stated issue is to assist the user in the process of filling in any
electronic form through the automatic and pseudo-intelligent filling of the form fields with
information available to the system. The basic assumptions that guided the search for
solutions were:

 modularity of the developed software that will allow integration with a broad class
of information systems;

 independence from the domain of the form which will minimize the number of
assumptions about the meaning and format of processed data;

 minimization of interactions with the user that is both a target and measure of the
quality of the resulting solution.

The result of research is a portable Java library that implements assisted electronic form
filling processes. Later in the article we will present the results of the work and a description
of the architecture and operation of the developed software, hereinafter referred to as "the
forms module”.

1.4. Other solutions
Similar solutions have been proposed, inter alia in the projects "RoboForm"1 and "Mojo
Navigator"2 however they focus primarily on the functionality of a portfolio of passwords
integrated with a web browser with an additional history of the field values associated with
the forms available on the Internet. They also lack the dynamics associated with the
automatic acquisition of data, which is presented by the described solution. On the market
there are a lot of other solutions based on a dialogue form of form filling but most of them
are firmly based on the dialogue recorded on a particular form (the wizards). Finally, it
should be noted that a simple form of field values suggestion is available directly in
browsers. However, it is characterized by a very small degree of ergonomics both with
regard to the interaction with the user, who must enter the desired values prefixes, and the
lack of contextuality, which makes it impossible to fill the whole form at once.

1 http://www.roboform.com, 2009-01
2 http://www.mozilla.org/projects/ui/communicator/browser/formfill, 2009-01

2. Design

The following section describes the design of the forms module along with the reasons for
selecting particular data representation and architecture.

2.1. Data representation
The main idea of assisted form filling is pseudo-intelligent matching of existing data to form
fields. For this purpose, it is necessary to identify the meaning of the fields and sections of
the form and find an adequate available data set. The data for assisted filling may come
from the user’s ontoprofile, whose task is to accumulate the data from the completed forms,
or from an external system. In the case when the data are not available (as it will be the case
with every new user), assisted filling will not be available either.
Identification of the meaning of data requires their explicit tagging with metadata. For this
reason, we need data representation that supports their binding to the metadata. The binary
representation and simple text representation, for example in the csv format, do not allow to
record the metadata and therefore are not useful. For this purpose, the most suitable are the
relational data model (in whose case the metadata consist of names of relations and fields)
and languages like XML (eXtensible Markup Language) (XML 2006) and RDF.
The objective of this work was to develop software with a minimum number of assumptions
about the meaning and format of the processed data. In the relational data model the
meaning and format of data is contained in the database schema that can be subjected to a
variety of analyses performed by the software. The relational database schemas have,
however, two significant drawbacks. First, the producers of databases quite freely
implement the DDL language standard and extend it with many product-specific features.
Such diversity results in considerable difficulty in automatic analyzing of database
structures. Second, solving the issue of assisted form filling requires maximum flexibility of
data representation. The relational database model does not satisfy this condition as it
assumes constant or slowly changing structure of the database. Application of the
representation of data based on this model would be a very hard assumption regarding the
meaning and format of data in a particular installation (e.g. installing a module with respect
to a database which describes the forms of medical service appointments would allow to fill
only this type of forms). For this reason, the relational data model has been rejected as a
representation of the processed data.
Rejection of the relational model narrowed the choice of data representations to those based
on XML and RDF. Data stored in these languages are very dynamic in their structure
defined by XML schemas and ontologies that can be dynamically loaded and analyzed by
an application. XML requires that all data have a tree structure. This structure does not fully
correspond with the "natural" structure of data which more often resembles graphs. For this
and other less significant reasons, the RDF language was chosen because it allows very
natural data recording in the form of graphs and a flexible description of their structure by
means of ontologies stored in OWL. An additional advantage is the possibility of using
machine-based inference with ontologies and rules which allowed the development of
pseudo-intelligent software by means of very expressive logic programs.

Assisted form filling 43

1.3. Requirements
The proposed solution of the stated issue is to assist the user in the process of filling in any
electronic form through the automatic and pseudo-intelligent filling of the form fields with
information available to the system. The basic assumptions that guided the search for
solutions were:

 modularity of the developed software that will allow integration with a broad class
of information systems;

 independence from the domain of the form which will minimize the number of
assumptions about the meaning and format of processed data;

 minimization of interactions with the user that is both a target and measure of the
quality of the resulting solution.

The result of research is a portable Java library that implements assisted electronic form
filling processes. Later in the article we will present the results of the work and a description
of the architecture and operation of the developed software, hereinafter referred to as "the
forms module”.

1.4. Other solutions
Similar solutions have been proposed, inter alia in the projects "RoboForm"1 and "Mojo
Navigator"2 however they focus primarily on the functionality of a portfolio of passwords
integrated with a web browser with an additional history of the field values associated with
the forms available on the Internet. They also lack the dynamics associated with the
automatic acquisition of data, which is presented by the described solution. On the market
there are a lot of other solutions based on a dialogue form of form filling but most of them
are firmly based on the dialogue recorded on a particular form (the wizards). Finally, it
should be noted that a simple form of field values suggestion is available directly in
browsers. However, it is characterized by a very small degree of ergonomics both with
regard to the interaction with the user, who must enter the desired values prefixes, and the
lack of contextuality, which makes it impossible to fill the whole form at once.

1 http://www.roboform.com, 2009-01
2 http://www.mozilla.org/projects/ui/communicator/browser/formfill, 2009-01

2. Design

The following section describes the design of the forms module along with the reasons for
selecting particular data representation and architecture.

2.1. Data representation
The main idea of assisted form filling is pseudo-intelligent matching of existing data to form
fields. For this purpose, it is necessary to identify the meaning of the fields and sections of
the form and find an adequate available data set. The data for assisted filling may come
from the user’s ontoprofile, whose task is to accumulate the data from the completed forms,
or from an external system. In the case when the data are not available (as it will be the case
with every new user), assisted filling will not be available either.
Identification of the meaning of data requires their explicit tagging with metadata. For this
reason, we need data representation that supports their binding to the metadata. The binary
representation and simple text representation, for example in the csv format, do not allow to
record the metadata and therefore are not useful. For this purpose, the most suitable are the
relational data model (in whose case the metadata consist of names of relations and fields)
and languages like XML (eXtensible Markup Language) (XML 2006) and RDF.
The objective of this work was to develop software with a minimum number of assumptions
about the meaning and format of the processed data. In the relational data model the
meaning and format of data is contained in the database schema that can be subjected to a
variety of analyses performed by the software. The relational database schemas have,
however, two significant drawbacks. First, the producers of databases quite freely
implement the DDL language standard and extend it with many product-specific features.
Such diversity results in considerable difficulty in automatic analyzing of database
structures. Second, solving the issue of assisted form filling requires maximum flexibility of
data representation. The relational database model does not satisfy this condition as it
assumes constant or slowly changing structure of the database. Application of the
representation of data based on this model would be a very hard assumption regarding the
meaning and format of data in a particular installation (e.g. installing a module with respect
to a database which describes the forms of medical service appointments would allow to fill
only this type of forms). For this reason, the relational data model has been rejected as a
representation of the processed data.
Rejection of the relational model narrowed the choice of data representations to those based
on XML and RDF. Data stored in these languages are very dynamic in their structure
defined by XML schemas and ontologies that can be dynamically loaded and analyzed by
an application. XML requires that all data have a tree structure. This structure does not fully
correspond with the "natural" structure of data which more often resembles graphs. For this
and other less significant reasons, the RDF language was chosen because it allows very
natural data recording in the form of graphs and a flexible description of their structure by
means of ontologies stored in OWL. An additional advantage is the possibility of using
machine-based inference with ontologies and rules which allowed the development of
pseudo-intelligent software by means of very expressive logic programs.

Engineering the Computer Science and IT44

2.2. Structure
Data structures on which the module operates are defined by means of ontologies written in
OWL. In order to understand the operations of the dialogue module, it is necessary to grasp
the data ontology and the form ontology (a kind of data ontology) ideas which lie at the
basis of the process.

2.2.1. Data ontologies
Data ontologies define the vocabulary (concepts) used in the course of data exchange
between systems. A data ontology is not meant to organize knowledge (which is the case of
expert systems) but to determine concepts describing the data which can be understood by
many systems. In terms of their concept, data ontologies correspond with XML diagrams
and are their functional equivalents.

Fig. 1. Layered-tree ontology structure [own].

Data ontologies are naturally arranged in a tree-layer structure shown in Figure 1.
The first and highest level contains definitions of the most general vocabulary (concepts)
commonly used by many IT systems (e.g. person, age, name, family name). The concepts
defined at this level are the basis for the definitions of more specialized concepts placed at
lower levels of abstraction. General ontologies should not (must not, to be precise) impose
any restrictions (e.g. in the form of limits as to the format of field value or number of fields
in the form) on the defined concepts because each restriction placed at this level of
generalization will diminish the universal force of the defined vocabulary and will raise the
probability of conflicts with restrictions defined at lower levels (redundant or contrary
restrictions). General ontologies must have total horizontal coherence, i.e. mutual coherence
within the entire level of abstraction.

The second, middle level contains definitions of concepts shared by IT systems which
operate within a given domain (e.g. medicine). These ontologies should use, to the highest
possible extent, the concepts defined at a higher level of abstraction (i.e. they should not
define their own concepts indicating, for example, family name) as well as add the concepts
from this very domain (e.g. clinic, doctor, vaccine). At this level of abstraction only most
obvious restrictions should be defined, i.e. the restrictions which will be forced by all
existing and future IT systems operating within a given domain. If it is not possible to
explicitly define such restrictions, one should not define them at all because, as it is the case
with general ontologies, they may provoke conflicts between ontologies. Domain ontologies
must have horizontal coherence within a certain domain, i.e. mutual coherence within each
domain at this level of abstraction as well as coherence with general ontologies.
The third and lowest level contains definitions of forms, i.e. specific data packages
exchanged between IT systems. A form is a structure of data exchanged between two IT
systems. The structure may, but does not have to, be related to the form filled by the system
user. Each form there should have a form ontology describing its structure. The ontologies
of the form should use, to the highest possible extent, the concepts defined at higher levels
of abstraction and define only such new concepts which are specific to a given form and
cannot be shared with other forms. The form ontology should define all necessary
restrictions which will ensure logical coherence and correctness of the form required by the
specifications of the IT system. Since for each form there are different rules (restrictions)
which determine its coherence and correctness (e.g. one form requires an ID number, the
other does not), it is not advisable to define restrictions at higher levels of abstraction. The
form ontologies do not have to demonstrate any horizontal coherence (it is practically
impossible to provide it). A logical error resulting from horizontal incoherence will never
occur because there is separate processing of each ontology in each processing path in the IT
system, which was depicted in Figure 2. The form ontologies must be coherent with the
applied domain ontologies and general ontologies.

Fig. 2. Physical separation of processing of form ontologies within a single processing path
[own].

Assisted form filling 45

2.2. Structure
Data structures on which the module operates are defined by means of ontologies written in
OWL. In order to understand the operations of the dialogue module, it is necessary to grasp
the data ontology and the form ontology (a kind of data ontology) ideas which lie at the
basis of the process.

2.2.1. Data ontologies
Data ontologies define the vocabulary (concepts) used in the course of data exchange
between systems. A data ontology is not meant to organize knowledge (which is the case of
expert systems) but to determine concepts describing the data which can be understood by
many systems. In terms of their concept, data ontologies correspond with XML diagrams
and are their functional equivalents.

Fig. 1. Layered-tree ontology structure [own].

Data ontologies are naturally arranged in a tree-layer structure shown in Figure 1.
The first and highest level contains definitions of the most general vocabulary (concepts)
commonly used by many IT systems (e.g. person, age, name, family name). The concepts
defined at this level are the basis for the definitions of more specialized concepts placed at
lower levels of abstraction. General ontologies should not (must not, to be precise) impose
any restrictions (e.g. in the form of limits as to the format of field value or number of fields
in the form) on the defined concepts because each restriction placed at this level of
generalization will diminish the universal force of the defined vocabulary and will raise the
probability of conflicts with restrictions defined at lower levels (redundant or contrary
restrictions). General ontologies must have total horizontal coherence, i.e. mutual coherence
within the entire level of abstraction.

The second, middle level contains definitions of concepts shared by IT systems which
operate within a given domain (e.g. medicine). These ontologies should use, to the highest
possible extent, the concepts defined at a higher level of abstraction (i.e. they should not
define their own concepts indicating, for example, family name) as well as add the concepts
from this very domain (e.g. clinic, doctor, vaccine). At this level of abstraction only most
obvious restrictions should be defined, i.e. the restrictions which will be forced by all
existing and future IT systems operating within a given domain. If it is not possible to
explicitly define such restrictions, one should not define them at all because, as it is the case
with general ontologies, they may provoke conflicts between ontologies. Domain ontologies
must have horizontal coherence within a certain domain, i.e. mutual coherence within each
domain at this level of abstraction as well as coherence with general ontologies.
The third and lowest level contains definitions of forms, i.e. specific data packages
exchanged between IT systems. A form is a structure of data exchanged between two IT
systems. The structure may, but does not have to, be related to the form filled by the system
user. Each form there should have a form ontology describing its structure. The ontologies
of the form should use, to the highest possible extent, the concepts defined at higher levels
of abstraction and define only such new concepts which are specific to a given form and
cannot be shared with other forms. The form ontology should define all necessary
restrictions which will ensure logical coherence and correctness of the form required by the
specifications of the IT system. Since for each form there are different rules (restrictions)
which determine its coherence and correctness (e.g. one form requires an ID number, the
other does not), it is not advisable to define restrictions at higher levels of abstraction. The
form ontologies do not have to demonstrate any horizontal coherence (it is practically
impossible to provide it). A logical error resulting from horizontal incoherence will never
occur because there is separate processing of each ontology in each processing path in the IT
system, which was depicted in Figure 2. The form ontologies must be coherent with the
applied domain ontologies and general ontologies.

Fig. 2. Physical separation of processing of form ontologies within a single processing path
[own].

Engineering the Computer Science and IT46

Fig. 3. Example of data ontology [own].

Figure 3 shows a sample ontology describing personal data.

2.2.2. Form ontologies
Form ontologies define the structure as well as coherence and correctness rules of data
contained in the described form. A form ontology describes a specific set of data exchanged
between IT systems.
The process of constructing a form ontology begins from building the main form class which
will lie at the roots of the whole structure. The main class of the form must be marked with
the appropriate property isFormRoot. Thanks to this assumption, it is possible to
automatically detect the root of the form. The definition of the successive sections of the
form is carried out by defining separate classes (e.g. Person class or Address class) linked with
object properties to form a tree structure. The definitions of data fields are carried out with
the use of data-type properties of classes which make up the sections of the form.
As the form ontology is based on concepts defined in data ontologies which may be much
more extensive than the form requires, the isRequired and isOptional properties were
defined. They connect the desired properties with the classes being the sections of the form
(see Fig. 4). In order to force the order of processing sections and fields of the form, it is
necessary to define the processing order for each pair of properties, representing these
sections, by means of the askBefore property (see Fig. 4).

Fig. 4. An example of form ontology[own].

In order to define the desired restrictions, it is necessary to determine new concepts due to
the fact that the built-in cardinality concepts have their own defined semantics which does
not suit the issue to be solved (OWL Guide 2004).
Form ontologies can contain rules (Horn clauses ((Horn 1951) that extend the functionality
of the OWL language. In order to secure logical non-contradiction, the rules must belong to
the “DL-safe” set (Grosof et al. 2003). The most frequent application of the rules is the
structure of section labels (enabling, for example, creation of a section label for personal data
on the basis of the entered name and surname) and automatic assigning of values to certain
fields based on the values of other fields.

2.3. The operating principle
The operating principle of the module is based on the fact that a form makes up a tree
structure in which successive embedded sections make branches, while fields – leaves of the
tree. Thus it is possible to process a form with the use of tree-searching algorithms. To fulfill
this task the depth-first search algorithm was selected. This algorithm is the most compliant
with the way people fill real forms. The functioning principle of the dialogue module is
presented below in a simplified way. While analyzing successive steps one should
remember about the iteration-recurrent nature of the algorithm.

1. At the beginning of each dialogue, the forms module detects a proper form class in
the form ontology and creates its instance.

2. The newly created instance becomes a currently processed node and, at the same
time, the top of the tree.

Assisted form filling 47

Fig. 3. Example of data ontology [own].

Figure 3 shows a sample ontology describing personal data.

2.2.2. Form ontologies
Form ontologies define the structure as well as coherence and correctness rules of data
contained in the described form. A form ontology describes a specific set of data exchanged
between IT systems.
The process of constructing a form ontology begins from building the main form class which
will lie at the roots of the whole structure. The main class of the form must be marked with
the appropriate property isFormRoot. Thanks to this assumption, it is possible to
automatically detect the root of the form. The definition of the successive sections of the
form is carried out by defining separate classes (e.g. Person class or Address class) linked with
object properties to form a tree structure. The definitions of data fields are carried out with
the use of data-type properties of classes which make up the sections of the form.
As the form ontology is based on concepts defined in data ontologies which may be much
more extensive than the form requires, the isRequired and isOptional properties were
defined. They connect the desired properties with the classes being the sections of the form
(see Fig. 4). In order to force the order of processing sections and fields of the form, it is
necessary to define the processing order for each pair of properties, representing these
sections, by means of the askBefore property (see Fig. 4).

Fig. 4. An example of form ontology[own].

In order to define the desired restrictions, it is necessary to determine new concepts due to
the fact that the built-in cardinality concepts have their own defined semantics which does
not suit the issue to be solved (OWL Guide 2004).
Form ontologies can contain rules (Horn clauses ((Horn 1951) that extend the functionality
of the OWL language. In order to secure logical non-contradiction, the rules must belong to
the “DL-safe” set (Grosof et al. 2003). The most frequent application of the rules is the
structure of section labels (enabling, for example, creation of a section label for personal data
on the basis of the entered name and surname) and automatic assigning of values to certain
fields based on the values of other fields.

2.3. The operating principle
The operating principle of the module is based on the fact that a form makes up a tree
structure in which successive embedded sections make branches, while fields – leaves of the
tree. Thus it is possible to process a form with the use of tree-searching algorithms. To fulfill
this task the depth-first search algorithm was selected. This algorithm is the most compliant
with the way people fill real forms. The functioning principle of the dialogue module is
presented below in a simplified way. While analyzing successive steps one should
remember about the iteration-recurrent nature of the algorithm.

1. At the beginning of each dialogue, the forms module detects a proper form class in
the form ontology and creates its instance.

2. The newly created instance becomes a currently processed node and, at the same
time, the top of the tree.

Engineering the Computer Science and IT48

3. For the currently processed node, all required and optional properties are found
and sorted according to the arrangement determined in the ontology. Then the
successively found properties are processed.

4. If the currently processed property points at a section of the form, the section is
then processed recursively.

In the course of processing the successive properties of the node, the dialogue module tries
to detect, in the set of input data, the best adjustments both for the single fields of the form
and for the whole sections. The dialogue module asks the user questions only in situations
when the desired values do not exist or when it is possible to adjust more than one value to
one field or section.

Fig. 5. A simplified version of the algorithm. [own].

During the subsequent processing of the properties of the node the software tries to find in
the collection of input data the best match of both the individual form fields as well as the

entire section of the form. The forms module communicates with the user only in situations
where the desired values do not exist or if it is possible to fit more than one value into
onefield or section. A simplified version of the algorithm is presented in Figure 5.

2.4. The reasoning
The proposed machine reasoning is mainly based on the OWL language but is limited in its
expressiveness to a subset called DLP (Description Logic Programs) (Grosof et al. 2003). DLP
is a logic system that is a subset of a description logic, on which the OWL language is based,
that can be expressed by means of Horn clauses (Horn 1951). DLP provides the key
inference capabilities found in OWL necessary for the implementation of assisted form
filling, that is the reasoning with class hierarchies and properties. In addition, it allows
flexible extension of specific rules for the process itself or even for a specific form.
Applying an inference engine brought a significant simplification of the code responsible for
retrieving the data with required meaning through moving a significant computing burden
into a logic program which contains the rules of logical inference. This way, the matching
algorithm is limited to the search of resources belonging to the respective classes or values
of the respective properties.

2.5. Architecture
The architecture of the proposed solution is briefly described below. The basic elements of
the forms module are responsible for performing assisted filling process logic, and storing
the data gathered during filling forms. The user interface and data access layers have been
omitted.

2.5.1. The form processor
The forms module is composed of four basic parts:

 RDF storage providing access to RDF data and ontologies3 ;
 a forward inference engine based on the RETE algorithm (Forgy 1979);
 a module that controls the process of form filling developed as a result of the work

(implemented in Java), which, together with two previous elements, makes up a
forms processor;

 an ontoprofile allowing the storage of the data collected during form filling
processes

Figure 6 presents a layered structure of the forms module.

3 Jena – A Semantic Web Framework for Java. http://jena.sourceforge.net, 2009-01

Assisted form filling 49

3. For the currently processed node, all required and optional properties are found
and sorted according to the arrangement determined in the ontology. Then the
successively found properties are processed.

4. If the currently processed property points at a section of the form, the section is
then processed recursively.

In the course of processing the successive properties of the node, the dialogue module tries
to detect, in the set of input data, the best adjustments both for the single fields of the form
and for the whole sections. The dialogue module asks the user questions only in situations
when the desired values do not exist or when it is possible to adjust more than one value to
one field or section.

Fig. 5. A simplified version of the algorithm. [own].

During the subsequent processing of the properties of the node the software tries to find in
the collection of input data the best match of both the individual form fields as well as the

entire section of the form. The forms module communicates with the user only in situations
where the desired values do not exist or if it is possible to fit more than one value into
onefield or section. A simplified version of the algorithm is presented in Figure 5.

2.4. The reasoning
The proposed machine reasoning is mainly based on the OWL language but is limited in its
expressiveness to a subset called DLP (Description Logic Programs) (Grosof et al. 2003). DLP
is a logic system that is a subset of a description logic, on which the OWL language is based,
that can be expressed by means of Horn clauses (Horn 1951). DLP provides the key
inference capabilities found in OWL necessary for the implementation of assisted form
filling, that is the reasoning with class hierarchies and properties. In addition, it allows
flexible extension of specific rules for the process itself or even for a specific form.
Applying an inference engine brought a significant simplification of the code responsible for
retrieving the data with required meaning through moving a significant computing burden
into a logic program which contains the rules of logical inference. This way, the matching
algorithm is limited to the search of resources belonging to the respective classes or values
of the respective properties.

2.5. Architecture
The architecture of the proposed solution is briefly described below. The basic elements of
the forms module are responsible for performing assisted filling process logic, and storing
the data gathered during filling forms. The user interface and data access layers have been
omitted.

2.5.1. The form processor
The forms module is composed of four basic parts:

 RDF storage providing access to RDF data and ontologies3 ;
 a forward inference engine based on the RETE algorithm (Forgy 1979);
 a module that controls the process of form filling developed as a result of the work

(implemented in Java), which, together with two previous elements, makes up a
forms processor;

 an ontoprofile allowing the storage of the data collected during form filling
processes

Figure 6 presents a layered structure of the forms module.

3 Jena – A Semantic Web Framework for Java. http://jena.sourceforge.net, 2009-01

Engineering the Computer Science and IT50

Ontoprofile

Form Processor

RDF storage

Reasoning engine

Form filling
controller

Fig. 6. The forms module structure [own].

Effectiveness of the module depends on the input data stored in the user profile.

2.5.2. The ontoprofile
The ontoprofile is used to store data collected during the assisted form filling processes
which are used to support the filling of successive forms. Its main task is to integrate data
coming from completed forms with the data collected so far and to make these data
accessible to the successive forms. Proper integration is driven by the integration policy
which determines what should be integrated and how. The data contained in the ontoprofile
are stored in the form of RDF graphs. A physical way in which they are stored is not
important but for the prototype installation a relational database has been used.

3. Prototypes

The following describes the two prototypes built during the experimental work. We
described the way of interaction with each of the prototypes and the reason for the rejection
of one of them.

3.1. The dialogue version
The first prototype of the forms module assumes a dialogue based interaction between the
user and the computer in the form of a sequence of questions and answers, which recalls the
manner of interaction with the wizard. The questions are asked by the software, and the
answers are provided by the user. The forms module operates as a filter of information.
With a set of input data (may be empty) and ontologies, the forms module "tries to" fill in
the form with input data and data supplied by the user. Filling the form takes on a dialogue
with the user while maintaining the principle of minimal interaction which assumes that the
user is queried only in such cases where the data are unavailable or inconclusive. The
usefulness of the forms module, as measured by the number of interactions with the user
(the fewer the better), increases with the amount of input data available in the system.

In order to illustrate the functioning of the dialogue module let us check how the module
works with a simple form. We assume that it is necessary to fill the form as follows:

Form:
 Personal data of the user:
 Name;
 Surname;
 Address:
 City;
 Street;
 House No;
 Purpose of submitting the form;

When the process of filling the form is invoked for the first time, the dialogue with the user
will look as follows:

System: Enter "Name".
User: John
S: Enter "Surname".
U: Brown
S: Enter "City".
U: London
S: Enter "Street".
U: Portland Place
S: Enter "House No".
U: 47
S: Enter "Purpose of submitting the form".
U: Application for the permission to use a company car

After filling and accepting the form, the data from the form are stored in the user’s
ontoprofile. At the next interaction between the user and the module, the dialogue will look
as follows:

S: I have found personal data for "John Brown, Portland Place 47, London". Shall I
apply them (Y/N)?
U: Y
S: Enter "Purpose of submitting the form".
U: Application to access financial data.

As one can see in the above successive filling of the form, the number of necessary
interactions with the user is 6 times smaller. The reduction was possible due to the fact that
the forms module was able to automatically fill the fields with available personal data.
Asking the question about the field “Purpose of submitting the form” results from the
updating policy of the user’s profile – this issue, however, is beyond the scope of the paper.
Please note that the functioning of the module is based on the real meaning of data defined

Assisted form filling 51

Ontoprofile

Form Processor

RDF storage

Reasoning engine

Form filling
controller

Fig. 6. The forms module structure [own].

Effectiveness of the module depends on the input data stored in the user profile.

2.5.2. The ontoprofile
The ontoprofile is used to store data collected during the assisted form filling processes
which are used to support the filling of successive forms. Its main task is to integrate data
coming from completed forms with the data collected so far and to make these data
accessible to the successive forms. Proper integration is driven by the integration policy
which determines what should be integrated and how. The data contained in the ontoprofile
are stored in the form of RDF graphs. A physical way in which they are stored is not
important but for the prototype installation a relational database has been used.

3. Prototypes

The following describes the two prototypes built during the experimental work. We
described the way of interaction with each of the prototypes and the reason for the rejection
of one of them.

3.1. The dialogue version
The first prototype of the forms module assumes a dialogue based interaction between the
user and the computer in the form of a sequence of questions and answers, which recalls the
manner of interaction with the wizard. The questions are asked by the software, and the
answers are provided by the user. The forms module operates as a filter of information.
With a set of input data (may be empty) and ontologies, the forms module "tries to" fill in
the form with input data and data supplied by the user. Filling the form takes on a dialogue
with the user while maintaining the principle of minimal interaction which assumes that the
user is queried only in such cases where the data are unavailable or inconclusive. The
usefulness of the forms module, as measured by the number of interactions with the user
(the fewer the better), increases with the amount of input data available in the system.

In order to illustrate the functioning of the dialogue module let us check how the module
works with a simple form. We assume that it is necessary to fill the form as follows:

Form:
 Personal data of the user:
 Name;
 Surname;
 Address:
 City;
 Street;
 House No;
 Purpose of submitting the form;

When the process of filling the form is invoked for the first time, the dialogue with the user
will look as follows:

System: Enter "Name".
User: John
S: Enter "Surname".
U: Brown
S: Enter "City".
U: London
S: Enter "Street".
U: Portland Place
S: Enter "House No".
U: 47
S: Enter "Purpose of submitting the form".
U: Application for the permission to use a company car

After filling and accepting the form, the data from the form are stored in the user’s
ontoprofile. At the next interaction between the user and the module, the dialogue will look
as follows:

S: I have found personal data for "John Brown, Portland Place 47, London". Shall I
apply them (Y/N)?
U: Y
S: Enter "Purpose of submitting the form".
U: Application to access financial data.

As one can see in the above successive filling of the form, the number of necessary
interactions with the user is 6 times smaller. The reduction was possible due to the fact that
the forms module was able to automatically fill the fields with available personal data.
Asking the question about the field “Purpose of submitting the form” results from the
updating policy of the user’s profile – this issue, however, is beyond the scope of the paper.
Please note that the functioning of the module is based on the real meaning of data defined

Engineering the Computer Science and IT52

in an ontology which allows to move data between different forms using common concepts
defined in the shared data ontologies.

3.2. The form view based version
The dialogue based version of the forms module described in the previous chapter is an
initial prototype that enabled to verify the validity of the approach and demonstrated the
ability to achieve the stated goals. From the point of view of ergonomics, however, the use
of the prototype proved to be inadequate. The assisted form filling based on a dialogue
which involves asking the user about the values of consecutive fields turned out to be
uncomfortable. The user was constantly losing context in which the currently filled field
existed. He/she was also unable to determine at what stage of the process he/she currently
is and when the process will be completed. In addition, the inability to go back in the
process of form filling made the solution unacceptable.
These problems resulted in a departure from the dialogue based approach to a more natural
way, based on the form view, in which the user can freely choose the order in which he/she
completes the form, and freely modify the contents of already completed parts. In this
prototype the software tries to pre-fill the largest possible part of the form, at the same time
giving the user the right to accept or change the suggested values. This approach has
significantly increased the comfort of working with the software, which no longer imposes
the schema of work with the form and brings its action to the role of an assistant. It should
be noted that the change in the interaction has not changed the idea of the forms module
and its architecture.
The operation rules of the assisted filling based on the form view will be described by
examples. The following is a series of screenshots of a working forms module.

Fig. 7. An empty form.

Figure 7 presents a blank form at the first run. The form is used to update the address of a
system user. A user profile does not contain any data yet because no form has been
completed so far, so all fields are empty.
Figure 8 shows the same form after the introduction of sample data. After submitting the
form to the system, the data will be saved in the user’s ontoprofile. Their meaning will be
stored as metadata that will come from the form fields from which they originate.
Figure 9 shows a re-run of the forms module. In this case, the software was able to retrieve
data from ontoprofile and attribute it to the form according to their meaning. As you can
see, it is so accurate that the form no longer requires any interaction with the user. In
addition, the software was able to create objects representing labels of the identity and
address data and place them in dropdown boxes located below the sections headers. This
enables the user to select alternative proposals. The lists also allow to select an empty
position which deletes the contents of each field in the section.
Figure 10 represents a situation in which the user has deleted the contents of the form fields
and introduced the new values of personal data. In an attempt to minimize the number of
necessary interactions, the software suggests him/her an existing address value stored from
a previous interaction. The user can choose the proposed address or enter new values.

Fig. 8.A fully filled form.

Assisted form filling 53

in an ontology which allows to move data between different forms using common concepts
defined in the shared data ontologies.

3.2. The form view based version
The dialogue based version of the forms module described in the previous chapter is an
initial prototype that enabled to verify the validity of the approach and demonstrated the
ability to achieve the stated goals. From the point of view of ergonomics, however, the use
of the prototype proved to be inadequate. The assisted form filling based on a dialogue
which involves asking the user about the values of consecutive fields turned out to be
uncomfortable. The user was constantly losing context in which the currently filled field
existed. He/she was also unable to determine at what stage of the process he/she currently
is and when the process will be completed. In addition, the inability to go back in the
process of form filling made the solution unacceptable.
These problems resulted in a departure from the dialogue based approach to a more natural
way, based on the form view, in which the user can freely choose the order in which he/she
completes the form, and freely modify the contents of already completed parts. In this
prototype the software tries to pre-fill the largest possible part of the form, at the same time
giving the user the right to accept or change the suggested values. This approach has
significantly increased the comfort of working with the software, which no longer imposes
the schema of work with the form and brings its action to the role of an assistant. It should
be noted that the change in the interaction has not changed the idea of the forms module
and its architecture.
The operation rules of the assisted filling based on the form view will be described by
examples. The following is a series of screenshots of a working forms module.

Fig. 7. An empty form.

Figure 7 presents a blank form at the first run. The form is used to update the address of a
system user. A user profile does not contain any data yet because no form has been
completed so far, so all fields are empty.
Figure 8 shows the same form after the introduction of sample data. After submitting the
form to the system, the data will be saved in the user’s ontoprofile. Their meaning will be
stored as metadata that will come from the form fields from which they originate.
Figure 9 shows a re-run of the forms module. In this case, the software was able to retrieve
data from ontoprofile and attribute it to the form according to their meaning. As you can
see, it is so accurate that the form no longer requires any interaction with the user. In
addition, the software was able to create objects representing labels of the identity and
address data and place them in dropdown boxes located below the sections headers. This
enables the user to select alternative proposals. The lists also allow to select an empty
position which deletes the contents of each field in the section.
Figure 10 represents a situation in which the user has deleted the contents of the form fields
and introduced the new values of personal data. In an attempt to minimize the number of
necessary interactions, the software suggests him/her an existing address value stored from
a previous interaction. The user can choose the proposed address or enter new values.

Fig. 8.A fully filled form.

Engineering the Computer Science and IT54

Fig. 9. Second run of the forms module.

Fig. 10. Changing the data during a second run of the forms module.

Fig. 11. The third launch of the form module.

Figure 11 demonstrates the third launch of the form module. In this case, the software found
two objects with the meaning matching to the "Applicant", and therefore allowed the user to
select from two proposals.

Fig. 12. Matching data to a different form.

In Figure 12 there is a different form launched for the first time. The user’s ontoprofile
already includes data gathered during the processing of earlier forms, which can be used in
assisted filling. It should be noted that although the form shown in Figure 12 is different
from the one you saw in the previous figures, the semantic description of the data and forms
made it possible to match the correct data to the corresponding fields and sections of the
form. Such a solution makes it possible to transfer data between forms if only they are
assigned the same meaning.

Assisted form filling 55

Fig. 9. Second run of the forms module.

Fig. 10. Changing the data during a second run of the forms module.

Fig. 11. The third launch of the form module.

Figure 11 demonstrates the third launch of the form module. In this case, the software found
two objects with the meaning matching to the "Applicant", and therefore allowed the user to
select from two proposals.

Fig. 12. Matching data to a different form.

In Figure 12 there is a different form launched for the first time. The user’s ontoprofile
already includes data gathered during the processing of earlier forms, which can be used in
assisted filling. It should be noted that although the form shown in Figure 12 is different
from the one you saw in the previous figures, the semantic description of the data and forms
made it possible to match the correct data to the corresponding fields and sections of the
form. Such a solution makes it possible to transfer data between forms if only they are
assigned the same meaning.

Engineering the Computer Science and IT56

4. The acceleration measurements of assisted form filling processes

The measurements of acceleration of assisted form filling processes were made on the two
forms shown earlier and on a more complex form shown in Figure 13. The measurements
allowed to estimate the degree of acceleration of the process of assisted form filling in
relation to the time required to fill out the forms without support.

Fig. 13. A complex form [own].

4.1. The estimation of maximal acceleration
To estimate the maximum acceleration it was required to construct test scenarios involving
the best (fastest) and worst (the most interaction intensive) processes of filling in the forms.
For this purpose, we constructed the following test cases:

 T1 – the user manually completes all fields (the ontoprofile is empty) - requires a
large amount of interactions (key presses) because, due to the lack of data, the
assisted filling functionality is not available;

 T2 - the user accepts all proposed values of the fields making up only those which
are missing - this case is optimal;

 T3 - the user deletes all proposed fields and brings his/her own values - the worst
case because, apart from entering the data, it is necessary to delete already
suggested values;

 T4 - for each section the user selects a proposed value from the list - it is an almost
optimal case but most often it appears while using a module.

Before we began to measure real acceleration of assisted form filling processes we had
estimated the maximum possible accelerations. The estimates were made by counting the
number of interactions (clicks and key presses) required to fill each form. This quantity was
obtained by counting all actions (filling in the fields, selecting a value from the list, etc.)
necessary to complete the case at the optimal test conditions, and then by multiplying them
by the appropriate weight of each action. We defined the following actions:

 approval of the form = 1 interaction (a mouse-click on the button);
 selecting a proposed field or section value from the list = 2 interactions (a click on a

dropdown list unroll button and a click on the selected item);
 filling in a field = 7 interactions (6 key presses corresponding to the average length

of words in the Polish language and a tab key press to make a transition to the next
field).

Test case Number of interactions

Internal

Application
Address

Form
Application for copy

of Birth Act

T1 22 43 78

T2 8 1 1

T3 24 45 82

T4 10 3 12

Average
acceleration 2,59 29,33 43,33

Table 1. Estimated maximum acceleration of the process of filling in the forms using the
forms module [own].

Table 1 presents the estimated peak acceleration of the form filling processes. As you can
see, these estimates are very high and the most complex form called Application for copy of
Birth Act can be traced up to even 40-times here. In addition, it can be seen that the

Assisted form filling 57

4. The acceleration measurements of assisted form filling processes

The measurements of acceleration of assisted form filling processes were made on the two
forms shown earlier and on a more complex form shown in Figure 13. The measurements
allowed to estimate the degree of acceleration of the process of assisted form filling in
relation to the time required to fill out the forms without support.

Fig. 13. A complex form [own].

4.1. The estimation of maximal acceleration
To estimate the maximum acceleration it was required to construct test scenarios involving
the best (fastest) and worst (the most interaction intensive) processes of filling in the forms.
For this purpose, we constructed the following test cases:

 T1 – the user manually completes all fields (the ontoprofile is empty) - requires a
large amount of interactions (key presses) because, due to the lack of data, the
assisted filling functionality is not available;

 T2 - the user accepts all proposed values of the fields making up only those which
are missing - this case is optimal;

 T3 - the user deletes all proposed fields and brings his/her own values - the worst
case because, apart from entering the data, it is necessary to delete already
suggested values;

 T4 - for each section the user selects a proposed value from the list - it is an almost
optimal case but most often it appears while using a module.

Before we began to measure real acceleration of assisted form filling processes we had
estimated the maximum possible accelerations. The estimates were made by counting the
number of interactions (clicks and key presses) required to fill each form. This quantity was
obtained by counting all actions (filling in the fields, selecting a value from the list, etc.)
necessary to complete the case at the optimal test conditions, and then by multiplying them
by the appropriate weight of each action. We defined the following actions:

 approval of the form = 1 interaction (a mouse-click on the button);
 selecting a proposed field or section value from the list = 2 interactions (a click on a

dropdown list unroll button and a click on the selected item);
 filling in a field = 7 interactions (6 key presses corresponding to the average length

of words in the Polish language and a tab key press to make a transition to the next
field).

Test case Number of interactions

Internal

Application
Address

Form
Application for copy

of Birth Act

T1 22 43 78

T2 8 1 1

T3 24 45 82

T4 10 3 12

Average
acceleration 2,59 29,33 43,33

Table 1. Estimated maximum acceleration of the process of filling in the forms using the
forms module [own].

Table 1 presents the estimated peak acceleration of the form filling processes. As you can
see, these estimates are very high and the most complex form called Application for copy of
Birth Act can be traced up to even 40-times here. In addition, it can be seen that the

Engineering the Computer Science and IT58

acceleration increases with the complexity of the form (Figure 14). This is due to the fact that
with an increase in the nesting of sections of a form the efficiency of the process increases
too, because it is possible to suggest values of the whole form tree branches.

0
5

10
15
20
25
30
35
40
45
50

Internal Application Address Form Application for
copy of Birth Act

Es
tim

at
ed

 a
cc

el
er

at
io

n
ra

tio

Fig. 14. Estimated acceleration of the process of filling in the form in relation to the degree of
complexity, with the use of the module forms [own].

To highlight the difference of the solution, we estimated the acceleration of the processes of
filling the same forms with the use of the functionality available in the Firefox 3 browser. In
this case, the following events were recognized as actions:

 approval of the form = 1 interaction (a mouse-click on the button);
 selecting the proposed value for a field = 3 interactions (typing the first letter which

activates the auto complete option, a click of the mouse selecting a proposed value,
transition to the next field with a tab key press);

 filling in a field = 7 interactions (6 presses of the keys corresponding to the average
length of words in the Polish language and a tab key press to make the transition to
the next field).

Table 2 presents the results of the calculation of the estimated acceleration for specific test
cases. The acceleration growth as a function of the complexity of a form is indicated in
figure 15.

Test case Number of interactions

 Internal Application
Address

Form
Application for copy of

Birth Act
T1 22 43 78
T2 10 19 34
T3 22 45 82
T4 10 19 34

Average
acceleration 2,20 2,32 2,35

Table 2. Estimated maximum acceleration of the process of filling in the forms using the
mechanism available in the Firefox 3 browser [own].

2,10

2,15

2,20

2,25

2,30

2,35

2,40

Internal Application Address Form Application for copy of
Birth Act

Es
tim

at
ed

 a
cc

el
er

at
io

n
ra

tio

Fig. 15. Estimated acceleration of the process of filling in the form in relation to the degree
of complexity, using the mechanism available in the Firefox 3 browser [own].

As you can see, the difference between the estimated acceleration offered by the forms
module as compared to the one offered by Firefox is dramatic as the former exceeds the
latter 20-times. In addition, it should be noted that the solution offered in the browser does
not show a significant growth of acceleration with the increasing degree of complexity of the
form (only about 5%).
In the following section we present the results of tests performed on the acceleration of
assisted form filling with the users’ participation. The results will verify the above estimates.

4.2. Acceleration measurements with the users’ participation
After having estimated the maximum acceleration of the forms completion, actual
measurements were made with test users. The group consisted of four people. The first

Assisted form filling 59

acceleration increases with the complexity of the form (Figure 14). This is due to the fact that
with an increase in the nesting of sections of a form the efficiency of the process increases
too, because it is possible to suggest values of the whole form tree branches.

0
5

10
15
20
25
30
35
40
45
50

Internal Application Address Form Application for
copy of Birth Act

Es
tim

at
ed

 a
cc

el
er

at
io

n
ra

tio

Fig. 14. Estimated acceleration of the process of filling in the form in relation to the degree of
complexity, with the use of the module forms [own].

To highlight the difference of the solution, we estimated the acceleration of the processes of
filling the same forms with the use of the functionality available in the Firefox 3 browser. In
this case, the following events were recognized as actions:

 approval of the form = 1 interaction (a mouse-click on the button);
 selecting the proposed value for a field = 3 interactions (typing the first letter which

activates the auto complete option, a click of the mouse selecting a proposed value,
transition to the next field with a tab key press);

 filling in a field = 7 interactions (6 presses of the keys corresponding to the average
length of words in the Polish language and a tab key press to make the transition to
the next field).

Table 2 presents the results of the calculation of the estimated acceleration for specific test
cases. The acceleration growth as a function of the complexity of a form is indicated in
figure 15.

Test case Number of interactions

 Internal Application
Address

Form
Application for copy of

Birth Act
T1 22 43 78
T2 10 19 34
T3 22 45 82
T4 10 19 34

Average
acceleration 2,20 2,32 2,35

Table 2. Estimated maximum acceleration of the process of filling in the forms using the
mechanism available in the Firefox 3 browser [own].

2,10

2,15

2,20

2,25

2,30

2,35

2,40

Internal Application Address Form Application for copy of
Birth Act

Es
tim

at
ed

 a
cc

el
er

at
io

n
ra

tio

Fig. 15. Estimated acceleration of the process of filling in the form in relation to the degree
of complexity, using the mechanism available in the Firefox 3 browser [own].

As you can see, the difference between the estimated acceleration offered by the forms
module as compared to the one offered by Firefox is dramatic as the former exceeds the
latter 20-times. In addition, it should be noted that the solution offered in the browser does
not show a significant growth of acceleration with the increasing degree of complexity of the
form (only about 5%).
In the following section we present the results of tests performed on the acceleration of
assisted form filling with the users’ participation. The results will verify the above estimates.

4.2. Acceleration measurements with the users’ participation
After having estimated the maximum acceleration of the forms completion, actual
measurements were made with test users. The group consisted of four people. The first

Engineering the Computer Science and IT60

three had no previous contact with the tested software, while the fourth was one of its
developers, thus an advanced user. The scenario was to perform four test cases described
earlier for each of the three sample forms. To reduce the size of the table we changed the
names of the forms to:

 F1 - Internal Application
 F2 - Address Form
 F3 - Application for Copy of Birth Act.

We measured the time the users took to fill out the forms in the specific test cases. The
acceleration of the form filling processes has been defined as the average ratio of the best to
the worst cases. The acceleration was calculated using the formula below, where a is the
acceleration of the process of filling a specific form, and tn is the time of completion of the n-
th test case.

4/)(
4

3

2

3

4

1

2

1

T

T

T

T

T

T

T

T

t
t

t
t

t
t

t
ta

Then we calculated the average acceleration for each user (Table 3). At this point, you may
notice a significant difference between the acceleration achieved by the new users and the
value of acceleration achieved by the advanced user (User 4) which was two times higher.
For this reason, the fourth user’s samples were considered abnormal and excluded from
further calculations.
Finally, the arithmetic means of accelerations were calculated for each form (on the basis of
the results of users 1, 2 and 3) as well as the arithmetic mean of acceleration for all forms
which is 3.36 times.
Then we measured the accelerations of form filling processes using mechanisms available in
Firefox 3. Because of a different mechanism, the test cases T3 and T4 have become
synonymous with cases T1 and T2 (the same scenario of interaction) and therefore have
been omitted. The results of the measurements can be found in Table 4.
Then we calculated the arithmetic means of the acceleration for each form, and the
arithmetic mean for all forms, which was 1.13 times.

 Sc
en

ar
io

Ti
m

e
ne

ed
ed

 to
 fi

ll
in

 a
 fo

rm
(in

 s
ec

on
ds

)
A

ve
ra

ge

ac
ce

le
ra

tio
n

fo
r

us
er

s 1
,2

,3

U
se

r 1

U
se

r 2

U
se

r 3

U
se

r 4

Ti
m

e
A

cc
el

er
at

io
n

Ti
m

e
A

cc
el

er
at

io
n

Ti
m

e
A

cc
el

er
at

io
n

Ti
m

e
A

cc
el

er
at

io
n

A

ve
ra

ge

A

ve
ra

ge

A

ve
ra

ge

A

ve
ra

ge

A

ve
ra

ge

F1
-T

1
12

1,
76

3,
78

46

1,
47

3,
05

25

2,
86

3,
26

10

1,
75

6,
68

2,
03

3,
36

F1
-T

2
10

24

14

6

F1
-T

3
17

23

55

14

F1
-T

4
7

23

14

8

F2
-T

1
22

5,
96

51

3,
94

35

3,
82

18

10
,9

3
4,

57

F2
-T

2
4

16

11

1

F2
-T

3
31

46

62

23

F2
-T

4
5

10

15

15

F3
-T

1
54

3,
61

11
0

3,
74

68

3,
11

49

7,
35

3,

48

F3
-T

2
16

38

24

5

F3
-T

3
65

13

1
78

52

F3
-T

4
17

28

23

11

 Ta

bl
e

3.
 T

he
 re

su
lts

 o
f t

he
 m

ea
su

re
m

en
ts

 o
f a

cc
el

er
at

io
n

of
 th

e
as

si
st

ed
 fo

rm
 fi

lli
ng

 u
si

ng
 th

e
fo

rm
s

m
od

ul
e

[o
w

n]
.

Assisted form filling 61

three had no previous contact with the tested software, while the fourth was one of its
developers, thus an advanced user. The scenario was to perform four test cases described
earlier for each of the three sample forms. To reduce the size of the table we changed the
names of the forms to:

 F1 - Internal Application
 F2 - Address Form
 F3 - Application for Copy of Birth Act.

We measured the time the users took to fill out the forms in the specific test cases. The
acceleration of the form filling processes has been defined as the average ratio of the best to
the worst cases. The acceleration was calculated using the formula below, where a is the
acceleration of the process of filling a specific form, and tn is the time of completion of the n-
th test case.

4/)(
4

3

2

3

4

1

2

1

T

T

T

T

T

T

T

T

t
t

t
t

t
t

t
ta

Then we calculated the average acceleration for each user (Table 3). At this point, you may
notice a significant difference between the acceleration achieved by the new users and the
value of acceleration achieved by the advanced user (User 4) which was two times higher.
For this reason, the fourth user’s samples were considered abnormal and excluded from
further calculations.
Finally, the arithmetic means of accelerations were calculated for each form (on the basis of
the results of users 1, 2 and 3) as well as the arithmetic mean of acceleration for all forms
which is 3.36 times.
Then we measured the accelerations of form filling processes using mechanisms available in
Firefox 3. Because of a different mechanism, the test cases T3 and T4 have become
synonymous with cases T1 and T2 (the same scenario of interaction) and therefore have
been omitted. The results of the measurements can be found in Table 4.
Then we calculated the arithmetic means of the acceleration for each form, and the
arithmetic mean for all forms, which was 1.13 times.

 Sc
en

ar
io

Ti
m

e
ne

ed
ed

 to
 fi

ll
in

 a
 fo

rm
(in

 s
ec

on
ds

)
A

ve
ra

ge

ac
ce

le
ra

tio
n

fo
r

us
er

s 1
,2

,3

U
se

r 1

U
se

r 2

U
se

r 3

U
se

r 4

Ti
m

e
A

cc
el

er
at

io
n

Ti
m

e
A

cc
el

er
at

io
n

Ti
m

e
A

cc
el

er
at

io
n

Ti
m

e
A

cc
el

er
at

io
n

A

ve
ra

ge

A

ve
ra

ge

A

ve
ra

ge

A

ve
ra

ge

A

ve
ra

ge

F1
-T

1
12

1,
76

3,
78

46

1,
47

3,
05

25

2,
86

3,
26

10

1,
75

6,
68

2,
03

3,
36

F1
-T

2
10

24

14

6

F1
-T

3
17

23

55

14

F1
-T

4
7

23

14

8

F2
-T

1
22

5,
96

51

3,
94

35

3,
82

18

10
,9

3
4,

57

F2
-T

2
4

16

11

1

F2
-T

3
31

46

62

23

F2
-T

4
5

10

15

15

F3
-T

1
54

3,
61

11
0

3,
74

68

3,
11

49

7,
35

3,

48

F3
-T

2
16

38

24

5

F3
-T

3
65

13

1
78

52

F3
-T

4
17

28

23

11

 Ta

bl
e

3.
 T

he
 re

su
lts

 o
f t

he
 m

ea
su

re
m

en
ts

 o
f a

cc
el

er
at

io
n

of
 th

e
as

si
st

ed
 fo

rm
 fi

lli
ng

 u
si

ng
 th

e
fo

rm
s

m
od

ul
e

[o
w

n]
.

Engineering the Computer Science and IT62

Sc
en

ar
io

Ti

m
e

ne
ed

ed
 to

 fi
ll

in
 a

 fo
rm

(in
 s

ec
on

ds
)

A
ve

ra
ge

ac

ce
le

ra
tio

n
U

se
r 1

U

se
r 2

U

se
r 3

U

se
r 4

Ti
m

e
A

cc
.

A
vg

.
Ti

m
e

A
cc

.
A

vg
..

Ti
m

e
A

cc
.

A
vg

.
Ti

m
e

A
cc

.
A

vg
.

F1
-T

1
12

1,

20

1,
17

46

0,
90

1,
04

25

1,
14

1,
10

10

1,
43

1,
21

1,

13

F1
-T

2
10

51

22

7

F2
-T

1
22

1,

22

51

1,
11

35

1,

06

18

1,
06

F2

-T
2

18

46

33

17

F3
-T

1
54

1,

10

11
0

1,
11

68

1,

11

49

1,
14

F3

-T
2

49

99

61

43

 Ta
bl

e
4.

 T
he

 m
ea

su
re

m
en

ts
 o

f a
cc

el
er

at
io

n
us

in
g

a
fo

rm
-fi

lli
ng

 m
ec

ha
ni

sm
 fo

r F
ir

ef
ox

 3
[o

w
n]

.

4.3. Analysis of results
The analysis of estimates let us assume that the acceleration processes of assisted form
filling will grow more or less linearly with the increase of the forms complexity. This fact
has not been confirmed by the results of tests presented in Figure 16.

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

4,00

4,50

5,00

F1 - Internal
Application

F2 - Address Form F3 - Application for
Copy of Birth Act

M
ea

su
re

d
ac

ce
le

ra
tio

n
ra

tio

Fig. 16. The measured average acceleration of the process of assisted form filling in relation
to the degree of complexity of forms [own].

The dramatic difference between the estimated and the measured acceleration comes from
the time the users spent on analyzing the structure and meaning of forms being filled, which
was not included in the estimates. The time needed to analyze the meaning and structure of
forms is also responsible for the noticeable decline of acceleration of processes with the
increase in the form complexity, which was depicted in the figure 16. It is reasonable to
assume that the two trends are going to cancel each other out resulting in roughly constant
acceleration. However, it is necessary to perform tests with more users and more diverse
forms to determine which trend has a dominating influence on the final value of the
acceleration.
Despite the need for further research we can already predict some consequences. In case of
users with well-developed motor skills the dominant factor will be the time they spend on
the analyzing the meaning of the form. In such cases, the benefit associated with
accelerating the process of form filling will be small, and the usefulness of this solution will
be considered only in terms of easy use.
Another extremely different group will consist of people with low motor skills, for whom
the main concern will be to type in the field values using the keyboard. They can be both
disabled people and novice computer users who have not yet dealt with rapid typing. For
such people the dominant factor will be the time taken to fill in individual fields. In such
cases, the mechanism of assisted form filling will provide a significant time benefit and a
significant increase in the convenience of the software use.

Assisted form filling 63

Sc
en

ar
io

Ti

m
e

ne
ed

ed
 to

 fi
ll

in
 a

 fo
rm

(in
 s

ec
on

ds
)

A
ve

ra
ge

ac

ce
le

ra
tio

n
U

se
r 1

U

se
r 2

U

se
r 3

U

se
r 4

Ti
m

e
A

cc
.

A
vg

.
Ti

m
e

A
cc

.
A

vg
..

Ti
m

e
A

cc
.

A
vg

.
Ti

m
e

A
cc

.
A

vg
.

F1
-T

1
12

1,

20

1,
17

46

0,
90

1,
04

25

1,
14

1,
10

10

1,
43

1,
21

1,

13

F1
-T

2
10

51

22

7

F2
-T

1
22

1,

22

51

1,
11

35

1,

06

18

1,
06

F2

-T
2

18

46

33

17

F3
-T

1
54

1,

10

11
0

1,
11

68

1,

11

49

1,
14

F3

-T
2

49

99

61

43

 Ta
bl

e
4.

 T
he

 m
ea

su
re

m
en

ts
 o

f a
cc

el
er

at
io

n
us

in
g

a
fo

rm
-fi

lli
ng

 m
ec

ha
ni

sm
 fo

r F
ir

ef
ox

 3
[o

w
n]

.

4.3. Analysis of results
The analysis of estimates let us assume that the acceleration processes of assisted form
filling will grow more or less linearly with the increase of the forms complexity. This fact
has not been confirmed by the results of tests presented in Figure 16.

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

4,00

4,50

5,00

F1 - Internal
Application

F2 - Address Form F3 - Application for
Copy of Birth Act

M
ea

su
re

d
ac

ce
le

ra
tio

n
ra

tio

Fig. 16. The measured average acceleration of the process of assisted form filling in relation
to the degree of complexity of forms [own].

The dramatic difference between the estimated and the measured acceleration comes from
the time the users spent on analyzing the structure and meaning of forms being filled, which
was not included in the estimates. The time needed to analyze the meaning and structure of
forms is also responsible for the noticeable decline of acceleration of processes with the
increase in the form complexity, which was depicted in the figure 16. It is reasonable to
assume that the two trends are going to cancel each other out resulting in roughly constant
acceleration. However, it is necessary to perform tests with more users and more diverse
forms to determine which trend has a dominating influence on the final value of the
acceleration.
Despite the need for further research we can already predict some consequences. In case of
users with well-developed motor skills the dominant factor will be the time they spend on
the analyzing the meaning of the form. In such cases, the benefit associated with
accelerating the process of form filling will be small, and the usefulness of this solution will
be considered only in terms of easy use.
Another extremely different group will consist of people with low motor skills, for whom
the main concern will be to type in the field values using the keyboard. They can be both
disabled people and novice computer users who have not yet dealt with rapid typing. For
such people the dominant factor will be the time taken to fill in individual fields. In such
cases, the mechanism of assisted form filling will provide a significant time benefit and a
significant increase in the convenience of the software use.

Engineering the Computer Science and IT64

However, the largest group of users will probably be represented by those with the average
motor skills for whom the acceleration of the form filling processes in the order of three to
four times is sufficiently good.
In addition, it should be noted that, despite the difference between the estimated and the
measured acceleration of assisted form filling processes, the solution presented by the forms
module obtains significantly better results (by order of magnitude) than the mechanism
available in web browsers, which at the efficiency of 10-20% puts the solution into question.

5. Conclusions

The application of semantic technologies allowed to implement working software that
assists the user in filling any electronic forms. As both research and implementation are still
in progress, the usefulness of this solution was based only on approximate estimates and on
several studies involving the users, which does not allow a thorough evaluation. The
outcome of the work, however, allows us to believe that the chosen direction has good
chances of success.

6. References

Berners-Lee T., Hendler J., Lassila O., The semantic web. Scientific American Magazine,
May, 2001.

Forgy C., On the efficient implementation of production systems. Carneggie-Mellon
University, 1979.

Grosof B., Horrocks I., Volz R., Decker S., Description Logic Programs: Combining Logic
Programs with Description Logic .2003, http://www.cs.man.ac.uk/~horrocks/
Publications/download/2003/p117-grosof.pdf, 2009-01.

Horn A., On sentences which are true of direct unions of algebras. Journal of Symbolic
Logic, 16, 14-21, 1951.

OWL Web Ontology Language Guide. W3C, 2004, http://www.w3.org/TR/owl-guide,
2009-01.

OWL Web Ontology Language Overview. W3C, 2004, http://www.w3.org/TR/owl-
features, 2009-01.

OWL Web Ontology Language Reference. W3C, 2004, http://www.w3.org/TR/owl-ref,
2009-01.

OWL-S: Semantic Markup for Web Services, W3C, 2004,
http://www.w3.org/Submission/OWL-S, 2009-01.

OWL Web Ontology Language Semantics and Abstract Syntax. W3C, 2004,
 http://www.w3.org/TR/owl-semantics, 2009-01.
Resource Description Framework (RDF); Concepts and Abstract Syntax. W3C, 2004,
 http://www.w3.org/TR/rdf-concepts, 2009-01.
RDF Primer. W3C, 2004, http://www.w3.org/TR/rdf-primer, 2009-01.
RDF Vocabulary Description Language 1.0: RDF Schema. W3C, 2004,
 http://www.w3.org/TR/rdf-schema, 2009-10.
RDF Semantics. W3C, 2004, http://www.w3.org/TR/rdf-mt, 2009-01.
Extensible Markup Language (XML) 1.0 (Fourth Edition). W3C, 2006,
 http://www.w3.org/XML, 2009-01.

Transatlantic Engineering Programs: An Experience in International Cooperation 65

Transatlantic Engineering Programs: An Experience in International
Cooperation

Andrew J. Kornecki, Wojciech Grega, Thomas B. Hilburn, Jean-Marc Thririet, Miroslav
Sveda, Ondrei Rysavy and Adam Pilat

X

Transatlantic Engineering Programs:
An Experience in International Cooperation

Andrew J. Kornecki1, Wojciech Grega2, Thomas B. Hilburn1,

Jean-Marc Thririet3, Miroslav Sveda4, Ondrei Rysavy4 and Adam Pilat2
1 Embry Riddle Aeronautical University

USA
2 University of Mining and Metallurgy

Poland
3 Universite Joseph Fourier

France
4 Brno University of Technology

Czech Republic

1. Introduction
Computing curricula are designed to promote the education of engineers and scientists
using a sound theoretical basis and practices useful in the job market. The major objective of
a well established curriculum is to provide a rigorous educational background, while giving
students tools for future life-long learning. Typically, the faculty experience allows them to
design curricula considering the fundamental concepts and basic principles of their
discipline. However, feedback from future employers of graduates is critical to the design of
modern curriculum fully matching the continuously changing job market demands.

Real-Time Software-Intensive Control systems (RSIC) are often safety-critical, and their
reliability is paramount. There is an increasing importance and demand for efficient
development of high quality RSIC systems. No other technology domain has experienced
progress with more impact on engineering education. To keep up with this progress,
engineering curricula require continuous modifications to prepare students for the
technological challenges of the modern workplace. Rapid progress of computing
technologies is the major reason programs like electronics, computer and software
engineering, robotics, and control engineering need continuous updates.

An additional issue is the internationalization and globalization of complex systems
development. Several large companies, specifically in the aerospace industry, engage
international teams working in geographically diverse locations often using diverse
standards, guidelines, and processes. It is advantageous for future engineers to understand
the implications of international collaboration and to appreciate cultural differences.

5

Engineering the Computer Science and IT66

The findings presented in this paper are results of a two-year long project called ILERT
(International Learning Environment for Real-Time Software Intensive Control Systems),
supported by the American Fund for Improvement of Postsecondary Education (FIPSE) and
the European Commission, and executed by a consortium of one American and three
European universities: Embry Riddle Aeronautical University (ERAU - Daytona Beach, FL,
USA), AGH University of Science and Technology (AGH - Krakow, Poland), University of
Technology (BUT - Brno, Czech Republic), and Université Joseph Fourier (UJF - Grenoble,
France). The key documents resulting from the project are located at the project website
(ILERT, 2009). This paper describes a methodology for the creation of a multinational
engineering program, designed to produce graduates capable of working efficiently in
multidisciplinary teams engaged in international collaboration on industrial RSIC projects --
projects that additionally may require conformance to specific standards mandated by
regulatory authorities. Related issues explored in the ILERT project were identification of
learning objectives and outcomes, analysis of credit transfer and program assessment, and
development of a RSIC curriculum framework that could be easily adapted in diverse
engineering curricula with different program emphases like software, control,
communication, and digital systems.

The paper is structured as follows. We first describe the methodology leading to creation of
an international engineering program based on the ILERT project experiences. The
subsequent sections describe the components of the methodology: the identification of the
curriculum learning objectives and outcomes, program assessment, student mobility and
credit transfer, and the proposed curriculum framework.

2. Methodology
The development and implementation of international transatlantic engineering curricula
was conducted in several phases (Kornecki 2009). The Atlantis-ILERT project defined three
phases: Preparatory Phase, Research Phase, and Pilot Implementation Phase (see Fig. 1). The
fourth phase (Long Term Application) started later as a separate project: Atlantis–DeSIRE^2.

 searching for suitable
partner institutions

 exploration of potential for
financial support for the
research phase

Research

Pilot
implementation

 formalizing the activities
 industrial surveys
 defining learning objectives
 developing the curricula

framework

Preparatory

outputs:

 proposal of curricula
 analysis of credit transfer

methods
 accreditation conditions
 memoranda of understanding

actions:

 initial consortium
 focus areas and the added

value

 a study on transatlantic exchange
 strategic decision: what kind of

exchange programmes the
consortium partners are ready to
develop?

 the experience with respect to
technical challenges,
communication within the
assigned groups, leveraging the
different educational
backgrounds, technology transfer
to support new courses

 experimental courses with
limited student engagement

 evaluation
 exploration of financial

support for application

Input
procedures

Exit
procedures

Long Term
Application

Implementation

Fig. 1. Atlantis-ILERT Project Methodology

2.1 Preparatory Phase
The Preparatory Phase started with informal discussion between faculty of academic
institutions of both sides of Atlantic about advantages of international relationships. The
following identify the activities of this phase:
 Inventory of international informal personal contacts already existing in institutions.
 Brainstorming on the type of activities to be engaged and potential partners, defining

goals and priorities (like curriculum-related cooperation and international exchanges of
the faculty expertise).

 Proposing an initial consortium of universities offering expertise in the similar lines of
engineering education. A common thread within the programs at all the partner
institutions must be identified.

Transatlantic Engineering Programs: An Experience in International Cooperation 67

The findings presented in this paper are results of a two-year long project called ILERT
(International Learning Environment for Real-Time Software Intensive Control Systems),
supported by the American Fund for Improvement of Postsecondary Education (FIPSE) and
the European Commission, and executed by a consortium of one American and three
European universities: Embry Riddle Aeronautical University (ERAU - Daytona Beach, FL,
USA), AGH University of Science and Technology (AGH - Krakow, Poland), University of
Technology (BUT - Brno, Czech Republic), and Université Joseph Fourier (UJF - Grenoble,
France). The key documents resulting from the project are located at the project website
(ILERT, 2009). This paper describes a methodology for the creation of a multinational
engineering program, designed to produce graduates capable of working efficiently in
multidisciplinary teams engaged in international collaboration on industrial RSIC projects --
projects that additionally may require conformance to specific standards mandated by
regulatory authorities. Related issues explored in the ILERT project were identification of
learning objectives and outcomes, analysis of credit transfer and program assessment, and
development of a RSIC curriculum framework that could be easily adapted in diverse
engineering curricula with different program emphases like software, control,
communication, and digital systems.

The paper is structured as follows. We first describe the methodology leading to creation of
an international engineering program based on the ILERT project experiences. The
subsequent sections describe the components of the methodology: the identification of the
curriculum learning objectives and outcomes, program assessment, student mobility and
credit transfer, and the proposed curriculum framework.

2. Methodology
The development and implementation of international transatlantic engineering curricula
was conducted in several phases (Kornecki 2009). The Atlantis-ILERT project defined three
phases: Preparatory Phase, Research Phase, and Pilot Implementation Phase (see Fig. 1). The
fourth phase (Long Term Application) started later as a separate project: Atlantis–DeSIRE^2.

 searching for suitable
partner institutions

 exploration of potential for
financial support for the
research phase

Research

Pilot
implementation

 formalizing the activities
 industrial surveys
 defining learning objectives
 developing the curricula

framework

Preparatory

outputs:

 proposal of curricula
 analysis of credit transfer

methods
 accreditation conditions
 memoranda of understanding

actions:

 initial consortium
 focus areas and the added

value

 a study on transatlantic exchange
 strategic decision: what kind of

exchange programmes the
consortium partners are ready to
develop?

 the experience with respect to
technical challenges,
communication within the
assigned groups, leveraging the
different educational
backgrounds, technology transfer
to support new courses

 experimental courses with
limited student engagement

 evaluation
 exploration of financial

support for application

Input
procedures

Exit
procedures

Long Term
Application

Implementation

Fig. 1. Atlantis-ILERT Project Methodology

2.1 Preparatory Phase
The Preparatory Phase started with informal discussion between faculty of academic
institutions of both sides of Atlantic about advantages of international relationships. The
following identify the activities of this phase:
 Inventory of international informal personal contacts already existing in institutions.
 Brainstorming on the type of activities to be engaged and potential partners, defining

goals and priorities (like curriculum-related cooperation and international exchanges of
the faculty expertise).

 Proposing an initial consortium of universities offering expertise in the similar lines of
engineering education. A common thread within the programs at all the partner
institutions must be identified.

Engineering the Computer Science and IT68

 Identifying the focus areas in the existing programs of the consortium partners. It was
assumed that the selected courses from the focus areas must constitute a coherent value
added, if selected by exchange students.

 Exploration of potential for financial support for research (including industry funding,
international cooperation programs, international projects, international and national
systems of grants).

The preparatory phase was concluded by formalities leading to establishing of the
consortium of university partners and writing a successful proposal for funding the
described here educational research project.

2.2 Research Phase
The research phase started with the analysis of industry requirements related to graduates
in the proposed domain. The collected data were analyzed and the results were used to help
identify academic program learning objectives and outcomes, thus preparing a base for
creation of a new curriculum framework.

The following steps can be identified in this phase:
 Defining learning objectives and outcomes, developing the curriculum framework,

exploring the partners’ programs commonalities and laboratory infrastructure,
comparing the curriculum content, and analyzing of the educational process
assessment. The existing curricula were reviewed as a way of prioritizing and
integrating the various elements, in order to fulfill the requirements of interdisciplinary
specialization. It should be noted, that the existence of common characteristics does not
imply automatic commonality among the ways in which individual institutions pursue
common educational objectives. Universities often create their own procedures and
methods. By reviewing existing programs and comparing them with industry needs,
this research phase has identified missing topics and topics that could be strengthened.
As the final outcome of this phase, a comprehensive list of courses related to the RSIC
domain offered at all of the partner institutions was compiled.

 Curriculum development started with classifying courses into one of four categories:
General Education (languages, humanities, social science), Math and Science
(mathematics, physics), Basic (required towards the completion of the degree in the
given line of study), and Advanced, which focuses on a selected engineering
specialization. It was critical to identify and agree on the minimal number of contact
hours required to complete the entire engineering program and the percentage of effort
assigned to the four curriculum categories given above. This was followed by a
practical case study adapting selected curricula of partner institutions by including
components of interdisciplinary specialization, thus creating an engineering program
acceptable to all partner organizations.

 Credit transfer and accreditation issues. The development of new curriculum
framework in engineering may in turn require new approaches to their validation and
accreditation. The transfer of credits and grades is a challenging undertaking for
university systems, which are significantly different in Europe and the U.S. Existing
and emerging structures for accreditation, quality control, and credit transfer (such as
the European Credit Transfer and Accumulation Scheme) have been analyzed. It should

be noted that the proposed curriculum units must be reviewed according to ABET
standards (and the applicable standards of Ministry of Higher Education in the
European countries), focusing on the objectives and outcomes of the educational
activity.

 Students’ mobility plan. Based on the developed curricula, a general schedule of
students’ mobility between partners’ institutions was proposed, opening the possibility
of collaborating and enrolling in the courses offered in four partner sites.

 Formalizing the activities included signing formal agreements or memoranda of
understanding, defining responsibilities and structure of communication.

2.3 Pilot Implementation Phase
Agreements between partner institutions, or “memoranda of understanding,” in delivery
and mutual recognition of courses were prepared at the beginning of this phase. During the
pilot implementation phase, the experimental courses were created, instructional material
was developed, and experimental concurrent delivery with limited student engagement was
initialized. The participating students were supervised by coordinators from the partners’
institutions. During this phase, a lot of experience was gained on the technical challenges,
international cooperation, communication within the assigned groups, leveraging the
different educational backgrounds in the interdisciplinary context, technology transfer, and
interactions between international students and staff. The Final Report, including guidelines
for extension of the approach for long-term application, is the most valuable output of this
phase.

An important part of the pilot implementation phase is the analysis of the sources and
mechanisms of financial support for future transatlantic educational collaboration.
Generally, tangible and intangible resources, essential to the success of the project’s future,
must be considered. Tangible resources include finances, facilities, and time. Intangible
resources include will, commitment, and the ability to sustain the effort to conclusion.

This phase can be concluded with important strategic analysis and decision-making: What
kind of exchange programs would the consortium partners be able to develop? Would a
partner institution initiate a dual degree program or develop one or more aspects of a
current program with other international partners? The general goals, including number of
mobility years and the number of mobility students must be decided at this stage.
The selection between single or dual degree programs or other forms of partner institution
engagement should also be made (see Table 1).

2.4 Long Term Application Phase
In the long term application and evaluation phase, internal and external procedures are
developed. The final agreement between partners on credit transfer, accreditation, tuition,
and student selection must be accepted by all partner institutions. The agreement must also
define: responsibility of institution and students, admission requirements, registration
procedures, specific learning agreement form (e.g. one semester course, receives recognition
upon return), tuition waiver, language/culture engagement of the students and
logistic/administration details.

Transatlantic Engineering Programs: An Experience in International Cooperation 69

 Identifying the focus areas in the existing programs of the consortium partners. It was
assumed that the selected courses from the focus areas must constitute a coherent value
added, if selected by exchange students.

 Exploration of potential for financial support for research (including industry funding,
international cooperation programs, international projects, international and national
systems of grants).

The preparatory phase was concluded by formalities leading to establishing of the
consortium of university partners and writing a successful proposal for funding the
described here educational research project.

2.2 Research Phase
The research phase started with the analysis of industry requirements related to graduates
in the proposed domain. The collected data were analyzed and the results were used to help
identify academic program learning objectives and outcomes, thus preparing a base for
creation of a new curriculum framework.

The following steps can be identified in this phase:
 Defining learning objectives and outcomes, developing the curriculum framework,

exploring the partners’ programs commonalities and laboratory infrastructure,
comparing the curriculum content, and analyzing of the educational process
assessment. The existing curricula were reviewed as a way of prioritizing and
integrating the various elements, in order to fulfill the requirements of interdisciplinary
specialization. It should be noted, that the existence of common characteristics does not
imply automatic commonality among the ways in which individual institutions pursue
common educational objectives. Universities often create their own procedures and
methods. By reviewing existing programs and comparing them with industry needs,
this research phase has identified missing topics and topics that could be strengthened.
As the final outcome of this phase, a comprehensive list of courses related to the RSIC
domain offered at all of the partner institutions was compiled.

 Curriculum development started with classifying courses into one of four categories:
General Education (languages, humanities, social science), Math and Science
(mathematics, physics), Basic (required towards the completion of the degree in the
given line of study), and Advanced, which focuses on a selected engineering
specialization. It was critical to identify and agree on the minimal number of contact
hours required to complete the entire engineering program and the percentage of effort
assigned to the four curriculum categories given above. This was followed by a
practical case study adapting selected curricula of partner institutions by including
components of interdisciplinary specialization, thus creating an engineering program
acceptable to all partner organizations.

 Credit transfer and accreditation issues. The development of new curriculum
framework in engineering may in turn require new approaches to their validation and
accreditation. The transfer of credits and grades is a challenging undertaking for
university systems, which are significantly different in Europe and the U.S. Existing
and emerging structures for accreditation, quality control, and credit transfer (such as
the European Credit Transfer and Accumulation Scheme) have been analyzed. It should

be noted that the proposed curriculum units must be reviewed according to ABET
standards (and the applicable standards of Ministry of Higher Education in the
European countries), focusing on the objectives and outcomes of the educational
activity.

 Students’ mobility plan. Based on the developed curricula, a general schedule of
students’ mobility between partners’ institutions was proposed, opening the possibility
of collaborating and enrolling in the courses offered in four partner sites.

 Formalizing the activities included signing formal agreements or memoranda of
understanding, defining responsibilities and structure of communication.

2.3 Pilot Implementation Phase
Agreements between partner institutions, or “memoranda of understanding,” in delivery
and mutual recognition of courses were prepared at the beginning of this phase. During the
pilot implementation phase, the experimental courses were created, instructional material
was developed, and experimental concurrent delivery with limited student engagement was
initialized. The participating students were supervised by coordinators from the partners’
institutions. During this phase, a lot of experience was gained on the technical challenges,
international cooperation, communication within the assigned groups, leveraging the
different educational backgrounds in the interdisciplinary context, technology transfer, and
interactions between international students and staff. The Final Report, including guidelines
for extension of the approach for long-term application, is the most valuable output of this
phase.

An important part of the pilot implementation phase is the analysis of the sources and
mechanisms of financial support for future transatlantic educational collaboration.
Generally, tangible and intangible resources, essential to the success of the project’s future,
must be considered. Tangible resources include finances, facilities, and time. Intangible
resources include will, commitment, and the ability to sustain the effort to conclusion.

This phase can be concluded with important strategic analysis and decision-making: What
kind of exchange programs would the consortium partners be able to develop? Would a
partner institution initiate a dual degree program or develop one or more aspects of a
current program with other international partners? The general goals, including number of
mobility years and the number of mobility students must be decided at this stage.
The selection between single or dual degree programs or other forms of partner institution
engagement should also be made (see Table 1).

2.4 Long Term Application Phase
In the long term application and evaluation phase, internal and external procedures are
developed. The final agreement between partners on credit transfer, accreditation, tuition,
and student selection must be accepted by all partner institutions. The agreement must also
define: responsibility of institution and students, admission requirements, registration
procedures, specific learning agreement form (e.g. one semester course, receives recognition
upon return), tuition waiver, language/culture engagement of the students and
logistic/administration details.

Engineering the Computer Science and IT70

Student spends
abroad

Expected results Formal effects Comments

One semester in
a partner
university

 single diploma in home
institution
 mobility students focus on
an area of concentration not
available at home institution
 experiences related to
cultural immersion

 US student receive
special certificate of
completion of a specific
focus area
 EU student receive
appropriate entry in
their Diploma and the
Supplement identifying
the focus area.

 bilateral agreements
are necessary

Two-three
semesters in the
partner
university

 two diplomas are received
 students may receive a new
specialization, not offered at
single university
 experiences related to
cultural immersion

Dual degree more detailed
bilateral agreements are
necessary
 requires full
validation and
accreditation of learning
programs.
 ethical issue: is it fair
that student receives
two diplomas without
any increase of his
work?

Table 1. Examples Of Final Partner Institution Engagement

The long-term mobility of students includes two cyclic steps: input and implementation
procedures.

2.4.1 Input Procedures
a) Internal Procedures:
 Setting deadlines for the partners’ institutions
 Distributing information on international mobility - to recruit students
 Performing internal selection procedures for applicants from the home university

(eligibility, mandatory orientation, interviews, language skills)
 Performing placement procedures for incoming exchange students:
 Assigning the mentors to incoming students
 Internal selection of the teachers interested to participate in the mobility exchange.

b) External Procedures:
 Exchange information with the partner university on the selection results.
 Identify the courses available for overseas students during the mobility period
 Signing joint learning agreement forms.
 Procedures for practical issues such as housing, insurance, etc.

2.4.2 Implementation Procedures
a) Assistance to the Internal Applicants
 Explaining the program options and site/course selection
 Helping students with the application procedure.

b) Assistance to the External Applicants
 Helping with questions from students/teachers interested in mobility exchange (terms

of exchange, reporting, application process).
 Facilitating mentoring process for incoming students
 Monitoring and reporting the students’ progress

It should be noted that the long-term phase, in addition to continuous evaluation of the
program, must include the exit and evaluation component, where the entire program is
given to critique and scrutiny with the goal to learn the lessons and improve the process.
The components of such evaluation will include the assessment and evaluation of the
individual students at the end of the mobility period and the overall assessment and
evaluation of the mobility exchange.

3. Identification of Learning Objectives and Outcomes
There is a general agreed upon set of non-technical skills and behaviors expected from
engineering school graduates, such as oral and written communications, professional ethics,
team skills, etc. The starting point for designing a specific program curriculum is to identify
the technical knowledge areas and skills required from the graduating students. The
program educational objectives can be defined in terms of the expected graduates’
proficiency, specifying the profile of graduates and their competencies. An often used
phrase when defining the objectives is that the graduates of the program “are able to”
perform certain specific tasks. Examples may be: analyze the problem, elicit requirements,
design a circuit, apply a method, use a tool, etc.

There are two common ways to define an objective. One is a “know how” objective:
describing a task one performs. Another is a “knowledge” objective: describing a topic that
one understands and is able to convey knowledge about. Examples of such would be:
 “Know How” to manage database: e.g. to install the database software, to manage

users, to create/update/delete database record, etc.
 “Knowledge” of a database concept and model: e.g. to describe the attributes of a

database logical model, to give examples of such models, to identify security
vulnerabilities, to describe SQL syntax, etc.

The Accreditation Board of Engineering Technology, ABET, (ABET, 2007) defines Program
Educational Objectives (PEO) and Program Outcomes (PO). Program Educational Objectives
are broad statements that describe the career and professional accomplishments that the
program is preparing graduates to achieve. An example of PEO would be: “graduates will
pursue successful careers as professional software engineers”. Program Outcomes are
narrower statements that describe what students are expected to know and be able to do by
the time of graduation. The PO relate to the skills, knowledge, and behaviors that students
acquire in their matriculation through a program. An example would be: “graduates will be
able to work effectively as part of a software development team.” The PO can be assessed
during the course of studies and immediately after students’ graduation. The RSIC PEO and
PO presented in this document were developed using the ABET interpretation.

Transatlantic Engineering Programs: An Experience in International Cooperation 71

Student spends
abroad

Expected results Formal effects Comments

One semester in
a partner
university

 single diploma in home
institution
 mobility students focus on
an area of concentration not
available at home institution
 experiences related to
cultural immersion

 US student receive
special certificate of
completion of a specific
focus area
 EU student receive
appropriate entry in
their Diploma and the
Supplement identifying
the focus area.

 bilateral agreements
are necessary

Two-three
semesters in the
partner
university

 two diplomas are received
 students may receive a new
specialization, not offered at
single university
 experiences related to
cultural immersion

Dual degree more detailed
bilateral agreements are
necessary
 requires full
validation and
accreditation of learning
programs.
 ethical issue: is it fair
that student receives
two diplomas without
any increase of his
work?

Table 1. Examples Of Final Partner Institution Engagement

The long-term mobility of students includes two cyclic steps: input and implementation
procedures.

2.4.1 Input Procedures
a) Internal Procedures:
 Setting deadlines for the partners’ institutions
 Distributing information on international mobility - to recruit students
 Performing internal selection procedures for applicants from the home university

(eligibility, mandatory orientation, interviews, language skills)
 Performing placement procedures for incoming exchange students:
 Assigning the mentors to incoming students
 Internal selection of the teachers interested to participate in the mobility exchange.

b) External Procedures:
 Exchange information with the partner university on the selection results.
 Identify the courses available for overseas students during the mobility period
 Signing joint learning agreement forms.
 Procedures for practical issues such as housing, insurance, etc.

2.4.2 Implementation Procedures
a) Assistance to the Internal Applicants
 Explaining the program options and site/course selection
 Helping students with the application procedure.

b) Assistance to the External Applicants
 Helping with questions from students/teachers interested in mobility exchange (terms

of exchange, reporting, application process).
 Facilitating mentoring process for incoming students
 Monitoring and reporting the students’ progress

It should be noted that the long-term phase, in addition to continuous evaluation of the
program, must include the exit and evaluation component, where the entire program is
given to critique and scrutiny with the goal to learn the lessons and improve the process.
The components of such evaluation will include the assessment and evaluation of the
individual students at the end of the mobility period and the overall assessment and
evaluation of the mobility exchange.

3. Identification of Learning Objectives and Outcomes
There is a general agreed upon set of non-technical skills and behaviors expected from
engineering school graduates, such as oral and written communications, professional ethics,
team skills, etc. The starting point for designing a specific program curriculum is to identify
the technical knowledge areas and skills required from the graduating students. The
program educational objectives can be defined in terms of the expected graduates’
proficiency, specifying the profile of graduates and their competencies. An often used
phrase when defining the objectives is that the graduates of the program “are able to”
perform certain specific tasks. Examples may be: analyze the problem, elicit requirements,
design a circuit, apply a method, use a tool, etc.

There are two common ways to define an objective. One is a “know how” objective:
describing a task one performs. Another is a “knowledge” objective: describing a topic that
one understands and is able to convey knowledge about. Examples of such would be:
 “Know How” to manage database: e.g. to install the database software, to manage

users, to create/update/delete database record, etc.
 “Knowledge” of a database concept and model: e.g. to describe the attributes of a

database logical model, to give examples of such models, to identify security
vulnerabilities, to describe SQL syntax, etc.

The Accreditation Board of Engineering Technology, ABET, (ABET, 2007) defines Program
Educational Objectives (PEO) and Program Outcomes (PO). Program Educational Objectives
are broad statements that describe the career and professional accomplishments that the
program is preparing graduates to achieve. An example of PEO would be: “graduates will
pursue successful careers as professional software engineers”. Program Outcomes are
narrower statements that describe what students are expected to know and be able to do by
the time of graduation. The PO relate to the skills, knowledge, and behaviors that students
acquire in their matriculation through a program. An example would be: “graduates will be
able to work effectively as part of a software development team.” The PO can be assessed
during the course of studies and immediately after students’ graduation. The RSIC PEO and
PO presented in this document were developed using the ABET interpretation.

Engineering the Computer Science and IT72

A survey (Pilat, 2008), solicited from a representative sample of industry engaged in real-
time software-intensive control systems, was designed to get feedback on what the
employers expect graduates to possess in terms of skills and attitudes, as well as the
knowledge of technical topics. The data collected from 43 companies in four countries (USA,
France, Poland, and Czech Republic) were analyzed and the results were used to help
identify academic program educational objectives and outcomes, thus preparing a base for
creation of a new curriculum framework. The resulting objectives and outcomes, listed in
(Kornecki, 2008), guided subsequent ILERT activities and the development of the RSIC
Curriculum Framework.

4. Program Assessment
To help ensure achievement of program objectives and outcomes, an assessment and
evaluation process, based on student performance and other indicators, must be in place.
Considering long term impact, the assessment process for program educational objectives
may involve instruments, such as the following:
 Surveys of alumni and their employers
 Feedback from an industry advisory board
 Alumni focus group meetings
 Examination of a successful industrial project, involving program alumni

A short-term focused assessment process for program outcomes might involve instruments,
such as the following:
 Annual review of student performance in selected indicator courses by the program

faculty
 Feedback from graduating seniors and recent graduates
 Feedback from an industry advisory board
 Discussion of the department curriculum committee
 Analysis of data reflecting student cooperative education activities, involvement in

professional societies, choice of minor programs, etc.
 Student Portfolios

Table 2 describes a process for the assessment and evaluation of achievement of program
educational objectives and program outcomes. This table provides a high-level description
of the steps and activities that are part of the assessment process. This process is meant to
provide a framework for carrying out assessment and evaluation; the actual process might
vary from one RSIC program to another. The indicator courses, defined by the faculty, are
critical in assessing program outcomes. Each program outcome should have one or more
courses that contribute to its achievement. Performance in indicator courses also provides
information to the faculty regarding performance in prerequisite courses.

A survey of graduating seniors and an exit interview can be a good source of information
regarding the curriculum. While senior information is valuable, graduating seniors may lack
sufficient context to correctly identify the degree to which the program achieves program
outcomes; thus, information from the senior survey is considered only moderately reliable.
In contrast, feedback from the program alumni employed for two or more years, as well as

the feedback from industry employing graduates, provides stronger evidence of the degree
to which the program has achieved the desired outcomes.

Step Description Schedule
Determine
Constituencies

A discussion at the faculty meeting identifies the
constituencies for the RSIC program. (e.g., students,
employers, faculty)

Initially

Determine
Objectives and
Outcomes

Based on the needs of the constituencies, the faculty,
determine RSIC Program Educational Objectives and
Program Outcomes

Initially

Determine
Assessment
Items and
Process

The program faculty identify what will be assessed and
how and when achievement of objectives and outcomes
will be evaluated (with the use of elements such as
indicator courses, surveys, interviews, data collection
methods)

Start of
Assessment

Collect Data
and Opinion

Information and opinion about achievement of Program
Outcomes is collected.

Annually

Assess Program
Outcomes

The data collected is used to assess whether the Program
Outcomes are being achieved.

Annually

Evaluate
Program
Educational
Objectives

The data collected is used to evaluate whether the PEOs
of the RSIC program are achieved. There is a
determination of whether the objectives need to be
modified.

Every Three
Years

Modify
Program

Based on outcomes assessment and on the results of
program educational objectives evaluation and review,
the faculty make changes in the program, its educational
objectives, and/or the program outcomes.

Every Three
Years

Evaluate
Assessment
Process

The faculty evaluate the effectiveness of the assessment
process and make changes as appropriate.

Every Three
Years

Table 2. Assessment Process

5. Student Mobility and Credit Transfer
The credit systems are used not only to evaluate the students but also for mobility, i.e. the
situation when a student leaves an institution to continue studies in another one. Such a
situation is called permanent mobility (in Europe) or transfer student (in USA). With the
impact of the Erasmus Program, a new type of transient mobility exists, when a student
spends a semester, or a year, in a partner university. In such situation, the student gets the
diploma from his home university, except in the case of double-degree curricula. The same
situation exists in the USA also, allowing a student to spend part of his program in another
institution as a visiting student. The procedures require an agreement between the exchange
institutions that considers the content and learning outcomes of the partner curriculum.
When credits are used for mobility, the courses must be "equivalent". The rules of
equivalence could vary between the institutions and academic programs but, generally, the
student will keep academic record in the home university and adhere to the admission

Transatlantic Engineering Programs: An Experience in International Cooperation 73

A survey (Pilat, 2008), solicited from a representative sample of industry engaged in real-
time software-intensive control systems, was designed to get feedback on what the
employers expect graduates to possess in terms of skills and attitudes, as well as the
knowledge of technical topics. The data collected from 43 companies in four countries (USA,
France, Poland, and Czech Republic) were analyzed and the results were used to help
identify academic program educational objectives and outcomes, thus preparing a base for
creation of a new curriculum framework. The resulting objectives and outcomes, listed in
(Kornecki, 2008), guided subsequent ILERT activities and the development of the RSIC
Curriculum Framework.

4. Program Assessment
To help ensure achievement of program objectives and outcomes, an assessment and
evaluation process, based on student performance and other indicators, must be in place.
Considering long term impact, the assessment process for program educational objectives
may involve instruments, such as the following:
 Surveys of alumni and their employers
 Feedback from an industry advisory board
 Alumni focus group meetings
 Examination of a successful industrial project, involving program alumni

A short-term focused assessment process for program outcomes might involve instruments,
such as the following:
 Annual review of student performance in selected indicator courses by the program

faculty
 Feedback from graduating seniors and recent graduates
 Feedback from an industry advisory board
 Discussion of the department curriculum committee
 Analysis of data reflecting student cooperative education activities, involvement in

professional societies, choice of minor programs, etc.
 Student Portfolios

Table 2 describes a process for the assessment and evaluation of achievement of program
educational objectives and program outcomes. This table provides a high-level description
of the steps and activities that are part of the assessment process. This process is meant to
provide a framework for carrying out assessment and evaluation; the actual process might
vary from one RSIC program to another. The indicator courses, defined by the faculty, are
critical in assessing program outcomes. Each program outcome should have one or more
courses that contribute to its achievement. Performance in indicator courses also provides
information to the faculty regarding performance in prerequisite courses.

A survey of graduating seniors and an exit interview can be a good source of information
regarding the curriculum. While senior information is valuable, graduating seniors may lack
sufficient context to correctly identify the degree to which the program achieves program
outcomes; thus, information from the senior survey is considered only moderately reliable.
In contrast, feedback from the program alumni employed for two or more years, as well as

the feedback from industry employing graduates, provides stronger evidence of the degree
to which the program has achieved the desired outcomes.

Step Description Schedule
Determine
Constituencies

A discussion at the faculty meeting identifies the
constituencies for the RSIC program. (e.g., students,
employers, faculty)

Initially

Determine
Objectives and
Outcomes

Based on the needs of the constituencies, the faculty,
determine RSIC Program Educational Objectives and
Program Outcomes

Initially

Determine
Assessment
Items and
Process

The program faculty identify what will be assessed and
how and when achievement of objectives and outcomes
will be evaluated (with the use of elements such as
indicator courses, surveys, interviews, data collection
methods)

Start of
Assessment

Collect Data
and Opinion

Information and opinion about achievement of Program
Outcomes is collected.

Annually

Assess Program
Outcomes

The data collected is used to assess whether the Program
Outcomes are being achieved.

Annually

Evaluate
Program
Educational
Objectives

The data collected is used to evaluate whether the PEOs
of the RSIC program are achieved. There is a
determination of whether the objectives need to be
modified.

Every Three
Years

Modify
Program

Based on outcomes assessment and on the results of
program educational objectives evaluation and review,
the faculty make changes in the program, its educational
objectives, and/or the program outcomes.

Every Three
Years

Evaluate
Assessment
Process

The faculty evaluate the effectiveness of the assessment
process and make changes as appropriate.

Every Three
Years

Table 2. Assessment Process

5. Student Mobility and Credit Transfer
The credit systems are used not only to evaluate the students but also for mobility, i.e. the
situation when a student leaves an institution to continue studies in another one. Such a
situation is called permanent mobility (in Europe) or transfer student (in USA). With the
impact of the Erasmus Program, a new type of transient mobility exists, when a student
spends a semester, or a year, in a partner university. In such situation, the student gets the
diploma from his home university, except in the case of double-degree curricula. The same
situation exists in the USA also, allowing a student to spend part of his program in another
institution as a visiting student. The procedures require an agreement between the exchange
institutions that considers the content and learning outcomes of the partner curriculum.
When credits are used for mobility, the courses must be "equivalent". The rules of
equivalence could vary between the institutions and academic programs but, generally, the
student will keep academic record in the home university and adhere to the admission

Engineering the Computer Science and IT74

procedure in the host university. This admission procedure will be based on the actual
contents and learning outcomes of the courses followed by the student in the sending
institution.

When credits are used for students’ evaluation, the situation is the same in the USA and in
the Europe. Note that the European countries generally use their own national or local
grading systems (Hilburn, 2008). The credits are given after a semester (or a term) to
continue the academic program, or after the completion of the entire curriculum to be
recorded in the final diploma.

5.1. In Europe
The European Credit Transfer System (ECTS) (Bologna Working Group, 2005) has been
designed to facilitate the mobility of students among the member countries. The initial
purpose was not to use ECTS as an accumulation system for life-long learning, nor to use
them to characterize the level of the course. As a result of the Bologna declaration in June
1999, it was decided to use ECTS as an accumulation system.

The ECTS is designed to measure the actual workload of students for a given course. The
workload reflects the quantity of work and includes all the pedagogical components such as
lectures, seminars, independent and private study, preparation of projects and
examinations, placements, dissertation work, etc. The workload measure is based on a
student-centered approach. A complete year is equivalent to 60 ECTS credits. The credits are
allocated on a relative basis, since the complete year is fixed. The student workload of a full-
time study program in Europe amounts, in most cases, to 1500-1800 hours per year, so one
ECTS credit reflects about 30 hours of workload for an average student.

Credits in ECTS can only be obtained after successful completion of the work required, and
appropriate assessment of the learning outcomes achieved. Learning outcomes are sets of
competencies, expressing what the student will know, understand or be able to do after
completion of a process of learning.

The performance of a student is documented by a local/national grade. It is good practice to
also add an ECTS grade, in particular in case of credit transfer. The ECTS grading scale
ranks the students on a statistical basis. Therefore, statistical data on student performance is
a prerequisite for applying the ECTS grading system. Grades are assigned among students
with passing grades as follows: A best 10%, B next 25%, C next 30%, D next 25%, and F last
10%. A distinction is made between the grades FX and F that are used for unsuccessful
students. FX means: “fail- some more work required to pass” and F means: “fail –
considerable further work required”. The inclusion of failure rates in the Transcript of
Records is optional.

Since the ECTS does not measure the quality of performance, content, or level, certain
additional rules must apply when ECTS is used as an accumulation system. In addition to
the number of credits required, the type of the course and the level at which those credits
must be obtained must be added. The levels are defined as:
 Basic Level Course - Introduction to a subject

 Intermediate Level Course - Expand basic knowledge
 Advanced Level Course - Further strengthen of expertise
 Specialized Level Course - To build up knowledge and experiences in a special field or

discipline

The following types of courses are defined:
 Core course (part of the core of a major program of studies)
 Related course (supporting course for the core)
 Minor course (optional course or supplementary course)

These accumulation system features were preliminary work for the introduction of the
European Qualification Framework (EQF).

To support the administration and management of student progress, the European
Commission proposed accompanying documents:
 Application Form: the agreement to be signed by the partners.
 Learning Agreement: contains the list of courses to be taken, with the ECTS credits

which will be awarded for each course.
 Transcript of Records: documents the performance of a student by showing the list of

courses taken, the ECTS credits gained, local or national credits, if any, local/ECTS
grades awarded; the transcript of records comprises information about the type of
courses followed abroad, the duration of the course (one year (Y), one semester (1S) or
one term (1T)), the local grades (in the national grading system), the ECTS grades and
the ECTS credits.

Table 3 gives an example of a Transcript of Records, which means that the student followed
the course "RT-M7 Security of information systems", the duration of the course was one
semester, the local grade was 14/20, which stands for an ECTS grade of B (statistical,
depending on the actual results of the whole class), and the amount of ECTS credits for this
course is 4. The institutional or local grading system should be explained. For instance, in
France, the grading system is equivalent to a percentage, but it is given in a scale on which
the higher mark is 20 (14/20 for example means 70 %).

Course
unit code

Title of the course unit Duration of the
course unit

Local
grade

ECTS
grade

ECTS
credit

RT-M7 Security of information systems 1S 14/20 B 4
Table 3. Example of Transcript of Records

The Diploma Supplement is a document attached to a higher education diploma, providing
a standardised description of the nature, level, context, content, and status of the studies
successfully completed by the graduate. The purpose of the Diploma Supplement is to
provide a description of the competences acquired by the students as a function of the
various pedagogical sequences which were validated but also as a function of specific
activities (special project, elective course, associations or student organizations engagement,
social activities if there are recognized and validated by the instructor).

Transatlantic Engineering Programs: An Experience in International Cooperation 75

procedure in the host university. This admission procedure will be based on the actual
contents and learning outcomes of the courses followed by the student in the sending
institution.

When credits are used for students’ evaluation, the situation is the same in the USA and in
the Europe. Note that the European countries generally use their own national or local
grading systems (Hilburn, 2008). The credits are given after a semester (or a term) to
continue the academic program, or after the completion of the entire curriculum to be
recorded in the final diploma.

5.1. In Europe
The European Credit Transfer System (ECTS) (Bologna Working Group, 2005) has been
designed to facilitate the mobility of students among the member countries. The initial
purpose was not to use ECTS as an accumulation system for life-long learning, nor to use
them to characterize the level of the course. As a result of the Bologna declaration in June
1999, it was decided to use ECTS as an accumulation system.

The ECTS is designed to measure the actual workload of students for a given course. The
workload reflects the quantity of work and includes all the pedagogical components such as
lectures, seminars, independent and private study, preparation of projects and
examinations, placements, dissertation work, etc. The workload measure is based on a
student-centered approach. A complete year is equivalent to 60 ECTS credits. The credits are
allocated on a relative basis, since the complete year is fixed. The student workload of a full-
time study program in Europe amounts, in most cases, to 1500-1800 hours per year, so one
ECTS credit reflects about 30 hours of workload for an average student.

Credits in ECTS can only be obtained after successful completion of the work required, and
appropriate assessment of the learning outcomes achieved. Learning outcomes are sets of
competencies, expressing what the student will know, understand or be able to do after
completion of a process of learning.

The performance of a student is documented by a local/national grade. It is good practice to
also add an ECTS grade, in particular in case of credit transfer. The ECTS grading scale
ranks the students on a statistical basis. Therefore, statistical data on student performance is
a prerequisite for applying the ECTS grading system. Grades are assigned among students
with passing grades as follows: A best 10%, B next 25%, C next 30%, D next 25%, and F last
10%. A distinction is made between the grades FX and F that are used for unsuccessful
students. FX means: “fail- some more work required to pass” and F means: “fail –
considerable further work required”. The inclusion of failure rates in the Transcript of
Records is optional.

Since the ECTS does not measure the quality of performance, content, or level, certain
additional rules must apply when ECTS is used as an accumulation system. In addition to
the number of credits required, the type of the course and the level at which those credits
must be obtained must be added. The levels are defined as:
 Basic Level Course - Introduction to a subject

 Intermediate Level Course - Expand basic knowledge
 Advanced Level Course - Further strengthen of expertise
 Specialized Level Course - To build up knowledge and experiences in a special field or

discipline

The following types of courses are defined:
 Core course (part of the core of a major program of studies)
 Related course (supporting course for the core)
 Minor course (optional course or supplementary course)

These accumulation system features were preliminary work for the introduction of the
European Qualification Framework (EQF).

To support the administration and management of student progress, the European
Commission proposed accompanying documents:
 Application Form: the agreement to be signed by the partners.
 Learning Agreement: contains the list of courses to be taken, with the ECTS credits

which will be awarded for each course.
 Transcript of Records: documents the performance of a student by showing the list of

courses taken, the ECTS credits gained, local or national credits, if any, local/ECTS
grades awarded; the transcript of records comprises information about the type of
courses followed abroad, the duration of the course (one year (Y), one semester (1S) or
one term (1T)), the local grades (in the national grading system), the ECTS grades and
the ECTS credits.

Table 3 gives an example of a Transcript of Records, which means that the student followed
the course "RT-M7 Security of information systems", the duration of the course was one
semester, the local grade was 14/20, which stands for an ECTS grade of B (statistical,
depending on the actual results of the whole class), and the amount of ECTS credits for this
course is 4. The institutional or local grading system should be explained. For instance, in
France, the grading system is equivalent to a percentage, but it is given in a scale on which
the higher mark is 20 (14/20 for example means 70 %).

Course
unit code

Title of the course unit Duration of the
course unit

Local
grade

ECTS
grade

ECTS
credit

RT-M7 Security of information systems 1S 14/20 B 4
Table 3. Example of Transcript of Records

The Diploma Supplement is a document attached to a higher education diploma, providing
a standardised description of the nature, level, context, content, and status of the studies
successfully completed by the graduate. The purpose of the Diploma Supplement is to
provide a description of the competences acquired by the students as a function of the
various pedagogical sequences which were validated but also as a function of specific
activities (special project, elective course, associations or student organizations engagement,
social activities if there are recognized and validated by the instructor).

Engineering the Computer Science and IT76

The Dublin descriptors are descriptors for qualifications awarded to students that signify
completions of:
 higher education short cycle (within first cycle)
 Bachelor – first cycle
 Master – second cycle
 Doctorate – third cycle
Descriptors are associated with national frameworks of qualification. Table 4 describes
competencies for each of the cycles. The implementation of the competences would vary
across institutions.

These features were the preliminary work from the introduction of the European
Qualifications Framework (EQF) for lifelong learning (European Commission, 2008). This
framework defines three criteria:
 Knowledge: described as theoretical and/or factual,
 Skills: cognitive (use of logical, intuitive and creative thinking) and practical (involving

manual dexterity and the use of methods, materials, tools and instruments)
 Competencies: responsibility and autonomy.

For each of the criteria, eight levels have been defined, from the basic to the most advanced.
The EQF proposes the following equivalence between the level of a course and the cycles of
study:
 The descriptor for the higher education short cycle (within or linked to the first cycle),

corresponds to the learning outcomes for EQF level 5.
 The descriptor for the first cycle in the Framework for Qualifications of the European

Higher Education Area in the framework of the Bologna process corresponds to the
learning outcomes for EQF level 6.

 The descriptor for the second cycle in the Framework for Qualifications of the European
Higher Education Area in the framework of the Bologna process corresponds to the
learning outcomes for EQF level 7.

 The descriptor for the third cycle in the Framework for Qualifications of the European
Higher Education Area in the framework of the Bologna process corresponds to the
learning outcomes for EQF level 8.

Descriptors draw upon other sources some of which are associated with national
frameworks of qualification. The descriptors describe variable knowledge, skills, and
competencies for each of the levels, and the implementation of the competences is different
as a function of the level of the degree.

Competences 1 (Bachelor) 2 (Master) 3 (Doctorate)
Knowledge and
understanding

supported by
advanced text
books with some
aspects learned
including
knowledge at the
forefront of their
field of study

provides a basis or
opportunity for
originality in developing
or applying ideas often
in a research context ..

[includes] a systematic
understanding of their field
of study and mastery of the
methods of research
associated with that field..

Applying
knowledge and
understanding

[through] devising
and sustaining
arguments

[through] problem
solving abilities [applied]
in new or unfamiliar
environments within
broader (or
multidisciplinary)
context

[is demonstrated by the]
ability to conceive, design,
implement and adapt a
substantial process of
research with scholarly
integrity ..
[is in the context of] a
contribution that extends the
frontier of knowledge by
developing a substantial
body of work some of which
merits national or
international refereed
publication ..

Making
judgments

[involves]
gathering and
interpreting
relevant data ..

[demonstrates] the ability
to integrate knowledge
and handle complexity,
and formulate judgments
with incomplete data ..

[requires being] capable of
critical analysis, evaluation
and synthesis of new and
complex ideas..

Communication [of] information,
ideas, problems
and solutions ..

[of] their conclusions and
the underpinning
knowledge and rationale
(restricted scope) to
specialist and non-
specialist audiences
(monologue) ..

with their peers, the larger
scholarly community and
with society in general
(dialogue) about their areas
of expertise (broad scope)..

Learning skills have developed
those skills needed
to study further
with a high level of
autonomy ..

study in a manner that
may be largely self-
directed or autonomous..

expected to be able to
promote, within academic
and professional contexts,
technological, social or
cultural advancement ..

Table 4. Dublin Descriptor Competencies

5.2. In the USA
In the United States, there is no national policy or procedure for transfer and acceptance of
credit between academic institutions; that is, there is no system similar to the ECTS for
governing or administering the transfer of academic credit. Transfer policies and procedures
vary from state to state, and from institution to institution. Hence, transfer of credit on a
nation-wide basis is complex, and sometimes confusing and inconsistent. The list below
describes a variety of transfer categories. These categories presume all colleges and
universities are regionally accredited and are either public or independent (not-for-profit).

Transatlantic Engineering Programs: An Experience in International Cooperation 77

The Dublin descriptors are descriptors for qualifications awarded to students that signify
completions of:
 higher education short cycle (within first cycle)
 Bachelor – first cycle
 Master – second cycle
 Doctorate – third cycle
Descriptors are associated with national frameworks of qualification. Table 4 describes
competencies for each of the cycles. The implementation of the competences would vary
across institutions.

These features were the preliminary work from the introduction of the European
Qualifications Framework (EQF) for lifelong learning (European Commission, 2008). This
framework defines three criteria:
 Knowledge: described as theoretical and/or factual,
 Skills: cognitive (use of logical, intuitive and creative thinking) and practical (involving

manual dexterity and the use of methods, materials, tools and instruments)
 Competencies: responsibility and autonomy.

For each of the criteria, eight levels have been defined, from the basic to the most advanced.
The EQF proposes the following equivalence between the level of a course and the cycles of
study:
 The descriptor for the higher education short cycle (within or linked to the first cycle),

corresponds to the learning outcomes for EQF level 5.
 The descriptor for the first cycle in the Framework for Qualifications of the European

Higher Education Area in the framework of the Bologna process corresponds to the
learning outcomes for EQF level 6.

 The descriptor for the second cycle in the Framework for Qualifications of the European
Higher Education Area in the framework of the Bologna process corresponds to the
learning outcomes for EQF level 7.

 The descriptor for the third cycle in the Framework for Qualifications of the European
Higher Education Area in the framework of the Bologna process corresponds to the
learning outcomes for EQF level 8.

Descriptors draw upon other sources some of which are associated with national
frameworks of qualification. The descriptors describe variable knowledge, skills, and
competencies for each of the levels, and the implementation of the competences is different
as a function of the level of the degree.

Competences 1 (Bachelor) 2 (Master) 3 (Doctorate)
Knowledge and
understanding

supported by
advanced text
books with some
aspects learned
including
knowledge at the
forefront of their
field of study

provides a basis or
opportunity for
originality in developing
or applying ideas often
in a research context ..

[includes] a systematic
understanding of their field
of study and mastery of the
methods of research
associated with that field..

Applying
knowledge and
understanding

[through] devising
and sustaining
arguments

[through] problem
solving abilities [applied]
in new or unfamiliar
environments within
broader (or
multidisciplinary)
context

[is demonstrated by the]
ability to conceive, design,
implement and adapt a
substantial process of
research with scholarly
integrity ..
[is in the context of] a
contribution that extends the
frontier of knowledge by
developing a substantial
body of work some of which
merits national or
international refereed
publication ..

Making
judgments

[involves]
gathering and
interpreting
relevant data ..

[demonstrates] the ability
to integrate knowledge
and handle complexity,
and formulate judgments
with incomplete data ..

[requires being] capable of
critical analysis, evaluation
and synthesis of new and
complex ideas..

Communication [of] information,
ideas, problems
and solutions ..

[of] their conclusions and
the underpinning
knowledge and rationale
(restricted scope) to
specialist and non-
specialist audiences
(monologue) ..

with their peers, the larger
scholarly community and
with society in general
(dialogue) about their areas
of expertise (broad scope)..

Learning skills have developed
those skills needed
to study further
with a high level of
autonomy ..

study in a manner that
may be largely self-
directed or autonomous..

expected to be able to
promote, within academic
and professional contexts,
technological, social or
cultural advancement ..

Table 4. Dublin Descriptor Competencies

5.2. In the USA
In the United States, there is no national policy or procedure for transfer and acceptance of
credit between academic institutions; that is, there is no system similar to the ECTS for
governing or administering the transfer of academic credit. Transfer policies and procedures
vary from state to state, and from institution to institution. Hence, transfer of credit on a
nation-wide basis is complex, and sometimes confusing and inconsistent. The list below
describes a variety of transfer categories. These categories presume all colleges and
universities are regionally accredited and are either public or independent (not-for-profit).

Engineering the Computer Science and IT78

 Two-year (A.S "Associate of Science" degree and A.A "Associate of Arts" degree) to
four-year colleges and universities — these transfer arrangements are often formalized
by states or state systems. Students completing an associate of arts or associate of
science degree from a community college often can receive full credit and junior
standing at another state institution through articulation agreements. Transfer from
two-year to four-year may also be by design, in what is called a "two plus two"
arrangement. For this arrangement, the student completing the associate’s degree
moves directly into a coordinated upper level program to complete the bachelor's
degree.

 Four-year to four-year colleges and universities — typically not covered by formal
arrangements, these may be situations where students enrolled as a regular or "non-
degree" students, accumulate credits and wish to transfer them to their "home"
institution. The credits often will transfer (assuming a student has earned an acceptable
grade), but may not meet specific requirements or may be accepted as elective credit or
as "additive" credit (meeting no requirements but listed as transfer credits on your
transcript).

 Four-year to two-year institutions — some students take a reverse path, possibly having
completed some coursework at a four-year institution and now are seeking a degree at
a two-year institution. There are also some "reverse two plus two" programs where a
student completes coursework at a four-year institution and returns to a two-year
institution to complete a program of study.

 Multiple credits from multiple institutions to a "home" institution — a student may take
courses from a variety of institutions, hoping to "bank" them eventually at an institution
and earn a degree. This can work, but credits earned in this fashion are subject to
greater scrutiny — particularly if the student was not a regularly admitted student at
the college or university where credit was earned.

 Proprietary (even when regionally accredited) to public and independent institutions —
whether appropriate or not, students attempting to transfer credit from a proprietary
institution to a public or independent college or university often face a loss of credit in
the transfer process.

 Credits earned through assessment, prior learning, credit equivalency, and other non-
traditional means to a "home" institution — there are significant differences in
institutional policy regarding the acceptance of credits earned through alternative
methods, both in terms of the number that might be acceptable and use of the credits.

Institutions and academic degree programs are accredited by various organization and
agencies. Accreditation organizations (state, regional or professional) typically specify high-
level requirements for acceptance of transfer credit. Here are two examples:
 The Southern Association of Colleges and Schools (SACS, 2007) is the recognized

regional accrediting body in the eleven U.S. Southern states (Alabama, Florida, Georgia,
Kentucky, Louisiana, Mississippi, North Carolina, South Carolina, Tennessee, Texas
and Virginia) for those institutions of higher education that award associate,
baccalaureate, master's or doctoral degrees. SACS specifies the following standard
regarding transfer credit:

The institution has a defined and published policy for evaluating, awarding, and accepting
credit for transfer, experiential learning, advanced placement, and professional certificates

that is consistent with its mission and ensures that course work and learning outcomes are
at the collegiate level and comparable to the institution’s own degree programs. The
institution assumes responsibility for the academic quality of any course work or credit
recorded on the institution’s transcript.

 The Engineering Accreditation Commission (EAC) of the Accreditation Board for
Engineering and Technology (ABET) is responsible for accrediting U.S. engineering
programs. EAC specifies the following criterion regarding transfer credit (EAC, 2008):

The institution must have and enforce policies for the acceptance of transfer students and
for the validation of courses taken for credit elsewhere.

6. Curriculum Framework
The section describes the organization and content of the RSIC curriculum framework. The
framework is a high-level curriculum specification describing the architecture and content
of the RSIC curriculum, which is detailed enough to guide the development of a RSIC
program and to support the RSIC objectives and outcomes (Kornecki, 2008); however, it is
flexible enough to account for specializations, constraints, and requirements of various
programs, institutions, and regions.

6.1 Curriculum Components
The basic organizational unit for the framework is a RSIC “component”. A RSIC component
is a curriculum unit which covers theory, knowledge, and practice that supports the RSIC
curriculum objective and outcomes. Table 5 describes the RSIC components in six identified
RSIC areas: Software Engineering, Digital Systems, Computer Control, Real-Time Systems,
Networking, and Systems Engineering.

The proposed RSIC Curriculum Framework does not specify the way in which component
topics might be formed into modules or courses. Component topics might be focused in one
or two courses, or spread among several courses, along with other non-RSIC topics. The
“Final Result” link at (ILERT, 2009) contains the full report on RSIC Curriculum Framework,
which provides more detailed specifications for each component: prerequisite knowledge,
component learning objectives, information about required facilities and equipment, and
guidelines and suggestions for course design and delivery.

In addition to the RSIC components, a curriculum must support requirements for
prerequisite knowledge and other material that is required for a graduate of the program to
achieve the education objectives and graduation outcomes. It is recommended that the
following non-RSIC courses or units be part of a RSIC curriculum, as part of entrance
requirements or as courses to provide prerequisite knowledge or to supplement the
components as part of a full degree program. The prerequisite knowledge includes such
areas as Mathematics (Differential and Integral Calculus, Differential Equations, Discrete
Mathematics, Statistics, Linear Algebra…), Physics (Mechanics, Electromagnetism,
Thermodynamics, Fluids…), Electrical Engineering (Circuit Analysis, Basic Electronics…),
Engineering Economics, and Introduction to Computer Science with Programming.

Transatlantic Engineering Programs: An Experience in International Cooperation 79

 Two-year (A.S "Associate of Science" degree and A.A "Associate of Arts" degree) to
four-year colleges and universities — these transfer arrangements are often formalized
by states or state systems. Students completing an associate of arts or associate of
science degree from a community college often can receive full credit and junior
standing at another state institution through articulation agreements. Transfer from
two-year to four-year may also be by design, in what is called a "two plus two"
arrangement. For this arrangement, the student completing the associate’s degree
moves directly into a coordinated upper level program to complete the bachelor's
degree.

 Four-year to four-year colleges and universities — typically not covered by formal
arrangements, these may be situations where students enrolled as a regular or "non-
degree" students, accumulate credits and wish to transfer them to their "home"
institution. The credits often will transfer (assuming a student has earned an acceptable
grade), but may not meet specific requirements or may be accepted as elective credit or
as "additive" credit (meeting no requirements but listed as transfer credits on your
transcript).

 Four-year to two-year institutions — some students take a reverse path, possibly having
completed some coursework at a four-year institution and now are seeking a degree at
a two-year institution. There are also some "reverse two plus two" programs where a
student completes coursework at a four-year institution and returns to a two-year
institution to complete a program of study.

 Multiple credits from multiple institutions to a "home" institution — a student may take
courses from a variety of institutions, hoping to "bank" them eventually at an institution
and earn a degree. This can work, but credits earned in this fashion are subject to
greater scrutiny — particularly if the student was not a regularly admitted student at
the college or university where credit was earned.

 Proprietary (even when regionally accredited) to public and independent institutions —
whether appropriate or not, students attempting to transfer credit from a proprietary
institution to a public or independent college or university often face a loss of credit in
the transfer process.

 Credits earned through assessment, prior learning, credit equivalency, and other non-
traditional means to a "home" institution — there are significant differences in
institutional policy regarding the acceptance of credits earned through alternative
methods, both in terms of the number that might be acceptable and use of the credits.

Institutions and academic degree programs are accredited by various organization and
agencies. Accreditation organizations (state, regional or professional) typically specify high-
level requirements for acceptance of transfer credit. Here are two examples:
 The Southern Association of Colleges and Schools (SACS, 2007) is the recognized

regional accrediting body in the eleven U.S. Southern states (Alabama, Florida, Georgia,
Kentucky, Louisiana, Mississippi, North Carolina, South Carolina, Tennessee, Texas
and Virginia) for those institutions of higher education that award associate,
baccalaureate, master's or doctoral degrees. SACS specifies the following standard
regarding transfer credit:

The institution has a defined and published policy for evaluating, awarding, and accepting
credit for transfer, experiential learning, advanced placement, and professional certificates

that is consistent with its mission and ensures that course work and learning outcomes are
at the collegiate level and comparable to the institution’s own degree programs. The
institution assumes responsibility for the academic quality of any course work or credit
recorded on the institution’s transcript.

 The Engineering Accreditation Commission (EAC) of the Accreditation Board for
Engineering and Technology (ABET) is responsible for accrediting U.S. engineering
programs. EAC specifies the following criterion regarding transfer credit (EAC, 2008):

The institution must have and enforce policies for the acceptance of transfer students and
for the validation of courses taken for credit elsewhere.

6. Curriculum Framework
The section describes the organization and content of the RSIC curriculum framework. The
framework is a high-level curriculum specification describing the architecture and content
of the RSIC curriculum, which is detailed enough to guide the development of a RSIC
program and to support the RSIC objectives and outcomes (Kornecki, 2008); however, it is
flexible enough to account for specializations, constraints, and requirements of various
programs, institutions, and regions.

6.1 Curriculum Components
The basic organizational unit for the framework is a RSIC “component”. A RSIC component
is a curriculum unit which covers theory, knowledge, and practice that supports the RSIC
curriculum objective and outcomes. Table 5 describes the RSIC components in six identified
RSIC areas: Software Engineering, Digital Systems, Computer Control, Real-Time Systems,
Networking, and Systems Engineering.

The proposed RSIC Curriculum Framework does not specify the way in which component
topics might be formed into modules or courses. Component topics might be focused in one
or two courses, or spread among several courses, along with other non-RSIC topics. The
“Final Result” link at (ILERT, 2009) contains the full report on RSIC Curriculum Framework,
which provides more detailed specifications for each component: prerequisite knowledge,
component learning objectives, information about required facilities and equipment, and
guidelines and suggestions for course design and delivery.

In addition to the RSIC components, a curriculum must support requirements for
prerequisite knowledge and other material that is required for a graduate of the program to
achieve the education objectives and graduation outcomes. It is recommended that the
following non-RSIC courses or units be part of a RSIC curriculum, as part of entrance
requirements or as courses to provide prerequisite knowledge or to supplement the
components as part of a full degree program. The prerequisite knowledge includes such
areas as Mathematics (Differential and Integral Calculus, Differential Equations, Discrete
Mathematics, Statistics, Linear Algebra…), Physics (Mechanics, Electromagnetism,
Thermodynamics, Fluids…), Electrical Engineering (Circuit Analysis, Basic Electronics…),
Engineering Economics, and Introduction to Computer Science with Programming.

Engineering the Computer Science and IT80

Software Engineering - SoftEng

software engineering concepts and practices, software lifecycle models, project management,
software processes, software modeling and formal representation; software requirements; software
architectural and module design; software construction methods and practices, testing and quality
assurance; software maintenance; and notations and tools

Digital Systems - DigSys

concepts, methods, techniques, and tools used to support the design of combinational and
sequential digital circuits and the design of fault tolerant and advanced networked hardware
components.

Computer Control - CompCtrl

concepts of feedback control, time and frequency domains, continuous and discrete models of
dynamical systems, state analysis, stability, controllability and observability, controller design,
implementing control algorithms in real-time, integrated control design and implementation, use
of analysis and design tools

Real-Time Systems - RTSys

timing and dependability properties of software intensive systems, RTOS concepts and
applications, concurrency, synchronization and communication, scheduling, reliability and safety

Networking - Network

data communication, network topology, analysis and design, information security, algorithms,
encryption, bus architectures, wireless, distributed control and monitoring, etc.

System Engineering - SysEng

system engineering concepts, principles, and practices; system engineering processes (technical
and management); system requirements, system design, system integration, and system testing;
special emphasis on the development of a RSIC system and the integration of RSIC system
elements

Table 5. RSIC Components

In addition to the above areas, there may be institutional, regional, or national requirements
in areas of “general education”; for example, there may be requirements for oral and written
communication, for arts and humanities, or for the social sciences. These areas also support
the RSIC curriculum objectives and outcomes concerned with ethical and professional
responsibility, effective communications skills, ability to work as part of a team, and life-
long learning.

6.2 Curriculum Structure
The project consortium discussed the potential curricula to include the RSIC curricular
areas. The consortium partners not only represents computing programs at four schools
from different countries; it represents four programs that provide focus and depth in diverse
areas of computing: ERAU – software engineering, AGH – controls and automatics, UJF –
networking and telecommunication, and BUT – digital systems.

To verify the practicality and efficacy of the RSIC Curriculum Framework, each ILERT
partner analyzed how the Framework could be applied to their program. The challenge was
to maintain the program integrity and at the same time include all necessary elements of the

RSIC Framework. Obviously, different programs will treat the RSIC areas differently. For
example, the ERAU program may include more courses/units dedicated to software
engineering, while AGH will have more content dedicated to controls. Tables 6, 7, 8, and 9
show examples of curricula (semester by semester) in the four partner organizations that
meet the above criteria including one or more RSIC components. We abstract from the
concrete course names and classify them into eleven categories. Six of them correspond with
RSIC components: SoftEng, DigSys, CompCtrl, RTSys, Network, and SysEng. The other
categories include courses that are fundamental to engineering education and are usually
considered as prerequisites for RSIC components:
 Math - calculus for engineers, differential equations, mathematical logic, discrete

mathematics, and probability and statistics.
 Physics - general physics, and more specific topics from, e.g. chemistry, mechanics, and

fluid theory (includes also preliminary courses in electrical engineering)
 CompSc – programming, computer algorithms and data structures, programming

languages, operating systems, computer organization.
 Elective – technical courses that are outside the RSIC areas, such as advanced

databases, compiling techniques, computer graphics, etc. and non-technical elective
courses.

 GenEd – ethics, philosophy, history, economics, technical writing, communication
skills, presentation skills.

Year 1 Year 2 Year 3 Year 4

Sem 1A Sem 1B Sem 2A Sem 2B Sem 3A Sem 3B Sem 4A Sem 4B

CompSc CompSc SoftEng SoftEng SoftEng SoftEng SysEng SysEng

Math Math CompSc DigSys SoftEng SoftEng SoftEng TechElect

Math Math Physics Physics DigSys RTSys Practice TechElect

GenEd GenEd GenEd Math CompCtrl Network GenEd OpenElect

GenEd GenEd Math Physics Network Math GenEd GenEd
Table 6. RSIC Software Engineering Oriented Curriculum (ERAU)

Year 1 Year 2 Year 3 Year 4

Sem 1A Sem 1B (2) Sem 2A (3) Sem 2B (4) Sem 3A (5) Sem 3B (6) Sem 4A (7)

Math Math DigSys DigSys DigSys CompCtrl CompCtrl

Math Math CompCtrl CompCtrl CompCtrl CompCtrl CompCtrl

Physics Physics Physics Physics CompCtrl CompCtrl SoftEng

GenEd Math RTSys SysEng SysEng CompCtrl RTSys

GenEd GenEd Math CompCtrl SysEng SysEng SysEng

CompSc CompSc SoftEng Physics CompCtrl CompCtrl Project

CompCtrl SoftEng Math Physics Network
Table 7. RSIC Control Oriented Curriculum (AGH)

Transatlantic Engineering Programs: An Experience in International Cooperation 81

Software Engineering - SoftEng

software engineering concepts and practices, software lifecycle models, project management,
software processes, software modeling and formal representation; software requirements; software
architectural and module design; software construction methods and practices, testing and quality
assurance; software maintenance; and notations and tools

Digital Systems - DigSys

concepts, methods, techniques, and tools used to support the design of combinational and
sequential digital circuits and the design of fault tolerant and advanced networked hardware
components.

Computer Control - CompCtrl

concepts of feedback control, time and frequency domains, continuous and discrete models of
dynamical systems, state analysis, stability, controllability and observability, controller design,
implementing control algorithms in real-time, integrated control design and implementation, use
of analysis and design tools

Real-Time Systems - RTSys

timing and dependability properties of software intensive systems, RTOS concepts and
applications, concurrency, synchronization and communication, scheduling, reliability and safety

Networking - Network

data communication, network topology, analysis and design, information security, algorithms,
encryption, bus architectures, wireless, distributed control and monitoring, etc.

System Engineering - SysEng

system engineering concepts, principles, and practices; system engineering processes (technical
and management); system requirements, system design, system integration, and system testing;
special emphasis on the development of a RSIC system and the integration of RSIC system
elements

Table 5. RSIC Components

In addition to the above areas, there may be institutional, regional, or national requirements
in areas of “general education”; for example, there may be requirements for oral and written
communication, for arts and humanities, or for the social sciences. These areas also support
the RSIC curriculum objectives and outcomes concerned with ethical and professional
responsibility, effective communications skills, ability to work as part of a team, and life-
long learning.

6.2 Curriculum Structure
The project consortium discussed the potential curricula to include the RSIC curricular
areas. The consortium partners not only represents computing programs at four schools
from different countries; it represents four programs that provide focus and depth in diverse
areas of computing: ERAU – software engineering, AGH – controls and automatics, UJF –
networking and telecommunication, and BUT – digital systems.

To verify the practicality and efficacy of the RSIC Curriculum Framework, each ILERT
partner analyzed how the Framework could be applied to their program. The challenge was
to maintain the program integrity and at the same time include all necessary elements of the

RSIC Framework. Obviously, different programs will treat the RSIC areas differently. For
example, the ERAU program may include more courses/units dedicated to software
engineering, while AGH will have more content dedicated to controls. Tables 6, 7, 8, and 9
show examples of curricula (semester by semester) in the four partner organizations that
meet the above criteria including one or more RSIC components. We abstract from the
concrete course names and classify them into eleven categories. Six of them correspond with
RSIC components: SoftEng, DigSys, CompCtrl, RTSys, Network, and SysEng. The other
categories include courses that are fundamental to engineering education and are usually
considered as prerequisites for RSIC components:
 Math - calculus for engineers, differential equations, mathematical logic, discrete

mathematics, and probability and statistics.
 Physics - general physics, and more specific topics from, e.g. chemistry, mechanics, and

fluid theory (includes also preliminary courses in electrical engineering)
 CompSc – programming, computer algorithms and data structures, programming

languages, operating systems, computer organization.
 Elective – technical courses that are outside the RSIC areas, such as advanced

databases, compiling techniques, computer graphics, etc. and non-technical elective
courses.

 GenEd – ethics, philosophy, history, economics, technical writing, communication
skills, presentation skills.

Year 1 Year 2 Year 3 Year 4

Sem 1A Sem 1B Sem 2A Sem 2B Sem 3A Sem 3B Sem 4A Sem 4B

CompSc CompSc SoftEng SoftEng SoftEng SoftEng SysEng SysEng

Math Math CompSc DigSys SoftEng SoftEng SoftEng TechElect

Math Math Physics Physics DigSys RTSys Practice TechElect

GenEd GenEd GenEd Math CompCtrl Network GenEd OpenElect

GenEd GenEd Math Physics Network Math GenEd GenEd
Table 6. RSIC Software Engineering Oriented Curriculum (ERAU)

Year 1 Year 2 Year 3 Year 4

Sem 1A Sem 1B (2) Sem 2A (3) Sem 2B (4) Sem 3A (5) Sem 3B (6) Sem 4A (7)

Math Math DigSys DigSys DigSys CompCtrl CompCtrl

Math Math CompCtrl CompCtrl CompCtrl CompCtrl CompCtrl

Physics Physics Physics Physics CompCtrl CompCtrl SoftEng

GenEd Math RTSys SysEng SysEng CompCtrl RTSys

GenEd GenEd Math CompCtrl SysEng SysEng SysEng

CompSc CompSc SoftEng Physics CompCtrl CompCtrl Project

CompCtrl SoftEng Math Physics Network
Table 7. RSIC Control Oriented Curriculum (AGH)

Engineering the Computer Science and IT82

Year 1 Year 2 Year 3 Year 4

Sem 1A Sem 1B Sem 2A Sem 2B Sem 3A Sem 3B Sem 4A

Math Math CompSc SoftEng SoftEng Network

B.S. Thesis

Physics Physics CompSc Network DigSys DigSys

DigSys DigSys DigSys CompSc SysEng CompCtrl

SoftEng SoftEng DigSys CompCtrl RTSys Term
Project SoftEng DigSys Network CompCtrl Network

GenEd GenEd GenEd GenEd GenEd GenEd

Table 8. RSIC Digital System Oriented Curriculum (BUT)

Year 1 Year 2 Year 3 Year 4

Sem 1A Sem 1B Sem 2A Sem 2B Sem 3A Sem 3B Sem 4A Sem 4B

Math Math Math Physics SoftEng TechElect DigSys SoftEng

GenEd GenEd GenEd Network GenEd GenEd GenEd EMC

Physics Physics Physics SysEng Network

Project

DigSys CompCtrl

CompSc SoftEng Network
Project

Network Physics DigSys

Network Network Network Network RTSys Project
1. The program represents three year of a bachelor program and the 1st year of a 2-year master program.

2. The project is sometimes completed in industry (in particular in the last year of the bachelor or masters’
programs).

Table 9. A RSIC Network Oriented Curriculum (UJF)

A capstone design project is a key feature of most (if not all) undergraduate engineering
curricula. Because of the complexity and criticality of the RSIC curriculum and its
international nature, a team project is essential and challenging. Such course shall have the
following features:
 Distributed student teams, with members from four partner institutions, design,

develop and test a multi-robot system involving search and communication.
 The project made use of the material from all six of the RSIC components areas.
 Teams followed a defined process, use proven engineering practices, and document all

work.

7. Conclusions

We believe the Atlantis-ILERT project has strengthened international cooperation and the
global links in engineering education. The Project Methodology discussed in this paper
summarizes and formalizes the lessons learned by the project partners, and presents
principles and practices that can be used by other international collaborative groups seeking
to develop curricula that serve the global community.

The RSIC curriculum framework not only provides a model for development of curricula
that are critical to so much of human endeavor, but also serves as a meta-model for general
curriculum development. The framework elements (industrial survey, objectives and
outcomes, assessment process, architecture, and curriculum content) characterize the
structure, scope, and content that we believe should be part of any curriculum development
project.

Finally, a significant side effect of the ILERT project has been the increased understanding
and appreciation by the project partners of the importance of working across borders and
oceans to educate the world’s future engineers. We are hopeful that the ILERT project will
influence not only the technical capability of these engineers, but will better prepare them
for work in a global community.

8. Acknowledgements

This work was supported by the following grants: European Commission ATLANTIS
EU/EC: 2006-4563/006-001, Department of Education FIPSE ATLANTIS US: P116J060005,
AGH University of Science and Technology 2009 Grant.

9. References

ABET (2007). Accreditation Policy and Procedure Manual, 2008-2009 Accreditation Cycle,
ABET Inc., November 3, 2007, Baltimore, MD. (April 20, 2009, from the Website
http://www.abet.org/forms.shtml)

ACM/IEEE-CS (2004). ACM/IEEE-CS Joint Task Force on Computing Curricula, Software
Engineering 2004,Curriculum Guidelines for Undergraduate Degree Programs in Software
Engineering, Aug. 2004 (April 20, 2009, from the Website
http://www.acm.org/education/curricula.html)

Bologna Working Group (2005). A Framework for Qualifications of the European Higher
Education Area, Ministry of Science, Technology and Innovation, February 2005
(April 20, 2009, from the Website
http://www.bologna-bergen2005.no/Docs/00-Main_doc/050218_QF_EHEA.pdf)

EAC (2008). Criteria For Accrediting Engineering Programs, 2007-2008 Accreditation Cycle,
Engineering Accreditation Commission, ABET Inc., March 18, 2007 (April 20, 2009,
from the Website http://www.abet.org/forms.shtml)

European Commission (2008). The European Qualifications Framework For Lifelong Learning,
Office for Official Publications of the European Communities, April 2008 (April 20,
2009, from the Website
http://ec.europa.eu/dgs/education_culture/publ/pdf/eqf/broch_en.pdf)

ILERT (2009) Home page for International Learning Environment for Real-Time Software
Intensive Control Systems (April 20, 2009, from the Website:
http://www.ilert.agh.edu.pl/)

Thiriet, J.-M., Hilburn, T.B., Kornecki, A.J., Grega, W., Sveda, M.: "Implementation for a US-
European Trans-national Degree in Real-Time Software Engineering." Proceedings of
the 19th EAEEIE Annual Conference, Tallin, Estonia, June 29 - July 2, 2008, pp. 134-
137, ISBN: 978-1-4244-2009

Transatlantic Engineering Programs: An Experience in International Cooperation 83

Year 1 Year 2 Year 3 Year 4

Sem 1A Sem 1B Sem 2A Sem 2B Sem 3A Sem 3B Sem 4A

Math Math CompSc SoftEng SoftEng Network

B.S. Thesis

Physics Physics CompSc Network DigSys DigSys

DigSys DigSys DigSys CompSc SysEng CompCtrl

SoftEng SoftEng DigSys CompCtrl RTSys Term
Project SoftEng DigSys Network CompCtrl Network

GenEd GenEd GenEd GenEd GenEd GenEd

Table 8. RSIC Digital System Oriented Curriculum (BUT)

Year 1 Year 2 Year 3 Year 4

Sem 1A Sem 1B Sem 2A Sem 2B Sem 3A Sem 3B Sem 4A Sem 4B

Math Math Math Physics SoftEng TechElect DigSys SoftEng

GenEd GenEd GenEd Network GenEd GenEd GenEd EMC

Physics Physics Physics SysEng Network

Project

DigSys CompCtrl

CompSc SoftEng Network
Project

Network Physics DigSys

Network Network Network Network RTSys Project
1. The program represents three year of a bachelor program and the 1st year of a 2-year master program.

2. The project is sometimes completed in industry (in particular in the last year of the bachelor or masters’
programs).

Table 9. A RSIC Network Oriented Curriculum (UJF)

A capstone design project is a key feature of most (if not all) undergraduate engineering
curricula. Because of the complexity and criticality of the RSIC curriculum and its
international nature, a team project is essential and challenging. Such course shall have the
following features:
 Distributed student teams, with members from four partner institutions, design,

develop and test a multi-robot system involving search and communication.
 The project made use of the material from all six of the RSIC components areas.
 Teams followed a defined process, use proven engineering practices, and document all

work.

7. Conclusions

We believe the Atlantis-ILERT project has strengthened international cooperation and the
global links in engineering education. The Project Methodology discussed in this paper
summarizes and formalizes the lessons learned by the project partners, and presents
principles and practices that can be used by other international collaborative groups seeking
to develop curricula that serve the global community.

The RSIC curriculum framework not only provides a model for development of curricula
that are critical to so much of human endeavor, but also serves as a meta-model for general
curriculum development. The framework elements (industrial survey, objectives and
outcomes, assessment process, architecture, and curriculum content) characterize the
structure, scope, and content that we believe should be part of any curriculum development
project.

Finally, a significant side effect of the ILERT project has been the increased understanding
and appreciation by the project partners of the importance of working across borders and
oceans to educate the world’s future engineers. We are hopeful that the ILERT project will
influence not only the technical capability of these engineers, but will better prepare them
for work in a global community.

8. Acknowledgements

This work was supported by the following grants: European Commission ATLANTIS
EU/EC: 2006-4563/006-001, Department of Education FIPSE ATLANTIS US: P116J060005,
AGH University of Science and Technology 2009 Grant.

9. References

ABET (2007). Accreditation Policy and Procedure Manual, 2008-2009 Accreditation Cycle,
ABET Inc., November 3, 2007, Baltimore, MD. (April 20, 2009, from the Website
http://www.abet.org/forms.shtml)

ACM/IEEE-CS (2004). ACM/IEEE-CS Joint Task Force on Computing Curricula, Software
Engineering 2004,Curriculum Guidelines for Undergraduate Degree Programs in Software
Engineering, Aug. 2004 (April 20, 2009, from the Website
http://www.acm.org/education/curricula.html)

Bologna Working Group (2005). A Framework for Qualifications of the European Higher
Education Area, Ministry of Science, Technology and Innovation, February 2005
(April 20, 2009, from the Website
http://www.bologna-bergen2005.no/Docs/00-Main_doc/050218_QF_EHEA.pdf)

EAC (2008). Criteria For Accrediting Engineering Programs, 2007-2008 Accreditation Cycle,
Engineering Accreditation Commission, ABET Inc., March 18, 2007 (April 20, 2009,
from the Website http://www.abet.org/forms.shtml)

European Commission (2008). The European Qualifications Framework For Lifelong Learning,
Office for Official Publications of the European Communities, April 2008 (April 20,
2009, from the Website
http://ec.europa.eu/dgs/education_culture/publ/pdf/eqf/broch_en.pdf)

ILERT (2009) Home page for International Learning Environment for Real-Time Software
Intensive Control Systems (April 20, 2009, from the Website:
http://www.ilert.agh.edu.pl/)

Thiriet, J.-M., Hilburn, T.B., Kornecki, A.J., Grega, W., Sveda, M.: "Implementation for a US-
European Trans-national Degree in Real-Time Software Engineering." Proceedings of
the 19th EAEEIE Annual Conference, Tallin, Estonia, June 29 - July 2, 2008, pp. 134-
137, ISBN: 978-1-4244-2009

Engineering the Computer Science and IT84

Hilburn, T.B., Thiriet, J.-M., Kornecki, A.J., Grega W., Sveda, M. (2008) "Credits and
Accreditation in the U.S.A. and Europe: Towards a Framework for Transnational
Engineering Degrees.", Chapter 4 in INNOVATIONS 2008 - World Innovations in
Engineering Education and Research, Edited by Win Aung at all, iNEER Innovations
Series, Begell House Publishing, ISBN 978-0-9741252-8-2, pp. 29-42

Kornecki, A., Hilburn, T., Grega, W., Thiriet, J-M., Sveda, M., (2008) "A Common US-Europe
Curriculum: an Approach for Real-Time Software Intensive Systems", Proceedings of
the 2008 ASEE Annual Conference & Exposition, Pittsburgh, PA, Jun 22-25, 2008, pp.
1359-1371

Pilat, A., Kornecki, A., Thiriet, J-M., Grega, W., Sveda, M., (2008) "Industry Feedback on
Skills and Knowledge in Real-Time Software Engineering" 19th EAEEIE Annual
Conference, Tallinn, Estonia, June 29 - July 2, 2008, pp. 129-133, ISBN: 978-1-4244-
2009-4

Hilburn, T.B., Kornecki, A.J., Thiriet, J.-M., Grega W., Sveda, M. (2008) "An RSIC-SE2004
Curriculum Framework." Proceedings International Multiconference on Computer
Science and Information Technology - Real-Time Software, IMCSIT, Wisla, Poland, 2008,
pp. 633-638

Kornecki, A., Hilburn, T., Grega, W., Thiriet, J-M., Sveda, M. (2009), "ILERT - International
Learning Environment for Real-Time Software-Intensive Control Systems", JAMRIS
- Journal of Automation, Mobile Robotics and Intelligent Systems, ISSN 1897-8649, Vol.
3, No. 3, 2009, pp. 66-71

SACS (2007). The Principles of Accreditation: Foundations for Quality Enhancement, Commission
on Colleges, Southern Association of Colleges and Schools, December 2007. (April
20, 2009, from the Website
 http://www.sacscoc.org/pdf/2008PrinciplesofAccreditation.pdf)

Methodology To Develop Alternative Makespan Algorithm
For Re-entrant Flow Shop Using Bottleneck Approach 85

Methodology To Develop Alternative Makespan Algorithm For Re-entrant
Flow Shop Using Bottleneck Approach

Salleh Ahmad Bareduan and Sulaiman Hj Hasan

X

Methodology To Develop Alternative Makespan
Algorithm For Re-entrant Flow Shop Using

Bottleneck Approach

Salleh Ahmad Bareduan and Sulaiman Hj Hasan
Universiti Tun Hussein Onn Malaysia,

Malaysia

1. Introduction

The Flow shop manufacturing is a very common production system found in many
manufacturing facilities, assembly lines and industrial processes. It is known that finding an
optimal solution for a flow shop scheduling problem is a difficult task (Lian et al., 2008) and
even a basic problem of F3 || Cmax is already strongly NP-hard (Pinedo, 2002). Therefore,
many researchers have concentrated their efforts on finding near optimal solution within
acceptable computation time using heuristics.

One of the important subclass of flow shop which is quite prominent in industries is re-
entrant flow shop. The special feature of a re-entrant flow shop compared to ordinary flow
shop is that the job routing may return one or more times to any facility. Among the
researchers on re-entrant flow shop, Graves et al. (1983) has developed a cyclic scheduling
method that takes advantage of the flow character of the re-entrant process. This work
illustrated a re-entrant flow shop model of a semiconductor wafer manufacturing process
and developed a heuristic algorithm to minimize average throughput time using cyclic
scheduling method at specified production rate. The decomposition technique in solving
maximum lateness problem for re-entrant flow shop with sequence dependent setup times
was suggested by Dermirkol & Uzsoy (2000). Mixed integer heuristic algorithms was later
elaborated by Pan & Chen (2003) in minimizing makespan of a permutation flow shop
scheduling problem. Significant works on re-entrant hybrid flow shop can be found in Yura
(1999), Pearn et al. (2004) and Choi et al. (2005) while hybrid techniques which combine
lower bound-based algorithm and idle time-based algorithm was reported by Choi & Kim
(2008).

In scheduling literature, heuristic that utilize the bottleneck approach is known to be among
the most successful methods in solving shop scheduling problem. This includes shifting
bottleneck heuristic (Adams et al., 1988),(Mukherjee & Chatterjee, 2006) and bottleneck
minimal idleness heuristic (Kalir & Sarin, 2001)(Wang et al., 2006). However, not much
progress is reported on bottleneck approach in solving re-entrant flow shop problem.

6

Engineering the Computer Science and IT86

Among the few researches are Dermirkol & Uzsoy (2000) who developed a specific version
of shifting bottleneck heuristic to solve the re-entrant flow shop sequence problem.

This chapter explores and investigates an Internet based collaborative design and
manufacturing process scheduling which resembles a four machine permutation re-entrant
flow shop. It presents the methodology to develop an effective makespan computation
algorithm using bottleneck analysis. This computation is specifically intended for the cyber
manufacturing centre at Universiti Tun Hussein Onn Malaysia (UTHM).

2. Cyber Manufacturing Centre

UTHM has developed a web-based system that allows the university to share the
sophisticated and advanced machinery and software available at the university with the
small and medium enterprises using Internet technology (Bareduan et al., 2006). The heart
of the system is the cyber manufacturing centre (CMC) which consists of an advanced
computer numerical control (CNC) machining centre fully equipped with cyber
manufacturing system software that includes computer aided design and computer aided
manufacturing (CAD/CAM) system, scheduling system, tool management system and
machine monitoring system.

The Petri net (PN) model that describes a typical design and manufacturing activities at the
CMC is shown in Fig. 1. The places denoted by P22, P23, P24 and P25 in Fig. 1 are the
resources utilized at the CMC. These resources are the CAD system, CAM system, CNC
postprocessor and CNC machine centre respectively. At the CMC, all jobs must go through
all processes following the sequence represented in the PN model. This flow pattern is very
much similar with flow shop manufacturing (Onwubolu, 1996 and Pinedo, 2002). However,
it can be noticed from the PN model that there a few processes that share common
resources. The process of generating CNC program for prototyping (T3) and the process of
generating CNC program for customer (T5) are executed on the same CNC postprocessor
(P24). Similarly, the processes of prototype machining (T4) and parts machining (T6) are
executed on the same CNC machine centre. These indicate that there are re-entries at both
CNC postprocessor (P24) and CNC machine centre (P25) for each job going through the
CMC process activities. Thus, this process flow is considered as a re-entrant flow shop as
described by Graves et al. (1983). It can also be noticed that both shared resources (P24 and
P25) must completely finish the processing of a particular job at T5 and T6 before starting to
process any new job at T3 and T4. This means that the CMC scheduling will always follow
the permutation rule in executing its functions. In other words, considering all
characteristics of the CMC, this problem can be identified as four machine permutation re-
entrant flow shop with the processing route of M1,M2,M3,M4,M3,M4 as similarly described
by Yang et al. (2008).

Fig. 1. Petri Net Model of CMC activities

3. Absolute Bottleneck Analysis

Let say, the CMC is currently having four jobs that need to be processed. Typical processing
time ranges for all processes are shown in Table 1. From this table, it is obvious that most
probably P(1,j) is the bottleneck for the overall process because it is having the longest
processing time range. By using the time ranges in Table 1, sets of random data was
generated for four jobs that need to be processed. These data is shown in Table 2. Assuming
that the data in Table 2 is arranged in the order of First-come-first-served (FCFS), then a
Gantt chart representing a FCFS schedule is built as illustrated in Fig. 2. The Gantt chart is
built by strictly referring to the PN model in Fig. 1 together with strict permutation rule.

 P(1, j) P(2, j) P(3, j) P(4, j) P(5, j) P(6, j)
Minimum time 70 2 2 8 2 8
Maximum time 100 8 8 40 8 40

Table 1. Processing Time Range (hr)

 P(1, j) P(2, j) P(3, j) P(4, j) P(5, j) P(6, j)

Job A 73 8 3 8 5 30
Job B 90 2 5 32 5 32
Job C 98 2 3 8 8 17
Job D 75 6 3 36 4 35

Table 2. Processing Time Data (hr)

Referring to Table 2, Figure 1 and Figure 2, the scheduling algorithm for the CMC can be
written as the followings and is identified as Algorithm 1 (Bareduan & Hasan, 2008):
Algorithm 1
Let i = Process number or work centre number (i=1,2,3,….)
 j = Job number (j=1,2,3,…)

Start (i,j) = start time of the jth job at ith work centre.
Stop (i,j) = stop time of the jth job at ith work centre.
 P(i,j) = processing time of the jth job at ith work centre.

P1 P2 P3 P4 P5 P6 P7

P22 P23

P24 P25

T1

15

T2

3

T3

2

T4

8

T5

2

T6

16

CAD design, virtual
meeting, design
review

CAM
simulation

Generate CNC
 program
for prototype

Generate CNC
 program
for customerPrototype

machining

Parts
machining

CAD system
(M1) CAM system

(M2)
CNC postprocessor

(M3)
CNC machine

(M4)

Methodology To Develop Alternative Makespan Algorithm
For Re-entrant Flow Shop Using Bottleneck Approach 87

Among the few researches are Dermirkol & Uzsoy (2000) who developed a specific version
of shifting bottleneck heuristic to solve the re-entrant flow shop sequence problem.

This chapter explores and investigates an Internet based collaborative design and
manufacturing process scheduling which resembles a four machine permutation re-entrant
flow shop. It presents the methodology to develop an effective makespan computation
algorithm using bottleneck analysis. This computation is specifically intended for the cyber
manufacturing centre at Universiti Tun Hussein Onn Malaysia (UTHM).

2. Cyber Manufacturing Centre

UTHM has developed a web-based system that allows the university to share the
sophisticated and advanced machinery and software available at the university with the
small and medium enterprises using Internet technology (Bareduan et al., 2006). The heart
of the system is the cyber manufacturing centre (CMC) which consists of an advanced
computer numerical control (CNC) machining centre fully equipped with cyber
manufacturing system software that includes computer aided design and computer aided
manufacturing (CAD/CAM) system, scheduling system, tool management system and
machine monitoring system.

The Petri net (PN) model that describes a typical design and manufacturing activities at the
CMC is shown in Fig. 1. The places denoted by P22, P23, P24 and P25 in Fig. 1 are the
resources utilized at the CMC. These resources are the CAD system, CAM system, CNC
postprocessor and CNC machine centre respectively. At the CMC, all jobs must go through
all processes following the sequence represented in the PN model. This flow pattern is very
much similar with flow shop manufacturing (Onwubolu, 1996 and Pinedo, 2002). However,
it can be noticed from the PN model that there a few processes that share common
resources. The process of generating CNC program for prototyping (T3) and the process of
generating CNC program for customer (T5) are executed on the same CNC postprocessor
(P24). Similarly, the processes of prototype machining (T4) and parts machining (T6) are
executed on the same CNC machine centre. These indicate that there are re-entries at both
CNC postprocessor (P24) and CNC machine centre (P25) for each job going through the
CMC process activities. Thus, this process flow is considered as a re-entrant flow shop as
described by Graves et al. (1983). It can also be noticed that both shared resources (P24 and
P25) must completely finish the processing of a particular job at T5 and T6 before starting to
process any new job at T3 and T4. This means that the CMC scheduling will always follow
the permutation rule in executing its functions. In other words, considering all
characteristics of the CMC, this problem can be identified as four machine permutation re-
entrant flow shop with the processing route of M1,M2,M3,M4,M3,M4 as similarly described
by Yang et al. (2008).

Fig. 1. Petri Net Model of CMC activities

3. Absolute Bottleneck Analysis

Let say, the CMC is currently having four jobs that need to be processed. Typical processing
time ranges for all processes are shown in Table 1. From this table, it is obvious that most
probably P(1,j) is the bottleneck for the overall process because it is having the longest
processing time range. By using the time ranges in Table 1, sets of random data was
generated for four jobs that need to be processed. These data is shown in Table 2. Assuming
that the data in Table 2 is arranged in the order of First-come-first-served (FCFS), then a
Gantt chart representing a FCFS schedule is built as illustrated in Fig. 2. The Gantt chart is
built by strictly referring to the PN model in Fig. 1 together with strict permutation rule.

 P(1, j) P(2, j) P(3, j) P(4, j) P(5, j) P(6, j)
Minimum time 70 2 2 8 2 8
Maximum time 100 8 8 40 8 40

Table 1. Processing Time Range (hr)

 P(1, j) P(2, j) P(3, j) P(4, j) P(5, j) P(6, j)

Job A 73 8 3 8 5 30
Job B 90 2 5 32 5 32
Job C 98 2 3 8 8 17
Job D 75 6 3 36 4 35

Table 2. Processing Time Data (hr)

Referring to Table 2, Figure 1 and Figure 2, the scheduling algorithm for the CMC can be
written as the followings and is identified as Algorithm 1 (Bareduan & Hasan, 2008):
Algorithm 1
Let i = Process number or work centre number (i=1,2,3,….)
 j = Job number (j=1,2,3,…)

Start (i,j) = start time of the jth job at ith work centre.
Stop (i,j) = stop time of the jth job at ith work centre.
 P(i,j) = processing time of the jth job at ith work centre.

P1 P2 P3 P4 P5 P6 P7

P22 P23

P24 P25

T1

15

T2

3

T3

2

T4

8

T5

2

T6

16

CAD design, virtual
meeting, design
review

CAM
simulation

Generate CNC
 program
for prototype

Generate CNC
 program
for customerPrototype

machining

Parts
machining

CAD system
(M1) CAM system

(M2)
CNC postprocessor

(M3)
CNC machine

(M4)

Engineering the Computer Science and IT88

For i=1,2,5,6 and j=1,2,3,…n
Start (i,j) = Max [Stop (i,j-1), Stop (i-1,j)] except Start (1,1) = initial starting time
Stop (i,j) = Start (i,j) + P (i,j)

For i =3,4 and j=1,2,3,…n
Start (i,j) = Max [Stop (i,j-1), Stop (i-1,j), Stop (i+2,j-1)]
Stop (i,j) = Start (i,j) + P(i,j)

Work
centre

(resource)

Job Time (hours)

 0 24 48 72 96 120 144 168 192 216 240 264 288 312 336 360 384 408 432

1

(M1)

JA 24 24 24 1
JB 23 24 24 19
JC 5 24 24 24 21
JD 3 24 24 24

2

(M2)

JA 8
JB 2
JC 2
JD 6

3

(M3)

JA 3
JB 3 2
JC 1 2
JD 3

4

(M4)

JA 8
JB 22 10
JC 8
JD 15 21

5

(M3)

JA 4 1
JB 5
JC 8
JD 3 1

6

(M4)

JA 23 7
JB 9 23
JC 6 11
JD 23 12

Fig. 2. Gantt Chart for ABCD Job Sequence

Upon thorough study on the schedule Gantt chart at Fig. 2 inwhich P(1,j) appears to be the
clear bottleneck, a general makespan computation algorithm for the example problems can
be described as below:

n

j i
max niPjP

1

6

2

),(),1(C (1)

The bottleneck of P(1, j) in Fig. 2 is represented by the value of

n

j
jP

1
),1(in Equation (1).

Since

n

j
jP

1
),1(will always result to the same value at any job sequence, then the

makespan is directly influenced by {P(2, n) + P(3, n) + P(4, n) + P(5, n) + P(6, n)} which
is the sum of the second, third, fourth, fifth and sixth task processing time for the last job.

Equation (1) is similar with completion time algorithm described by Ho & Gupta (1995) and
Cepek et al. (2002) for the problem Fm|ddm|γ. They illustrated the scheduling sequence of
decreasing dominant machine (ddm) which follows the criteria of Min{j=1,2…n}[P(k, j)] ≥
Max{j=1,2…n}[P(r, j)]. While these two researches concentrated on strict ddm flow shop
case study, this chapter focuses on the problem of a special type of flow shop which is
known as re-entrant flow shop that exhibits dominant or bottleneck machine characteristics.

To illustrate the usage of Equation (1), the data in Table 2 is used to compute the makespan
for the scheduling sequence of DCBA.

Cmax (DCBA) = {P(1, 1) + P(1, 2) + P(1, 3) + P(1, 4)}
 + { P(2, 4) + P(3, 4) + P(4, 4) + P(5, 4) + P(6, 4) }
 = { 75 + 98 + 90 + 73 } + { 8 + 3 + 8 + 5 + 30 }
 = 390 hours

Equation (1) can also be used to obtain the optimum job sequence. This is achieved by
assigning the last job sequence to the job that has the smallest value of {P(2, j) + P(3, j) +
P(4, j) + P(5, j) + P(6, j)} (Bareduan et al., 2008). From Table 2, it can be noticed that Job C
has the smallest value of {P(2, j) + P(3, j) + P(4, j) + P(5, j) + P(6, j)}. Therefore, by
assigning Job C as the last sequence, an optimal schedule can be expected. The job sequences
that end up with Job C as the last sequence are ABDC, ADBC, BADC, BDAC, DABC and
DBAC. The makespan computation for ABDC sequence using Equation (1) is as the
followings:

Cmax (ABDC) = {P(1, 1) + P(1, 2) + P(1, 3) + P(1, 4)}
 + { P(2, 4) + P(3, 4) + P(4, 4) + P(5, 4) + P(6, 4) }
 = { 73 + 90 + 75 + 98 } + { 2 + 3 + 8 + 8 + 17 }
 = 374 hours

Job

Sequence
Makespan

(hr)
Job

Sequence
Makespan

(hr)
Job

Sequence
Makespan

(hr)
Job

Sequence
Makespan

(hr)
ABCD 420 ABDC 374 ACDB 412 BCDA 390
ACBD 420 ADBC 374 ADCB 412 BDCA 390
BACD 420 BADC 374 CADB 412 CBDA 390
BCAD 420 BDAC 374 CDAB 412 CDBA 390
CABD 420 DABC 374 DACB 412 DBCA 390
CBAD 420 DBAC 374 DCAB 412 DCBA 390

Table 3. Makespan for different job sequences using Algorithm 1

In searching for the optimum solution for the 4 job problems in Table 2, a complete
enumeration consisting of 24 schedule sequences representing ABCD, ABDC, BADC, etc
arrangements were investigated. Algorithm 1 was used to obtain the makespan for all
possible sequences and the results are shown in Table 3. From this table, it is noticed that
374 hours is the minimum makespan value and this value belongs to all sequences that end
up with Job C as the last sequence. This indicates that minimum makespan solution

Methodology To Develop Alternative Makespan Algorithm
For Re-entrant Flow Shop Using Bottleneck Approach 89

For i=1,2,5,6 and j=1,2,3,…n
Start (i,j) = Max [Stop (i,j-1), Stop (i-1,j)] except Start (1,1) = initial starting time
Stop (i,j) = Start (i,j) + P (i,j)

For i =3,4 and j=1,2,3,…n
Start (i,j) = Max [Stop (i,j-1), Stop (i-1,j), Stop (i+2,j-1)]
Stop (i,j) = Start (i,j) + P(i,j)

Work
centre

(resource)

Job Time (hours)

 0 24 48 72 96 120 144 168 192 216 240 264 288 312 336 360 384 408 432

1

(M1)

JA 24 24 24 1
JB 23 24 24 19
JC 5 24 24 24 21
JD 3 24 24 24

2

(M2)

JA 8
JB 2
JC 2
JD 6

3

(M3)

JA 3
JB 3 2
JC 1 2
JD 3

4

(M4)

JA 8
JB 22 10
JC 8
JD 15 21

5

(M3)

JA 4 1
JB 5
JC 8
JD 3 1

6

(M4)

JA 23 7
JB 9 23
JC 6 11
JD 23 12

Fig. 2. Gantt Chart for ABCD Job Sequence

Upon thorough study on the schedule Gantt chart at Fig. 2 inwhich P(1,j) appears to be the
clear bottleneck, a general makespan computation algorithm for the example problems can
be described as below:

n

j i
max niPjP

1

6

2

),(),1(C (1)

The bottleneck of P(1, j) in Fig. 2 is represented by the value of

n

j
jP

1
),1(in Equation (1).

Since

n

j
jP

1
),1(will always result to the same value at any job sequence, then the

makespan is directly influenced by {P(2, n) + P(3, n) + P(4, n) + P(5, n) + P(6, n)} which
is the sum of the second, third, fourth, fifth and sixth task processing time for the last job.

Equation (1) is similar with completion time algorithm described by Ho & Gupta (1995) and
Cepek et al. (2002) for the problem Fm|ddm|γ. They illustrated the scheduling sequence of
decreasing dominant machine (ddm) which follows the criteria of Min{j=1,2…n}[P(k, j)] ≥
Max{j=1,2…n}[P(r, j)]. While these two researches concentrated on strict ddm flow shop
case study, this chapter focuses on the problem of a special type of flow shop which is
known as re-entrant flow shop that exhibits dominant or bottleneck machine characteristics.

To illustrate the usage of Equation (1), the data in Table 2 is used to compute the makespan
for the scheduling sequence of DCBA.

Cmax (DCBA) = {P(1, 1) + P(1, 2) + P(1, 3) + P(1, 4)}
 + { P(2, 4) + P(3, 4) + P(4, 4) + P(5, 4) + P(6, 4) }
 = { 75 + 98 + 90 + 73 } + { 8 + 3 + 8 + 5 + 30 }
 = 390 hours

Equation (1) can also be used to obtain the optimum job sequence. This is achieved by
assigning the last job sequence to the job that has the smallest value of {P(2, j) + P(3, j) +
P(4, j) + P(5, j) + P(6, j)} (Bareduan et al., 2008). From Table 2, it can be noticed that Job C
has the smallest value of {P(2, j) + P(3, j) + P(4, j) + P(5, j) + P(6, j)}. Therefore, by
assigning Job C as the last sequence, an optimal schedule can be expected. The job sequences
that end up with Job C as the last sequence are ABDC, ADBC, BADC, BDAC, DABC and
DBAC. The makespan computation for ABDC sequence using Equation (1) is as the
followings:

Cmax (ABDC) = {P(1, 1) + P(1, 2) + P(1, 3) + P(1, 4)}
 + { P(2, 4) + P(3, 4) + P(4, 4) + P(5, 4) + P(6, 4) }
 = { 73 + 90 + 75 + 98 } + { 2 + 3 + 8 + 8 + 17 }
 = 374 hours

Job

Sequence
Makespan

(hr)
Job

Sequence
Makespan

(hr)
Job

Sequence
Makespan

(hr)
Job

Sequence
Makespan

(hr)
ABCD 420 ABDC 374 ACDB 412 BCDA 390
ACBD 420 ADBC 374 ADCB 412 BDCA 390
BACD 420 BADC 374 CADB 412 CBDA 390
BCAD 420 BDAC 374 CDAB 412 CDBA 390
CABD 420 DABC 374 DACB 412 DBCA 390
CBAD 420 DBAC 374 DCAB 412 DCBA 390

Table 3. Makespan for different job sequences using Algorithm 1

In searching for the optimum solution for the 4 job problems in Table 2, a complete
enumeration consisting of 24 schedule sequences representing ABCD, ABDC, BADC, etc
arrangements were investigated. Algorithm 1 was used to obtain the makespan for all
possible sequences and the results are shown in Table 3. From this table, it is noticed that
374 hours is the minimum makespan value and this value belongs to all sequences that end
up with Job C as the last sequence. This indicates that minimum makespan solution

Engineering the Computer Science and IT90

provided by Equation (1) in the specific example problem of Table 2 is correct. A further
detail observation of Equation (1) suggests that this equation works well for CMC makespan
computation under a strict bottleneck conditions. The conditions are imposed to ensure that
all first tasks of the CMC activities (P(1, j)) are always the bottleneck. These conditions are
identified as absolute bottleneck in which regardless of any job sequence arrangement, P(1,j)
without fails are always the schedule bottleneck. The absolute bottleneck conditions of
Equation (1) are written as the followings:

Max{j=1…n}[P(2, j)] ≤ Min{j=1…n}[P(1, j)] (2)

Max{j=1…n}[P(2,j)+P(3,j)+P(4,j)+P(5,j)] ≤ Min{j=1…n}[P(1,j)+P(2,j)] (3)

Max{j=1…n}[P(2,j)+P(3,j)+P(4,j)+P(5,j)+P(6,j)] ≤ Min{j=1…n}[P(1,j)+P(2,j)+P(3,j)] (4)

Condition (2) implies that every job takes less time going through task 2 compares to any job
going through task 1. It functions to make sure that no matter how the jobs are arranged,
P(2,j) will never imposed a bottleneck to the system. P(2,j) will always complete earlier than
P(1,j+1) and this guarantees that task 2 of any job can immediately begins after the
completion of its task 1 process. This environment is illustrated in Fig. 3 in which X2
completes earlier than Y1. As a result, Y2 can begin immediately after the completion of Y1.

Resource Time

M1 X1 Y1

M2 X2 Y2

M3 X3 X5 Y3 Y5

M4 X4 X6 Y4 Y6

Fig. 3. Example schedule that fulfils (2), (3) and (4)

Condition (3) states that every job takes less time going through task 2, 3, 4 and 5 than any
job going through task 1 and 2. This means that for a job X starting on task 2, and job Y
starting at task 1 at the same time, this condition guarantees that job X would have released
the CNC postprocessor M3 (refer Fig. 1) after its task 5 no later than when job Y needs the
postprocessor for its task 3. This is due to the fact that tasks 3 and 5 are sharing the same M3
CNC postprocessor. However, this achievement is only guaranteed if (2) is also satisfied.
Fig. 3 also illustrates the example of a schedule that fulfils (3). In this figure, Y3 can begin
immediately after completion of Y2 because Y1+Y2 is longer than or equal to X2+X3+X4+X5.

Similarly, condition (4) implies that every job takes less time going through task 2, 3, 4, 5
and 6 than any job going through task 1, 2 and 3. This means that for a job X starting on task
2, and job Y starting at task 1 at the same time, this condition guarantees that job X would
have released CNC machine M4 (refer Fig. 1) after its task 6 no later than when job Y needs
the CNC machine for its task 4. However, this achievement is only guaranteed if both
Condition (2) and (3) are also satisfied. This is also shown in Fig. 3 in which

X2+X3+X4+X5+X6 is less or equal to Y1+Y2+Y3. As a result, it is guaranteed that Y4 can
begin immediately after the completion of Y3.

Condition (2), (3) and (4) were then tested on the data from Table 2. The result of this test is
shown in Table 4. It can be seen clearly that Condition (2) is satisfied by the values of all
P(2, j) which are always smaller than the minimum value of P(1, j). At the same time

Condition (3) is also satisfied by the value of

5

2
),(

i
jiP for each job “j” which is never

greater than the minimum value of

2

1
),(

i
jiP over all jobs. Similarly, Condition (4) is not

violated by looking at the fact that the value of

6

2
),(

i
jiP for each job “j” is always smaller

or equal to the minimum value of

3

1
),(

i
jiP .

 Condition (2) Condition (3) Condition (4)

Job P(1,j) P(2,j) P(3,j) P(4,j) P(5,j) P(6,j)

2

1
),(

i
jiP

5

2
),(

i
jiP

3

1
),(

i
jiP

6

2
),(

i
jiP

Job
A 73 8 3 8 5 30 81 24 84 54

Job
B 90 2 5 32 5 32 92 44 97 76

Job
C 98 2 3 8 8 17 100 21 103 38

Job
D 75 6 3 36 4 35 81 49 84 84

Table 4. Condition (2), Condition (3) and Condition (4) observations

If a set of scheduling data fulfils Condition (2), (3) and (4), then Equation (1) can be used to
calculate the schedule makespan as well as to find the job sequences that provide the
optimum makespan. Strictly depending on the job sequence, the completion time for each
job (Cj) then can be computed as the followings:

j

k i
j jiPkP

1

6

2

),(),1(C (5)

Using the data at Table 2, the completion time of Job B under DCBA job sequence can be
computed using Equation (5) as the followings:

CB = {P(1, 1) + P(1, 2) + P(1, 3)}
 + { P(2, 3) + P(3, 3) + P(4, 3) + P(5, 3) + P(6, 3) }
 = { 75 + 98 + 90 } + { 2 + 5 + 32 + 5 + 32 }
 = 339 hours

Methodology To Develop Alternative Makespan Algorithm
For Re-entrant Flow Shop Using Bottleneck Approach 91

provided by Equation (1) in the specific example problem of Table 2 is correct. A further
detail observation of Equation (1) suggests that this equation works well for CMC makespan
computation under a strict bottleneck conditions. The conditions are imposed to ensure that
all first tasks of the CMC activities (P(1, j)) are always the bottleneck. These conditions are
identified as absolute bottleneck in which regardless of any job sequence arrangement, P(1,j)
without fails are always the schedule bottleneck. The absolute bottleneck conditions of
Equation (1) are written as the followings:

Max{j=1…n}[P(2, j)] ≤ Min{j=1…n}[P(1, j)] (2)

Max{j=1…n}[P(2,j)+P(3,j)+P(4,j)+P(5,j)] ≤ Min{j=1…n}[P(1,j)+P(2,j)] (3)

Max{j=1…n}[P(2,j)+P(3,j)+P(4,j)+P(5,j)+P(6,j)] ≤ Min{j=1…n}[P(1,j)+P(2,j)+P(3,j)] (4)

Condition (2) implies that every job takes less time going through task 2 compares to any job
going through task 1. It functions to make sure that no matter how the jobs are arranged,
P(2,j) will never imposed a bottleneck to the system. P(2,j) will always complete earlier than
P(1,j+1) and this guarantees that task 2 of any job can immediately begins after the
completion of its task 1 process. This environment is illustrated in Fig. 3 in which X2
completes earlier than Y1. As a result, Y2 can begin immediately after the completion of Y1.

Resource Time

M1 X1 Y1

M2 X2 Y2

M3 X3 X5 Y3 Y5

M4 X4 X6 Y4 Y6

Fig. 3. Example schedule that fulfils (2), (3) and (4)

Condition (3) states that every job takes less time going through task 2, 3, 4 and 5 than any
job going through task 1 and 2. This means that for a job X starting on task 2, and job Y
starting at task 1 at the same time, this condition guarantees that job X would have released
the CNC postprocessor M3 (refer Fig. 1) after its task 5 no later than when job Y needs the
postprocessor for its task 3. This is due to the fact that tasks 3 and 5 are sharing the same M3
CNC postprocessor. However, this achievement is only guaranteed if (2) is also satisfied.
Fig. 3 also illustrates the example of a schedule that fulfils (3). In this figure, Y3 can begin
immediately after completion of Y2 because Y1+Y2 is longer than or equal to X2+X3+X4+X5.

Similarly, condition (4) implies that every job takes less time going through task 2, 3, 4, 5
and 6 than any job going through task 1, 2 and 3. This means that for a job X starting on task
2, and job Y starting at task 1 at the same time, this condition guarantees that job X would
have released CNC machine M4 (refer Fig. 1) after its task 6 no later than when job Y needs
the CNC machine for its task 4. However, this achievement is only guaranteed if both
Condition (2) and (3) are also satisfied. This is also shown in Fig. 3 in which

X2+X3+X4+X5+X6 is less or equal to Y1+Y2+Y3. As a result, it is guaranteed that Y4 can
begin immediately after the completion of Y3.

Condition (2), (3) and (4) were then tested on the data from Table 2. The result of this test is
shown in Table 4. It can be seen clearly that Condition (2) is satisfied by the values of all
P(2, j) which are always smaller than the minimum value of P(1, j). At the same time

Condition (3) is also satisfied by the value of

5

2
),(

i
jiP for each job “j” which is never

greater than the minimum value of

2

1
),(

i
jiP over all jobs. Similarly, Condition (4) is not

violated by looking at the fact that the value of

6

2
),(

i
jiP for each job “j” is always smaller

or equal to the minimum value of

3

1
),(

i
jiP .

 Condition (2) Condition (3) Condition (4)

Job P(1,j) P(2,j) P(3,j) P(4,j) P(5,j) P(6,j)

2

1
),(

i
jiP

5

2
),(

i
jiP

3

1
),(

i
jiP

6

2
),(

i
jiP

Job
A 73 8 3 8 5 30 81 24 84 54

Job
B 90 2 5 32 5 32 92 44 97 76

Job
C 98 2 3 8 8 17 100 21 103 38

Job
D 75 6 3 36 4 35 81 49 84 84

Table 4. Condition (2), Condition (3) and Condition (4) observations

If a set of scheduling data fulfils Condition (2), (3) and (4), then Equation (1) can be used to
calculate the schedule makespan as well as to find the job sequences that provide the
optimum makespan. Strictly depending on the job sequence, the completion time for each
job (Cj) then can be computed as the followings:

j

k i
j jiPkP

1

6

2

),(),1(C (5)

Using the data at Table 2, the completion time of Job B under DCBA job sequence can be
computed using Equation (5) as the followings:

CB = {P(1, 1) + P(1, 2) + P(1, 3)}
 + { P(2, 3) + P(3, 3) + P(4, 3) + P(5, 3) + P(6, 3) }
 = { 75 + 98 + 90 } + { 2 + 5 + 32 + 5 + 32 }
 = 339 hours

Engineering the Computer Science and IT92

The explanations on the absolute bottleneck conditions indicate that Equation (1) produces
accurate makespan computation result if Condition (2), Condition (3) and Condition (4)
were met. In order to test this statement, a total of 10000 simulations for four job sequence
were conducted using random data between 1 to 20 hours for each of P(2,j), P(3,j), P(4,j),
P(5,j) and P(6,j). The value of P(1,j) were set to be between 1 to 100 in order to have a more
evenly distributed matching of either Condition (2), Condition (3) and Condition (4) or any
of their combinations. These simulations were conducted in Microsoft® Excel using
Microsoft® Visual Basic for Application programming.

Each set of random data obtained was tested with a total of 24 different sequences that
resembles the sequence arrangements of ABCD, ABDC, ACBD etc. This means that with
10000 simulations, a total of 240,000 job sequence arrangements were tested. The makespan
results from Algorithm 1 were compared with the makespan value obtained from Equation
(1). In analyzing the test result, a set of data is said to produce perfect result if all the 24
different job sequences makespan from Equation (1) are the same with Algorithm 1. The test
analysis result is shown in Table 5. The results from the simulations showed that all
makespan value from both Equation (1) and Algorithm 1 are equal for random data sets that
fulfill all the three conditions. This indicates that Equation (1) produces accurate makespan
computation if Condition (2), Condition (3) and Condition (4) were met. With all these three
conditions met, we can conclude that P(1, j) is the absolute bottleneck of the scheduling
system. Then, Equation (1) can also be used to determine the optimum job sequences and
Equation (5) can be used to calculate the completion time for each job.

Conditions Met Sets of Data Fulfill The
Conditions

Percentage of Perfect
Result

4.7+4.8+4.9 900 100%
4.7+4.8 286 8.74%
4.7+4.9 185 19.46%

4.7 3729 1.13%
- 4898 0%

Table 5. Accuracy of Equation (1) at various conditions

4. Bottleneck Correction Factor

During the simulation process to investigate the accuracy of makespan computation using
Equation (1) in relation with Condition (2), (3) and (4), it was observed that within a data set
that violates these conditions, Equation (1) still produces accurate makespan result at some
sequence arrangements but not on all of them. It is worth to investigate further whether
there are rules or conditions that might be used to describe this phenomenon. This can only
be done by comparing the makespan computation for all possible job sequences within the
specific data set using both Algorithm 1 and Equation (1). A sample of data set that exhibits
this phenomenon is illustrated in Table 6 in which, Condition (4) is violated. Table 7 shows
the makespan computation of data from Table 6 using Algorithm 1 while Table 8 is the
makespan computation using Equation (1).

 Condition (2) Condition (3) Condition (4)

Job P(1,j) P(2,j) P(3,j) P(4,j) P(5,j) P(6,j)

2

1
),(

i
jiP

5

2
),(

i
jiP

3

1
),(

i
jiP

6

2
),(

i
jiP

Job A 73 8 3 8 5 30 81 24 84 54
Job B 90 2 5 32 5 32 92 44 97 76
Job C 98 2 3 35 8 39 100 48 103 87
Job D 75 6 3 36 4 35 81 49 84 84

Table 6. Condition (4) violations

Job

Sequence
Makespan

(hr)
Job

Sequence
Makespan

(hr)
Job

Sequence
Makespan

(hr)
Job

Sequence
Makespan

(hr)
ABCD 423 ABDC 423 ACDB 412 BCDA 393
ACBD 420 ADBC 423 ADCB 412 BDCA 393
BACD 423 BADC 423 CADB 412 CBDA 390
BCAD 420 BDAC 423 CDAB 412 CDBA 390
CABD 420 DABC 423 DACB 412 DBCA 393
CBAD 420 DBAC 423 DCAB 412 DCBA 390

Table 7. Makespan computation using Algorithm 1

Job
Sequence

Makespan
(hr)

Job
Sequence

Makespan
(hr)

Job
Sequence

Makespan
(hr)

Job
Sequence

Makespan
(hr)

ABCD 420 ABDC 423 ACDB 412 BCDA 390
ACBD 420 ADBC 423 ADCB 412 BDCA 390
BACD 420 BADC 423 CADB 412 CBDA 390
BCAD 420 BDAC 423 CDAB 412 CDBA 390
CABD 420 DABC 423 DACB 412 DBCA 390
CBAD 420 DBAC 423 DCAB 412 DCBA 390

Table 8. Makespan computation using Equation (1)

Comparing Table 7 and Table 8, it can be noticed that majority of the makespan value using
Equation (1) are equal with the makespan value from Algorithm 1. This means that
Equation (1) works very well with majority of the job sequences except ABCD, BACD,
BCDA, BDCA and DBCA. In other words, even though Condition (4) is violated, Equation
(1) still produces accurate makespan value for majority of the job sequences. To further
investigate the failure characteristics of Equation (1) in computing the makespan of some job
sequences, a detail analysis of the Gantt charts representing the job arrangements that were
wrongly computed by the equation was conducted. During the analysis, it was observed
that Equation (1) is still valid for makespan computation if some localized sequence
dependent conditions were met. These localized sequence dependent conditions for the 4-
job example case in Table 6 are (Bareduan & Hasan, 2008):

P(1, 2) + P(1, 3) + P(1, 4) ≥ VP(2, 1) + VP(2, 2) + VP(2, 3) (6)

P(1, 2) + P(1, 3) + P(1, 4) + P(2, 4) ≥ P(2, 1) + VP(3, 1) + VP(3, 2) + VP(3, 3) (7)

Methodology To Develop Alternative Makespan Algorithm
For Re-entrant Flow Shop Using Bottleneck Approach 93

The explanations on the absolute bottleneck conditions indicate that Equation (1) produces
accurate makespan computation result if Condition (2), Condition (3) and Condition (4)
were met. In order to test this statement, a total of 10000 simulations for four job sequence
were conducted using random data between 1 to 20 hours for each of P(2,j), P(3,j), P(4,j),
P(5,j) and P(6,j). The value of P(1,j) were set to be between 1 to 100 in order to have a more
evenly distributed matching of either Condition (2), Condition (3) and Condition (4) or any
of their combinations. These simulations were conducted in Microsoft® Excel using
Microsoft® Visual Basic for Application programming.

Each set of random data obtained was tested with a total of 24 different sequences that
resembles the sequence arrangements of ABCD, ABDC, ACBD etc. This means that with
10000 simulations, a total of 240,000 job sequence arrangements were tested. The makespan
results from Algorithm 1 were compared with the makespan value obtained from Equation
(1). In analyzing the test result, a set of data is said to produce perfect result if all the 24
different job sequences makespan from Equation (1) are the same with Algorithm 1. The test
analysis result is shown in Table 5. The results from the simulations showed that all
makespan value from both Equation (1) and Algorithm 1 are equal for random data sets that
fulfill all the three conditions. This indicates that Equation (1) produces accurate makespan
computation if Condition (2), Condition (3) and Condition (4) were met. With all these three
conditions met, we can conclude that P(1, j) is the absolute bottleneck of the scheduling
system. Then, Equation (1) can also be used to determine the optimum job sequences and
Equation (5) can be used to calculate the completion time for each job.

Conditions Met Sets of Data Fulfill The
Conditions

Percentage of Perfect
Result

4.7+4.8+4.9 900 100%
4.7+4.8 286 8.74%
4.7+4.9 185 19.46%

4.7 3729 1.13%
- 4898 0%

Table 5. Accuracy of Equation (1) at various conditions

4. Bottleneck Correction Factor

During the simulation process to investigate the accuracy of makespan computation using
Equation (1) in relation with Condition (2), (3) and (4), it was observed that within a data set
that violates these conditions, Equation (1) still produces accurate makespan result at some
sequence arrangements but not on all of them. It is worth to investigate further whether
there are rules or conditions that might be used to describe this phenomenon. This can only
be done by comparing the makespan computation for all possible job sequences within the
specific data set using both Algorithm 1 and Equation (1). A sample of data set that exhibits
this phenomenon is illustrated in Table 6 in which, Condition (4) is violated. Table 7 shows
the makespan computation of data from Table 6 using Algorithm 1 while Table 8 is the
makespan computation using Equation (1).

 Condition (2) Condition (3) Condition (4)

Job P(1,j) P(2,j) P(3,j) P(4,j) P(5,j) P(6,j)

2

1
),(

i
jiP

5

2
),(

i
jiP

3

1
),(

i
jiP

6

2
),(

i
jiP

Job A 73 8 3 8 5 30 81 24 84 54
Job B 90 2 5 32 5 32 92 44 97 76
Job C 98 2 3 35 8 39 100 48 103 87
Job D 75 6 3 36 4 35 81 49 84 84

Table 6. Condition (4) violations

Job

Sequence
Makespan

(hr)
Job

Sequence
Makespan

(hr)
Job

Sequence
Makespan

(hr)
Job

Sequence
Makespan

(hr)
ABCD 423 ABDC 423 ACDB 412 BCDA 393
ACBD 420 ADBC 423 ADCB 412 BDCA 393
BACD 423 BADC 423 CADB 412 CBDA 390
BCAD 420 BDAC 423 CDAB 412 CDBA 390
CABD 420 DABC 423 DACB 412 DBCA 393
CBAD 420 DBAC 423 DCAB 412 DCBA 390

Table 7. Makespan computation using Algorithm 1

Job
Sequence

Makespan
(hr)

Job
Sequence

Makespan
(hr)

Job
Sequence

Makespan
(hr)

Job
Sequence

Makespan
(hr)

ABCD 420 ABDC 423 ACDB 412 BCDA 390
ACBD 420 ADBC 423 ADCB 412 BDCA 390
BACD 420 BADC 423 CADB 412 CBDA 390
BCAD 420 BDAC 423 CDAB 412 CDBA 390
CABD 420 DABC 423 DACB 412 DBCA 390
CBAD 420 DBAC 423 DCAB 412 DCBA 390

Table 8. Makespan computation using Equation (1)

Comparing Table 7 and Table 8, it can be noticed that majority of the makespan value using
Equation (1) are equal with the makespan value from Algorithm 1. This means that
Equation (1) works very well with majority of the job sequences except ABCD, BACD,
BCDA, BDCA and DBCA. In other words, even though Condition (4) is violated, Equation
(1) still produces accurate makespan value for majority of the job sequences. To further
investigate the failure characteristics of Equation (1) in computing the makespan of some job
sequences, a detail analysis of the Gantt charts representing the job arrangements that were
wrongly computed by the equation was conducted. During the analysis, it was observed
that Equation (1) is still valid for makespan computation if some localized sequence
dependent conditions were met. These localized sequence dependent conditions for the 4-
job example case in Table 6 are (Bareduan & Hasan, 2008):

P(1, 2) + P(1, 3) + P(1, 4) ≥ VP(2, 1) + VP(2, 2) + VP(2, 3) (6)

P(1, 2) + P(1, 3) + P(1, 4) + P(2, 4) ≥ P(2, 1) + VP(3, 1) + VP(3, 2) + VP(3, 3) (7)

Engineering the Computer Science and IT94

P(1, 2) + P(1, 3) + P(1, 4) + P(2, 4) + P(3, 4)
 ≥ P(2, 1) + P(3, 1) + VP(4, 1) + VP(4, 2) + VP(4, 3) (8)

where VP = Virtual Processing Time.

Condition (6) is meant to make sure that for the last job sequence, task 2 can immediately be
started as soon as task 1 completed its process. For example, if Condition (6) is violated,
P(2,n-1) completion time is later than the completion time of P(1,n), this means that P(2,n)
cannot start immediately after the completion of P(1,n). It can only begin after the
completion of P(2,n-1) which is also indicated by the completion time of VP(2,n-1). This
introduces a delay between P(1,n) and P(2,n) thus affecting the accuracy of Equation (1). Fig.
4 shows an example schedule that violates Condition (6). The completion time of P23 which
is later than the completion time of P14 prevents P24 from starting immediately after the
completion of P14.

Resource Time

M1 P11 P12 P13 P14

M2 P21 P22 P23 P24

M3 P
31

 P
51

 P32 P52 P33 P53 P34 P54

M4 P
41

 P
61

 P42 P62 P43 P63 P44 P64

Fig. 4. Example schedule that violates Condition (6)

The virtual processing times for task 2 in Condition (6) are assigned as the followings:

For j = 1, VP(2, 1) = Max [P(2, 1), P(1, 2)]

For j = 2,3…n-1, VP(2, j) =

 1

1

1

2

1

1
),2(),1(),,2(),2(

j

k

j

k

j

k
kVPkPjPkVPMax

(9)

Condition (7) functions to ensure that for the last job sequence, task 3 can immediately be
started as soon as task 2 completed its process. For example, if Condition (7) is violated, this
means that the right side value of this condition is larger than its left side value. Since P3
and P5 are sharing the same M3 processor (refer Fig. 1), the violation of Condition (7) will
result to a later completion time of P(5,n-1) compares to the completion time of P(2,n).
Consequently, P(3,n) cannot start immediately after the completion of P(2,n). It can only
begin after the completion of P(5,n-1) which is the completion time of VP(3,n-1). This
introduces a delay between P(2,n) and P(3,n) thus affecting the accuracy of Equation (1). Fig.
5 shows an example schedule that violates Condition (7). The completion time of P53 which
is later than the completion time of P24 prevents P34 from starting immediately after the
completion of P24.

VP21 VP22 VP23

Resource Time
M1 P11 P12 P13 P14

M2 P21 P22 P23 P24

M3 P
31

 P
51

 P32 P52 P33 P53 P34 P54

M4 P
41

 P
61

 P42 P62 P43 P63 P44 P64

Fig. 5. Example schedule that violates Condition (7)

The virtual processing times for task 3 are assigned as the followings:

For j = 1, VP(3, 1) = Max [{VP(2, 1) + P(2, 2)},{ P(2, 1) + P(3, 1) + P(4, 1)
 + P(5, 1)}] - P(2, 1)

For j = 2,3…n-1, VP(3, j) =

1

1

5

4

1

1

5

31

),(),4()1,3()1,2(

,),(),3()1,2(),1,2(),2(

j

k i

j

k i

j

k

jiPkVPPP

jiPkVPPjPkVP
Max -

1

1
),3()1,2(

j

k
kVPP

(10)

Condition (8) functions to guarantee that for the last job sequence, task 4 can immediately be
started as soon as task 3 completed its process. For example, if Condition (8) is violated, this
means that the right side value of this condition is larger than its left side value. Since P4
and P6 are sharing the same M4 CNC machine (refer Fig. 1), the violation of Condition (8)
will result to a later completion time of P(6,n-1) compares to the completion time of P(3,n).
Consequently, P(4,n) cannot start immediately after the completion of P(3,n). It can only
begin after the completion of P(6,n-1) which is indicated by the completion time of VP(4,n-
1). This introduces a delay between P(3,n) and P(4,n) thus affecting the accuracy of Equation
(1). Fig. 6 shows an example schedule that violates Condition (8). The completion time of
P63 which is later than the completion time of P34 prevents P44 from starting immediately
after the completion of P34.

VP31 VP32 VP33

Methodology To Develop Alternative Makespan Algorithm
For Re-entrant Flow Shop Using Bottleneck Approach 95

P(1, 2) + P(1, 3) + P(1, 4) + P(2, 4) + P(3, 4)
 ≥ P(2, 1) + P(3, 1) + VP(4, 1) + VP(4, 2) + VP(4, 3) (8)

where VP = Virtual Processing Time.

Condition (6) is meant to make sure that for the last job sequence, task 2 can immediately be
started as soon as task 1 completed its process. For example, if Condition (6) is violated,
P(2,n-1) completion time is later than the completion time of P(1,n), this means that P(2,n)
cannot start immediately after the completion of P(1,n). It can only begin after the
completion of P(2,n-1) which is also indicated by the completion time of VP(2,n-1). This
introduces a delay between P(1,n) and P(2,n) thus affecting the accuracy of Equation (1). Fig.
4 shows an example schedule that violates Condition (6). The completion time of P23 which
is later than the completion time of P14 prevents P24 from starting immediately after the
completion of P14.

Resource Time

M1 P11 P12 P13 P14

M2 P21 P22 P23 P24

M3 P
31

 P
51

 P32 P52 P33 P53 P34 P54

M4 P
41

 P
61

 P42 P62 P43 P63 P44 P64

Fig. 4. Example schedule that violates Condition (6)

The virtual processing times for task 2 in Condition (6) are assigned as the followings:

For j = 1, VP(2, 1) = Max [P(2, 1), P(1, 2)]

For j = 2,3…n-1, VP(2, j) =

 1

1

1

2

1

1
),2(),1(),,2(),2(

j

k

j

k

j

k
kVPkPjPkVPMax

(9)

Condition (7) functions to ensure that for the last job sequence, task 3 can immediately be
started as soon as task 2 completed its process. For example, if Condition (7) is violated, this
means that the right side value of this condition is larger than its left side value. Since P3
and P5 are sharing the same M3 processor (refer Fig. 1), the violation of Condition (7) will
result to a later completion time of P(5,n-1) compares to the completion time of P(2,n).
Consequently, P(3,n) cannot start immediately after the completion of P(2,n). It can only
begin after the completion of P(5,n-1) which is the completion time of VP(3,n-1). This
introduces a delay between P(2,n) and P(3,n) thus affecting the accuracy of Equation (1). Fig.
5 shows an example schedule that violates Condition (7). The completion time of P53 which
is later than the completion time of P24 prevents P34 from starting immediately after the
completion of P24.

VP21 VP22 VP23

Resource Time
M1 P11 P12 P13 P14

M2 P21 P22 P23 P24

M3 P
31

 P
51

 P32 P52 P33 P53 P34 P54

M4 P
41

 P
61

 P42 P62 P43 P63 P44 P64

Fig. 5. Example schedule that violates Condition (7)

The virtual processing times for task 3 are assigned as the followings:

For j = 1, VP(3, 1) = Max [{VP(2, 1) + P(2, 2)},{ P(2, 1) + P(3, 1) + P(4, 1)
 + P(5, 1)}] - P(2, 1)

For j = 2,3…n-1, VP(3, j) =

1

1

5

4

1

1

5

31

),(),4()1,3()1,2(

,),(),3()1,2(),1,2(),2(

j

k i

j

k i

j

k

jiPkVPPP

jiPkVPPjPkVP
Max -

1

1
),3()1,2(

j

k
kVPP

(10)

Condition (8) functions to guarantee that for the last job sequence, task 4 can immediately be
started as soon as task 3 completed its process. For example, if Condition (8) is violated, this
means that the right side value of this condition is larger than its left side value. Since P4
and P6 are sharing the same M4 CNC machine (refer Fig. 1), the violation of Condition (8)
will result to a later completion time of P(6,n-1) compares to the completion time of P(3,n).
Consequently, P(4,n) cannot start immediately after the completion of P(3,n). It can only
begin after the completion of P(6,n-1) which is indicated by the completion time of VP(4,n-
1). This introduces a delay between P(3,n) and P(4,n) thus affecting the accuracy of Equation
(1). Fig. 6 shows an example schedule that violates Condition (8). The completion time of
P63 which is later than the completion time of P34 prevents P44 from starting immediately
after the completion of P34.

VP31 VP32 VP33

Engineering the Computer Science and IT96

Resource Time

M1 P11 P12 P13 P14

M2 P21 P22 P23 P24

M3 P
31

 P
51

 P32 P52 P33 P53 P34 P54

M4 P
41

 P
61

 P42 P62 P43 P63 P44 P64

Fig. 6. Example schedule that violates Condition (8)

The virtual processing time for task 4 are assigned as the followings:

For j = 1, VP(4, 1) =

Max [{VP(3, 1) + P(3, 2)},{ P(3, 1) + P(4, 1) + P(5, 1)+ P(6, 1)}] - P(3, 1)

For j = 2,3…n-1, VP(4, j) =

1

1

1

1

6

41

),4()1,3(

),(),4()1,3(),1,3(),3(

j

k

j

k i

j

k

kVPP

jiPkVPPjPkVPMax

(11)

If any of the Condition (6), (7) and (8) is violated, Equation (1) is no longer valid for the
makespan computation. This equation has to be modified and improved by introducing a
dedicated correction factor in order to absorb the violated conditions if it is still to be used
for makespan computation beyond the above stipulated conditions.

Detail observations of Condition (6), (7) and (8) reveal that the inaccuracy of Equation (1)
due to the violation of Condition (6) is inclusive in Condition (7). Similarly, the error of
Equation (1) resulted from the violation of Condition (7) is also inclusive in Condition (8).
These are due to the fact that the computations of VP(4, j) in Condition (8) are inclusive of
all errors resulting from violations of both Condition (6) and (7). As such, by evaluating and
monitoring only Condition (8), all the errors of Equation (1) resulted from the violations of
either Conditions (6), (7) and (8) or their combinations are actually covered.

VP41 VP42 VP43

Job j P(1, j) P(2, j) P(3, j) P(4, j) P(5, j) P(6, j)
Job A 1 73 8 3 8 5 30
Job B 2 90 2 5 32 5 32
Job C 3 98 2 3 35 8 39
Job D 4 75 6 3 36 4 35

 A B C D E F G H K

j Sum P(1,k)

k=2, j+1
For

j=1,2..n-1

VP(2, j)
For

j=1,2..n-1

Sum
VP(2,k)
k=1, j-1

For
j=2,3..n-1

Sum
VP(2,k)
k=1, j
For

j=1,2..n-1

VP(3, j)
For

j=1,2..n-1

Sum
VP(3,k)
k=1, j-1

For
j=2,3..n-1

Sum
VP(3,k)
k=1, j
For

j=1,2..n-1

VP(4, j)
For

j=1,2..n-
1

Sum
VP(4,k)
k=1, j-1

For
j=2,3..n-1

1 90 90 90 84 84 86
2 188 98 90 188 98 84 182 96 86
3 263 75 188 263 79 182 261 82 182

Table 9. Table for makespan computation

Table 9 is developed in order to determine the values of VP(2,j), VP(3,j) and VP(4,j) from the
data in Table 6. These values will be used to monitor Condition (8). Referring to Table 9, Cell
B1 represents VP(2,1). This is computed using Equation (9) as the followings:
For j = 1, VP(2,1) = Max [P(2,1), P(1,2)]
 = Max [8,90]
 = 90

Cell B2 represents VP(2,2). This is also computed using Equation (9) as the followings:
For j = 2,3…n-1,

 VP(2,j) =

 1

1

1

2

1

1
),2(),1(),,2(),2(

j

k

j

k

j

k
kVPkPjPkVPMax

Therefore,

 VP(2,2) =

 12

1

12

2

12

1
),2(),1(),2,2(),2(

kkk
kVPkPPkVPMax

 = Max [C2 + P(2,2), A2] - D1
 = Max [90 + 2, 188] - 90
 = 188 - 90
 = 98

Using the same equation, Cell B3 is computed as follows:
 VP(2,3) = Max [C3 + P(2,3), A3] - D2
 = Max [188 + 2, 263] - 188
 = 263 - 188
 = 75

The value for VP(3,1) which belongs to Cell E1 is computed using Equation (10) as the
followings:

Methodology To Develop Alternative Makespan Algorithm
For Re-entrant Flow Shop Using Bottleneck Approach 97

Resource Time

M1 P11 P12 P13 P14

M2 P21 P22 P23 P24

M3 P
31

 P
51

 P32 P52 P33 P53 P34 P54

M4 P
41

 P
61

 P42 P62 P43 P63 P44 P64

Fig. 6. Example schedule that violates Condition (8)

The virtual processing time for task 4 are assigned as the followings:

For j = 1, VP(4, 1) =

Max [{VP(3, 1) + P(3, 2)},{ P(3, 1) + P(4, 1) + P(5, 1)+ P(6, 1)}] - P(3, 1)

For j = 2,3…n-1, VP(4, j) =

1

1

1

1

6

41

),4()1,3(

),(),4()1,3(),1,3(),3(

j

k

j

k i

j

k

kVPP

jiPkVPPjPkVPMax

(11)

If any of the Condition (6), (7) and (8) is violated, Equation (1) is no longer valid for the
makespan computation. This equation has to be modified and improved by introducing a
dedicated correction factor in order to absorb the violated conditions if it is still to be used
for makespan computation beyond the above stipulated conditions.

Detail observations of Condition (6), (7) and (8) reveal that the inaccuracy of Equation (1)
due to the violation of Condition (6) is inclusive in Condition (7). Similarly, the error of
Equation (1) resulted from the violation of Condition (7) is also inclusive in Condition (8).
These are due to the fact that the computations of VP(4, j) in Condition (8) are inclusive of
all errors resulting from violations of both Condition (6) and (7). As such, by evaluating and
monitoring only Condition (8), all the errors of Equation (1) resulted from the violations of
either Conditions (6), (7) and (8) or their combinations are actually covered.

VP41 VP42 VP43

Job j P(1, j) P(2, j) P(3, j) P(4, j) P(5, j) P(6, j)
Job A 1 73 8 3 8 5 30
Job B 2 90 2 5 32 5 32
Job C 3 98 2 3 35 8 39
Job D 4 75 6 3 36 4 35

 A B C D E F G H K

j Sum P(1,k)

k=2, j+1
For

j=1,2..n-1

VP(2, j)
For

j=1,2..n-1

Sum
VP(2,k)
k=1, j-1

For
j=2,3..n-1

Sum
VP(2,k)
k=1, j
For

j=1,2..n-1

VP(3, j)
For

j=1,2..n-1

Sum
VP(3,k)
k=1, j-1

For
j=2,3..n-1

Sum
VP(3,k)
k=1, j
For

j=1,2..n-1

VP(4, j)
For

j=1,2..n-
1

Sum
VP(4,k)
k=1, j-1

For
j=2,3..n-1

1 90 90 90 84 84 86
2 188 98 90 188 98 84 182 96 86
3 263 75 188 263 79 182 261 82 182

Table 9. Table for makespan computation

Table 9 is developed in order to determine the values of VP(2,j), VP(3,j) and VP(4,j) from the
data in Table 6. These values will be used to monitor Condition (8). Referring to Table 9, Cell
B1 represents VP(2,1). This is computed using Equation (9) as the followings:
For j = 1, VP(2,1) = Max [P(2,1), P(1,2)]
 = Max [8,90]
 = 90

Cell B2 represents VP(2,2). This is also computed using Equation (9) as the followings:
For j = 2,3…n-1,

 VP(2,j) =

 1

1

1

2

1

1
),2(),1(),,2(),2(

j

k

j

k

j

k
kVPkPjPkVPMax

Therefore,

 VP(2,2) =

 12

1

12

2

12

1
),2(),1(),2,2(),2(

kkk
kVPkPPkVPMax

 = Max [C2 + P(2,2), A2] - D1
 = Max [90 + 2, 188] - 90
 = 188 - 90
 = 98

Using the same equation, Cell B3 is computed as follows:
 VP(2,3) = Max [C3 + P(2,3), A3] - D2
 = Max [188 + 2, 263] - 188
 = 263 - 188
 = 75

The value for VP(3,1) which belongs to Cell E1 is computed using Equation (10) as the
followings:

Engineering the Computer Science and IT98

For j = 1, VP(3,1) = Max [{VP(2,1) + P(2,2)}, {P(2,1) + P(3,1) + P(4,1) + P(5,1)}] - P(2,1)
 = Max [{90 + 2}, {8+3+8+5}] - 8
 = Max [92, 24] - 8
 = 92 - 8
 = 84

Cell E2 represents VP(3,2). This is also computed using Equation (10) as the followings:
For j = 2,3…n-1, VP(3,j) =

1

1

5

4

1

1

5

31

),(),4()1,3()1,2(

,),(),3()1,2(),1,2(),2(

j

k i

j

k i

j

k

jiPkVPPP

jiPkVPPjPkVP
Max -

1

1
),3()1,2(

j

k
kVPP

Therefore,

VP(3,2) =

12

1

5

4

12

1

5

3

2

1

)2,(),4()1,3()1,2(

,)2,(),3()1,2(),12,2(),2(

k i

k ik

iPkVPPP

iPkVPPPkVP
Max -

12

1
),3()1,2(

k
kVPP

= Max [{D2 + P(2,3)}, {P(2,1) + F2 + P(3,2) + P(4,2) + P(5,2)},
 {P(2,1) + P(3,1) + K2 + P(4,2) + P(5,2)}] - {P(2,1) + F2}
= Max [{188 + 2}, {8 + 84 + 5 + 32 + 5}, {8 + 3 + 86 + 32 + 5}] - {8 + 84}
= Max [190, 134, 134] - 92
= 190 - 92
= 98

VP(3,3)
= Max [{D3 + P(2,4)}, {P(2,1) + F3 + P(3,3) + P(4,3) + P(5,3)},
 {P(2,1) + P(3,1) + K3 + P(4,3) + P(5,3)}] - {P(2,1) + F3}
= Max [{263 + 6}, {8 + 182 + 3 + 35 + 8}, {8 + 3 + 182 + 35 + 8}] - {8 + 182}
= Max [269, 236, 236] - 190
= 269 - 190
= 79

Referring again to Table 9, Cell H1 represents VP(4,1). This is computed using Equation (11)
as the followings:

For j = 1, VP(4,1) = Max [{VP(3,1) + P(3,2)}, {P(3,1) + P(4,1) + P(5,1) + P(6,1)}] - P(3,1)
 = Max [{84 + 5}, {3 + 8 + 5 + 30}] - 3
 = Max [89, 46] - 3
 = 89 - 3
 = 86

Cell H2 represents VP(4,2). This is also computed using Equation (11) as the followings:

For j = 2,3…n-1, VP(4,j) =

1

1

1

1

6

41
),4()1,3(),(),4()1,3(),1,3(),3(

j

k

j

k i

j

k
kVPPjiPkVPPjPkVPMax

Therefore, VP(4,2) =

12

1

12

1

6

4

2

1
),4()1,3()2,(),4()1,3(),12,3(),3(

kk ik
kVPPiPkVPPPkVPMax

= Max [{G2 + P(3,3)}, {P(3,1) + K2 + P(4,2) + P(5,2) + P(6,2)}] - {P(3,1) + K2}
= Max [{182 + 3}, {3 + 86 + 32 + 5 + 32}] - {3 + 86}
= Max [185, 158] - 89
= 185 - 89
= 96

VP(4,3)
= Max [{G3 + P(3,4)}, {P(3,1) + K3 + P(4,3) + P(5,3) + P(6,3)}] - { P(3,1) + K3}
= Max [{261 +3}, {3 + 182 + 35 + 8 + 39}] - {3 + 182}
= Max [264, 267] - 185
= 267 - 185
= 82

The values of VP (2, j), VP (3, j) and VP (4, j) from Table 9 are used to detect the occurrences
of bottleneck at processes other than P(1, j). In other words, this table will be used to suggest
the correction factor need to be added to Equation (1) if the previously described Condition
(8) is violated. This correction factor is computed as the followings:

From Condition (8):

P(1, 2) + P(1, 3) + P(1, 4) + P(2, 4) + P(3, 4) ≥
P(2, 1) + P(3, 1) + VP(4, 1) + VP(4, 2) + VP(4, 3)

If Condition (8) is violated, it means:

P(1, 2) + P(1, 3) + P(1, 4) + P(2, 4) + P(3, 4) <
P(2, 1) + P(3, 1) + VP(4, 1) + VP(4, 2) + VP(4, 3)

Therefore, the correction factor (P1BCF) is:
 P1BCF = { P(2, 1) + P(3, 1) + VP(4, 1) + VP(4, 2) + VP(4, 3)}
 - { P(1, 2) + P(1, 3) + P(1, 4) + P(2, 4) + P(3, 4)}

If { P(2, 1) + P(3, 1) + VP(4, 1) + VP(4, 2) + VP(4, 3)}
 - { P(1, 2) + P(1, 3) + P(1, 4) + P(2, 4) + P(3, 4)} < 0 then, P1BCF = 0

The general formulation of the correction factor is written as the following:

Methodology To Develop Alternative Makespan Algorithm
For Re-entrant Flow Shop Using Bottleneck Approach 99

For j = 1, VP(3,1) = Max [{VP(2,1) + P(2,2)}, {P(2,1) + P(3,1) + P(4,1) + P(5,1)}] - P(2,1)
 = Max [{90 + 2}, {8+3+8+5}] - 8
 = Max [92, 24] - 8
 = 92 - 8
 = 84

Cell E2 represents VP(3,2). This is also computed using Equation (10) as the followings:
For j = 2,3…n-1, VP(3,j) =

1

1

5

4

1

1

5

31

),(),4()1,3()1,2(

,),(),3()1,2(),1,2(),2(

j

k i

j

k i

j

k

jiPkVPPP

jiPkVPPjPkVP
Max -

1

1
),3()1,2(

j

k
kVPP

Therefore,

VP(3,2) =

12

1

5

4

12

1

5

3

2

1

)2,(),4()1,3()1,2(

,)2,(),3()1,2(),12,2(),2(

k i

k ik

iPkVPPP

iPkVPPPkVP
Max -

12

1
),3()1,2(

k
kVPP

= Max [{D2 + P(2,3)}, {P(2,1) + F2 + P(3,2) + P(4,2) + P(5,2)},
 {P(2,1) + P(3,1) + K2 + P(4,2) + P(5,2)}] - {P(2,1) + F2}
= Max [{188 + 2}, {8 + 84 + 5 + 32 + 5}, {8 + 3 + 86 + 32 + 5}] - {8 + 84}
= Max [190, 134, 134] - 92
= 190 - 92
= 98

VP(3,3)
= Max [{D3 + P(2,4)}, {P(2,1) + F3 + P(3,3) + P(4,3) + P(5,3)},
 {P(2,1) + P(3,1) + K3 + P(4,3) + P(5,3)}] - {P(2,1) + F3}
= Max [{263 + 6}, {8 + 182 + 3 + 35 + 8}, {8 + 3 + 182 + 35 + 8}] - {8 + 182}
= Max [269, 236, 236] - 190
= 269 - 190
= 79

Referring again to Table 9, Cell H1 represents VP(4,1). This is computed using Equation (11)
as the followings:

For j = 1, VP(4,1) = Max [{VP(3,1) + P(3,2)}, {P(3,1) + P(4,1) + P(5,1) + P(6,1)}] - P(3,1)
 = Max [{84 + 5}, {3 + 8 + 5 + 30}] - 3
 = Max [89, 46] - 3
 = 89 - 3
 = 86

Cell H2 represents VP(4,2). This is also computed using Equation (11) as the followings:

For j = 2,3…n-1, VP(4,j) =

1

1

1

1

6

41
),4()1,3(),(),4()1,3(),1,3(),3(

j

k

j

k i

j

k
kVPPjiPkVPPjPkVPMax

Therefore, VP(4,2) =

12

1

12

1

6

4

2

1
),4()1,3()2,(),4()1,3(),12,3(),3(

kk ik
kVPPiPkVPPPkVPMax

= Max [{G2 + P(3,3)}, {P(3,1) + K2 + P(4,2) + P(5,2) + P(6,2)}] - {P(3,1) + K2}
= Max [{182 + 3}, {3 + 86 + 32 + 5 + 32}] - {3 + 86}
= Max [185, 158] - 89
= 185 - 89
= 96

VP(4,3)
= Max [{G3 + P(3,4)}, {P(3,1) + K3 + P(4,3) + P(5,3) + P(6,3)}] - { P(3,1) + K3}
= Max [{261 +3}, {3 + 182 + 35 + 8 + 39}] - {3 + 182}
= Max [264, 267] - 185
= 267 - 185
= 82

The values of VP (2, j), VP (3, j) and VP (4, j) from Table 9 are used to detect the occurrences
of bottleneck at processes other than P(1, j). In other words, this table will be used to suggest
the correction factor need to be added to Equation (1) if the previously described Condition
(8) is violated. This correction factor is computed as the followings:

From Condition (8):

P(1, 2) + P(1, 3) + P(1, 4) + P(2, 4) + P(3, 4) ≥
P(2, 1) + P(3, 1) + VP(4, 1) + VP(4, 2) + VP(4, 3)

If Condition (8) is violated, it means:

P(1, 2) + P(1, 3) + P(1, 4) + P(2, 4) + P(3, 4) <
P(2, 1) + P(3, 1) + VP(4, 1) + VP(4, 2) + VP(4, 3)

Therefore, the correction factor (P1BCF) is:
 P1BCF = { P(2, 1) + P(3, 1) + VP(4, 1) + VP(4, 2) + VP(4, 3)}
 - { P(1, 2) + P(1, 3) + P(1, 4) + P(2, 4) + P(3, 4)}

If { P(2, 1) + P(3, 1) + VP(4, 1) + VP(4, 2) + VP(4, 3)}
 - { P(1, 2) + P(1, 3) + P(1, 4) + P(2, 4) + P(3, 4)} < 0 then, P1BCF = 0

The general formulation of the correction factor is written as the following:

Engineering the Computer Science and IT100

n

j i

n

ji

niPjPjVPiPBCFP
2

3

2

1

1

3

2

),(),1(),4()1,(,0Max1 (12)

where, P1BCF = Process 1 Bottleneck Correction Factor

With the introduction of P1BCF, then the generalized makespan computation algorithm for
the CMC is:

Cmax =

n

j i
niPjP

1

6

2
),(),1(+ P1BCF (13)

By using Equation 4.11 and 4.12, the makespan computation for the ABCD job sequence in
Table 9 is as the followings:

P1BCF = Max [0, {P(2, 1) + P(3, 1)} + {VP(4, 1) + VP(4, 2) + VP(4, 3)}
 - {P(1, 2) + P(1, 3) + P(1, 4)} - {P(2, 4) + P(3, 4)}]
 = Max [0, {8 + 3} + {86 + 96 + 82} - {90 + 98 + 75} - {6 + 3}]
 = Max [0, 3]
 = 3 hours

Therefore, the makespan is equal to:

Cmax (ABCD) = {P(1, 1) + P(1, 2) + P(1, 3) + P(1, 4)}
 + { P(2, 4) + P(3, 4) + P(4, 4) + P(5, 4) + P(6, 4) } + P1BCF
 = {73 + 90 + 98 + 75} + {6 + 3 + 36 + 4 + 35} + 3
 = 336 + 84 + 3 = 423 hours

The makespan of 423 hours is equal to the results using Algorithm 1 as in Table 7 for ABCD
job sequence. This shows that Equation (13) is capable to perform accurate makespan
computation even if the absolute bottleneck condition is violated. To verify the accuracy of
Equation (13) in performing the makespan computations, a total of 10,000 simulations were
conducted using random data of between 1 to 80 hours for each of P(1,j), P(2,j), P(3,j), P(4,j),
P(5,j) and P(6,j) with four job sequence for each simulation. These simulations were
conducted in Microsoft® Excel using Microsoft® Visual Basic for Application programming.
Each set of random data obtained was also tested with a total of 24 different sequences that
resembles the sequence arrangement of ABCD, ABDC, ACBD etc. This means that with
10000 sets of random data, a total of 240,000 job sequence arrangements were tested. The
makespan results from using Equation (13) were compared with the makespan value
obtained from Algorithm 1. The results from the comparisons showed that all makespan
value from both Equation (13) and Algorithm 1 are equal. This indicates that Equation (13)
produces accurate makespan results for 4-job CMC scheduling problem. Equation (13) was
also tested for computing the makespan for 6-job, 10-job and 20-job CMC scheduling. Each
test was conducted with 10,000 sets of random data between 1 to 80 hours for each of P(1,j),
P(2,j), P(3,j), P(4,j), P(5,j) and P(6,j). Each set of random data obtained was also tested with
different sequences that resemble the sequence arrangement of ABCDEF, ABCDFE,
ABCEDF etc. All results indicate that Equation (13) produces makespan value equal the

results of Algorithm 1. This shows the accuracy of Equation (13) in computing the makespan
of the CMC scheduling arrangements.

5. Conclusion

This chapter presented the methodology to develop an effective makespan computation
algorithm using bottleneck analysis for M1,M2,M3,M4,M3,M4 permutation re-entrant flow
shop in which M1 has high tendency of exhibiting bottleneck characteristics. It was shown
that under the absolute bottleneck characteristics, both the makespan and optimum job
sequence can be accurately determined by the makespan algorithms developed using
bottleneck analysis. In cases where the absolute bottleneck condition is violated, the
makespan can still be accurately determined by the introduction of bottleneck correction
factors. The bottleneck-based methodology or approach presented in this chapter is not only
valid for the specific case study alone, but can also be utilised to develop alternative
makespan algorithms for other flow shop operation systems that shows significant
bottleneck characteristics. With the successful development of makespan computation
method using bottleneck analysis, future work can be concentrated to further utilize the
bottleneck approach in developing heuristic for optimizing the CMC re-entrant scheduling
problems.

6. Acknowledgement

This work was partially supported by the Fundamental Research Grant Scheme (Ministry of
Higher Education), Malaysia (Vot 0368, 2007).

7. References

Adams J, Balas E & Zawack D. (1988). The shifting bottleneck procedure for job shop
scheduling, Management Science, 34, 391-401

Bareduan SA, Hasan SH, Rafai NH & Shaari MF. (2006). Cyber manufacturing system for
small and medium enterprises: a conceptual framework, Transactions of North
American Manufacturing Research Institution for Society of Manufacturing Engineers, 34,
365-372

Bareduan SA & Hasan SH. (2008). Makespan Computation for Cyber Manufacturing Centre
Using Bottleneck Analysis: A Re-entrat Flow Shop Problem, Proceedings of
International Multiconference of Engineers & Computer Scientists (IMECS 2008)
Hong Kong, 19-21/3/2008, pp. 1644-1648

Bareduan SA, Hasan SH & Ariffin S. (2008). Finite scheduling of collaborative design and
manufacturing activity: a Petri net approach, Journal of Manufacturing Technology
Management, 19(2), 274-288

Cepek O, Okada M & Vlach M. (2002). Nonpreemptive Flowshop Scheduling With Machine
Dominance, European Journal of Operational Research. 139, 245-261

Choi SW & Kim YD. (2008). Minimizing makespan on an m-machine re-entrant flowshop,
Computers & Operations Research, 35(5), 1684-1696

Choi SW, Kim YD & Lee GC. (2005). Minimizing total tardiness of orders with reentrant lots
in a hybrid flowshop, International Journal of Production Research, 43(11), 2149-2167

Methodology To Develop Alternative Makespan Algorithm
For Re-entrant Flow Shop Using Bottleneck Approach 101

n

j i

n

ji

niPjPjVPiPBCFP
2

3

2

1

1

3

2

),(),1(),4()1,(,0Max1 (12)

where, P1BCF = Process 1 Bottleneck Correction Factor

With the introduction of P1BCF, then the generalized makespan computation algorithm for
the CMC is:

Cmax =

n

j i
niPjP

1

6

2
),(),1(+ P1BCF (13)

By using Equation 4.11 and 4.12, the makespan computation for the ABCD job sequence in
Table 9 is as the followings:

P1BCF = Max [0, {P(2, 1) + P(3, 1)} + {VP(4, 1) + VP(4, 2) + VP(4, 3)}
 - {P(1, 2) + P(1, 3) + P(1, 4)} - {P(2, 4) + P(3, 4)}]
 = Max [0, {8 + 3} + {86 + 96 + 82} - {90 + 98 + 75} - {6 + 3}]
 = Max [0, 3]
 = 3 hours

Therefore, the makespan is equal to:

Cmax (ABCD) = {P(1, 1) + P(1, 2) + P(1, 3) + P(1, 4)}
 + { P(2, 4) + P(3, 4) + P(4, 4) + P(5, 4) + P(6, 4) } + P1BCF
 = {73 + 90 + 98 + 75} + {6 + 3 + 36 + 4 + 35} + 3
 = 336 + 84 + 3 = 423 hours

The makespan of 423 hours is equal to the results using Algorithm 1 as in Table 7 for ABCD
job sequence. This shows that Equation (13) is capable to perform accurate makespan
computation even if the absolute bottleneck condition is violated. To verify the accuracy of
Equation (13) in performing the makespan computations, a total of 10,000 simulations were
conducted using random data of between 1 to 80 hours for each of P(1,j), P(2,j), P(3,j), P(4,j),
P(5,j) and P(6,j) with four job sequence for each simulation. These simulations were
conducted in Microsoft® Excel using Microsoft® Visual Basic for Application programming.
Each set of random data obtained was also tested with a total of 24 different sequences that
resembles the sequence arrangement of ABCD, ABDC, ACBD etc. This means that with
10000 sets of random data, a total of 240,000 job sequence arrangements were tested. The
makespan results from using Equation (13) were compared with the makespan value
obtained from Algorithm 1. The results from the comparisons showed that all makespan
value from both Equation (13) and Algorithm 1 are equal. This indicates that Equation (13)
produces accurate makespan results for 4-job CMC scheduling problem. Equation (13) was
also tested for computing the makespan for 6-job, 10-job and 20-job CMC scheduling. Each
test was conducted with 10,000 sets of random data between 1 to 80 hours for each of P(1,j),
P(2,j), P(3,j), P(4,j), P(5,j) and P(6,j). Each set of random data obtained was also tested with
different sequences that resemble the sequence arrangement of ABCDEF, ABCDFE,
ABCEDF etc. All results indicate that Equation (13) produces makespan value equal the

results of Algorithm 1. This shows the accuracy of Equation (13) in computing the makespan
of the CMC scheduling arrangements.

5. Conclusion

This chapter presented the methodology to develop an effective makespan computation
algorithm using bottleneck analysis for M1,M2,M3,M4,M3,M4 permutation re-entrant flow
shop in which M1 has high tendency of exhibiting bottleneck characteristics. It was shown
that under the absolute bottleneck characteristics, both the makespan and optimum job
sequence can be accurately determined by the makespan algorithms developed using
bottleneck analysis. In cases where the absolute bottleneck condition is violated, the
makespan can still be accurately determined by the introduction of bottleneck correction
factors. The bottleneck-based methodology or approach presented in this chapter is not only
valid for the specific case study alone, but can also be utilised to develop alternative
makespan algorithms for other flow shop operation systems that shows significant
bottleneck characteristics. With the successful development of makespan computation
method using bottleneck analysis, future work can be concentrated to further utilize the
bottleneck approach in developing heuristic for optimizing the CMC re-entrant scheduling
problems.

6. Acknowledgement

This work was partially supported by the Fundamental Research Grant Scheme (Ministry of
Higher Education), Malaysia (Vot 0368, 2007).

7. References

Adams J, Balas E & Zawack D. (1988). The shifting bottleneck procedure for job shop
scheduling, Management Science, 34, 391-401

Bareduan SA, Hasan SH, Rafai NH & Shaari MF. (2006). Cyber manufacturing system for
small and medium enterprises: a conceptual framework, Transactions of North
American Manufacturing Research Institution for Society of Manufacturing Engineers, 34,
365-372

Bareduan SA & Hasan SH. (2008). Makespan Computation for Cyber Manufacturing Centre
Using Bottleneck Analysis: A Re-entrat Flow Shop Problem, Proceedings of
International Multiconference of Engineers & Computer Scientists (IMECS 2008)
Hong Kong, 19-21/3/2008, pp. 1644-1648

Bareduan SA, Hasan SH & Ariffin S. (2008). Finite scheduling of collaborative design and
manufacturing activity: a Petri net approach, Journal of Manufacturing Technology
Management, 19(2), 274-288

Cepek O, Okada M & Vlach M. (2002). Nonpreemptive Flowshop Scheduling With Machine
Dominance, European Journal of Operational Research. 139, 245-261

Choi SW & Kim YD. (2008). Minimizing makespan on an m-machine re-entrant flowshop,
Computers & Operations Research, 35(5), 1684-1696

Choi SW, Kim YD & Lee GC. (2005). Minimizing total tardiness of orders with reentrant lots
in a hybrid flowshop, International Journal of Production Research, 43(11), 2149-2167

Engineering the Computer Science and IT102

Demirkol E & Uzsoy R. (2000). Decomposition methods for reentrant flow shops with
sequence dependent setup times, Journal of Scheduling, 3, 115-177

Graves SC, Meal HC, Stefek D & Zeghmi AH. (1983) Scheduling of re-entrant flow shops,
Journal of Operations Management, 3(4), 197-207

Ho JC & Gupta JND. (1995). Flowshop Scheduling With Dominant Machines, Computers and
Operations Research, 22(2), 237-246

Kalir AA & Sarin SC. (2001). A near optimal heuristic for the sequencing problem in
multiple-batch flow-shops with small equal sublots. Omega, 29, 577-584

Lian Z, Gu X & Jiao B. (2008). A novel particle swarm optimization algorithm for
permutation flow-shop scheduling to minimize makespan, Chaos, Solitons and
Fractals, 35(5), 851-861

Mukherjee S & Chatterjee AK. (2006). Applying machine based decomposition in 2-machine
flow shops, European Journal of Operational Research, 169, 723-741

Onwubolu GC. (1996). A flow-shop manufacturing scheduling system with interactive
computer graphics, International Journal of Operations & Production Management,
16(9), 74-84

Pan JC & Chen JS. (2003). Minimizing makespan in re-entrant permutation flow-shops,
Journal of Operation Research Society, 54(6), 642-653

Pearn WL, Chung SH, Chen AY & Yang MH. (2004). A case study on the multistage IC final
testing scheduling problem with reentry, International Journal of Production
Economics, 88(3), 257-267

Pinedo M. (2002). Scheduling: Theory, algorithms, and systems, 2nd ed., Upper Saddle River,
N.J., Prentice-Hall

Wang JB, Shan F, Jiang B & Wang LY. (2006). Permutation flow shop scheduling with
dominant machines to minimize discounted total weighted completion time,
Applied Mathematics and Computation, 182(1), 947-954

Yang DL, Kuo WH & Chern MS. (2008). Multi-family scheduling in a two-machine re-
entrant flow shop with setups, European Journal of Operational Research, 187(3), 1160-
1170

Yura K. (1999). Cyclic scheduling for re-entrant manufacturing systems, International Journal
of Production Economics, 60, 523-528

Flexible Design by Contract 103

Flexible Design by Contract

Koen Vanderkimpen and Eric Steegmans

X

Flexible Design by Contract

Koen Vanderkimpen and Eric Steegmans
K.U.Leuven

Belgium

1. Introduction

Advances in computer science are made at many different levels and in many areas. One
important area of research is reusability, a goal achievable in many ways, from the im-
provement of programming languages to the development and use of components off the
shelve. In this chapter, we focus on methodology to improve reusability.
More precisely, we improve the practice of design by contract, a system of rules for
specification of code that aims at improving reliability and clarity of code, two factors that
contribute to reuse. The practice, however, conflicts with another practice, that of maximiz-
ing the adaptability of code, which is also an important factor to improve reuse. More on
this conflict and on the limits of design by contract is explained in section 2.
Our first improvement to design by contract, the flexibility principle, aims to reconcile the
methodology with adaptability. The second contribution, the distinction between restric-
tions and permissions, aims to improve the expressiveness of contracts.
The flexibility principle divides contract clauses between flexible and rigid clauses. The
latter are inherited, the former are only valid in the containing class, which allows for more
adaptations in subclasses. The second distinction, between restrictive and permissive
clauses, allows splitting the domain of possible states for an object in three: a part that’s
valid, a part that’s invalid, and a third left undefined, which can still be adapted in the
future. Traditional contracts define only valid and invalid states, leaving little room for
future change. We elaborate on our principle in section 3, defining the four important kinds
of contract clauses (two times two) and their behaviour under inheritance.
Of course, a programming practice can reap great benefits of language support to make it
more useful. That’s why, in section 4, we introduce properties, part of our previous research,
as the basis to which we will apply flexible design by contract. To do this, we demonstrate
the readonly modifier for properties, and we show how this modifier is an application of
our principle.
In section 5, we demonstrate the principle in full, applying it to the contract clauses of
invariants, preconditions and postconditions. We demonstrate how our work improves the
coherence of design by contract by creating symmetry between permissions and restrictions
and the way they are strengthened or weakened in subclasses.
In section 6, we provide an evaluation of our work. Section 7 elaborates on a possible
implementation. In section 8, we discuss related work, and we end with a conclusion and
discussion of future work in section 9.

7

Engineering the Computer Science and IT104

2. Problem Statement

The goal of design by contract, as explained in (Meyer, 1992), is to improve the reliability of
software systems. The methodological guidelines enforce a relationship between the client
and the supplier, here called the client and the developer. This reliability, however, comes at
a price: the contract of a class can only be changed in certain specific ways that hamper the
flexibility with which future changes can be made. Furthermore, a contract does not
completely specify exactly what is correct, what is incorrect, and what is left undetermined.
This section first elaborates on the benefits of programming by contract and the detrimental
effect of unbridled adaptability in the absence of contracts, and then explores both of the
principle’s problems of flexibility and expressivity.

2.1 Adaptability versus Contracts
To improve adaptability is often considered to be the best way to improving reusability. We
can, for example, make systems as customizable as possible, so that they can be reused in
many different ways by changing parameters and making adaptations to the code. This kind
of adaptability is often found in large software systems that need to be customized for each
client individually. It is often accomplished by putting hooks in the code, by which the
normal control flow is interrupted and custom code injected. It can also be done by injecting
code using aspect oriented software development. Inheritance, with its ability to override
the current behaviour, is also a powerful tool to accomplish this.
Contracts pose a serious obstacle when implementing adaptability in such a way, because
the behaviour of subroutines that leave hooks and other insertion points for foreign code, is
difficult to predict and even more difficult to correctly specify. A contract would limit the
options for inserted code, while the ability to insert code often limits what can be described
in the contract, or even makes it impossible to create any contract.
Another way to improve reuse is to divide the system in reusable building blocks, called
components, which perform certain tasks with high reliability and usually offer some form
of abstraction. This abstraction allows the component to be reused in different ways, and in
different systems. The reliability of the component, combined with good documentation,
makes sure developers will want to reuse the component, because they know what it will do
and they know that it will work. A good approach to achieving reliability in such compo-
nents is the use of contracts. This principle not only improves robustness and correctness,
two key components of reliability, by formalizing the component’s behaviour, but also
automatically provides developers with good documentation, which increases the potential
for reuse by lowering the learning curve required to reuse the code. Software written with a
clear contract will tell developers what it can and cannot do, so any potential reuse is more
easily identified.
To conclude, adaptability and the use of contracts cannot easily be combined. The problem
lies in the difficulty of writing a good contract to specify a component that is designed for
high adaptability. This reason for this is that class contracts are usually about what is
constant: what will always be true about a system; and the more adaptable we make a
system, the fewer constant features it will have. We believe, however, in improving the
reliability of software systems by the rigorous use of class contracts, and strongly discourage
making a system adaptable to the point where class contracts lose any meaning. The
detrimental effect of class contracts on the potential adaptability of a system, should,

however, be minimized. In that manner, both reliability and adaptability may lead to
increased reusability.

2.2 Flexibility
The first problem of design by contract we consider, is its lack of flexibility. Once we
introduce a contract clause in a class, it is automatically inherited by all subclasses, and it
can only be changed in certain ways, depending on what kind of clause it is.

public class Stack {

 /**
 * push object o on the stack
 *
 * Precondition for this method: none
 * Which means precondition: true
 * The method can always be executed
 */
 public void push (Object o) { … }
}

public class BoundedStack extends Stack {

 /**
 * New Precondition: getNbItems() < getCapacity()
 * The stack may not be full!
 */
 @Overridden public void push (Object o) { … }
}

Fig. 1. The Classes of Stacks and BoundedStacks

Consider the example in Figure 1; it is a Java-version of a class of stacks and a subclass of
BoundedStacks, based on an example in (Meyer, 1997). The example clearly does something
illegal: it introduces a precondition for a method in a subclass, which overrides a method in
the superclass without precondition. This is against the Liskov principles of substitution
(Liskov, 1994), which state that a precondition may only be weakened in subclasses, not
strengthened. The lack of any precondition is identical to a precondition of ‘true’, which is
the weakest possible precondition, so introducing any precondition in the subclass breaks
the contract.
Yet exactly this illegal introduction of a precondition is often what we need when creating
new subclasses based on classes built by a third party that did not know what our exact
requirements would be. It is a good example of the lack of flexibility in specification of
contracts. The developer of the class of stacks never considered the possibility of the
introduction of a precondition, so he did not provide one, making it impossible for any
client to do so either. Meyer (Meyer, 1997) solves this issue by introducing an abstract
precondition in the class of Stacks, that can be made concrete by the clients; indirectly, this is
a strengthening of the precondition, but by using an undetermined postcondition (read: the
absence of a postcondition, which actually defaults to a true postcondition), he stays within
the rules and avoids being accused of ‘cheating’.

must

Flexible Design by Contract 105

2. Problem Statement

The goal of design by contract, as explained in (Meyer, 1992), is to improve the reliability of
software systems. The methodological guidelines enforce a relationship between the client
and the supplier, here called the client and the developer. This reliability, however, comes at
a price: the contract of a class can only be changed in certain specific ways that hamper the
flexibility with which future changes can be made. Furthermore, a contract does not
completely specify exactly what is correct, what is incorrect, and what is left undetermined.
This section first elaborates on the benefits of programming by contract and the detrimental
effect of unbridled adaptability in the absence of contracts, and then explores both of the
principle’s problems of flexibility and expressivity.

2.1 Adaptability versus Contracts
To improve adaptability is often considered to be the best way to improving reusability. We
can, for example, make systems as customizable as possible, so that they can be reused in
many different ways by changing parameters and making adaptations to the code. This kind
of adaptability is often found in large software systems that need to be customized for each
client individually. It is often accomplished by putting hooks in the code, by which the
normal control flow is interrupted and custom code injected. It can also be done by injecting
code using aspect oriented software development. Inheritance, with its ability to override
the current behaviour, is also a powerful tool to accomplish this.
Contracts pose a serious obstacle when implementing adaptability in such a way, because
the behaviour of subroutines that leave hooks and other insertion points for foreign code, is
difficult to predict and even more difficult to correctly specify. A contract would limit the
options for inserted code, while the ability to insert code often limits what can be described
in the contract, or even makes it impossible to create any contract.
Another way to improve reuse is to divide the system in reusable building blocks, called
components, which perform certain tasks with high reliability and usually offer some form
of abstraction. This abstraction allows the component to be reused in different ways, and in
different systems. The reliability of the component, combined with good documentation,
makes sure developers will want to reuse the component, because they know what it will do
and they know that it will work. A good approach to achieving reliability in such compo-
nents is the use of contracts. This principle not only improves robustness and correctness,
two key components of reliability, by formalizing the component’s behaviour, but also
automatically provides developers with good documentation, which increases the potential
for reuse by lowering the learning curve required to reuse the code. Software written with a
clear contract will tell developers what it can and cannot do, so any potential reuse is more
easily identified.
To conclude, adaptability and the use of contracts cannot easily be combined. The problem
lies in the difficulty of writing a good contract to specify a component that is designed for
high adaptability. This reason for this is that class contracts are usually about what is
constant: what will always be true about a system; and the more adaptable we make a
system, the fewer constant features it will have. We believe, however, in improving the
reliability of software systems by the rigorous use of class contracts, and strongly discourage
making a system adaptable to the point where class contracts lose any meaning. The
detrimental effect of class contracts on the potential adaptability of a system, should,

however, be minimized. In that manner, both reliability and adaptability may lead to
increased reusability.

2.2 Flexibility
The first problem of design by contract we consider, is its lack of flexibility. Once we
introduce a contract clause in a class, it is automatically inherited by all subclasses, and it
can only be changed in certain ways, depending on what kind of clause it is.

public class Stack {

 /**
 * push object o on the stack
 *
 * Precondition for this method: none
 * Which means precondition: true
 * The method can always be executed
 */
 public void push (Object o) { … }
}

public class BoundedStack extends Stack {

 /**
 * New Precondition: getNbItems() < getCapacity()
 * The stack may not be full!
 */
 @Overridden public void push (Object o) { … }
}

Fig. 1. The Classes of Stacks and BoundedStacks

Consider the example in Figure 1; it is a Java-version of a class of stacks and a subclass of
BoundedStacks, based on an example in (Meyer, 1997). The example clearly does something
illegal: it introduces a precondition for a method in a subclass, which overrides a method in
the superclass without precondition. This is against the Liskov principles of substitution
(Liskov, 1994), which state that a precondition may only be weakened in subclasses, not
strengthened. The lack of any precondition is identical to a precondition of ‘true’, which is
the weakest possible precondition, so introducing any precondition in the subclass breaks
the contract.
Yet exactly this illegal introduction of a precondition is often what we need when creating
new subclasses based on classes built by a third party that did not know what our exact
requirements would be. It is a good example of the lack of flexibility in specification of
contracts. The developer of the class of stacks never considered the possibility of the
introduction of a precondition, so he did not provide one, making it impossible for any
client to do so either. Meyer (Meyer, 1997) solves this issue by introducing an abstract
precondition in the class of Stacks, that can be made concrete by the clients; indirectly, this is
a strengthening of the precondition, but by using an undetermined postcondition (read: the
absence of a postcondition, which actually defaults to a true postcondition), he stays within
the rules and avoids being accused of ‘cheating’.

must

Engineering the Computer Science and IT106

There are two problems with Meyer’s approach: the first is the lack of coherence between
the different kinds of assertions available: the lack of any assertion, whether it is a pre- or
postcondition, means the assertion is true, but this still defines a big difference between the
two kinds of assertions, because they are inherited differently. Preconditions in subclasses
are OR’ed with those in superclasses, whereas postconditions are AND’ed. This results in
preconditions that can only be made weaker (once you have true, the or-operation will make
the result always true) and postconditions that can only be made stronger (once you have
false, the and-operation will make the result always false).
The second problem lies in the fact that the developer of Stack needs to know he has to
make an abstract precondition. If the developers of the two classes are different, however,
they usually do not know such things. The superclass provider may guess that a precondi-
tion will be necessary in a subclass, but how is he to know which one and how it will be
introduced?
So what we need is the option to leave certain things undetermined in a superclass, so
subclass developers can still choose for themselves. Having a postcondition of ‘true’ comes
close to non-determination, but for the precondition, there’s no easy way to introduce it (a
precondition of ‘false’ would make the execution of the method in the superclass impossible,
regardless of the fact we can still weaken it in subclasses). Furthermore, we also need a more
symmetrical approach to assertions, which will make it easier to reason about them.

2.3 Expressivity
When discussing flexibility, we already mentioned the problem of inconsistency: pre-
conditions and postconditions being handled differently. The problem is actually much
wider than simply the default precondition being false and the default postcondition being
true: it is generally difficult to express that which is left undetermined. Lack of any asser-
tion, whether it be pre- or postcondition, should mean that the assertion is left unspecified.
We should generally be able to express what is certainly a precondition, what is certainly
not a precondition, and what is left in the middle. The same is true for postconditions and
invariants.
Consider the example in Figure 2: again, we’ve made an illegal strengthening of the
precondition. Nevertheless, what we want to express here, is that a general Person can have
an age from 0 to 200, but a Customer – clearly a subclass of Person, because not everyone is
our customer – needs to be older than 18.
For this to work, we would need to be able to introduce a distinction between necessary
preconditions and sufficient preconditions. For a Person, it is necessary and sufficient to
have an age between 0 and 200. For a customer, however, this is also necessary but not
sufficient.
What we would like to express is that values outside of the range between 0 and 200 are
always illegal values, but the legality of the values inside that range is left undetermined for
now. This is only possible by using tricks such as using a boolean method in the precondi-
tion, of which the postcondition can be strengthened. The method would state ‘if (age<0 ||
age >200) then result==false’, leaving unspecified when it returns true.
To conclude this section, we list what we need to be able to specify: first, we want to be able
to specify that which is not to change in subclasses, whether it is an assertion that restricts
certain things or one that permits certain things. Second, we also want to be able to specify
what is not to change in future versions of some class (also called: a change in time). Being

able to express what will not change will provide guarantees to clients. Third, we want the
option of being able to change what is still allowed to change in flexible ways, giving us full
control over all which is not yet specified. Being able to specify anything left unspecified
however we wish, will give us, and our clients, the possibility to make more adaptable
software.

public class Person {

 /**
 * Precondition: argument should be a reasonable number
 * arg >= 0 && arg <= 200
 */
 public void setAge(int arg) {…}
}

public class Customer extends Person {

 /**
 * Precondition: our customers must be adults
 * arg >= 18
 public void setAge(int arg) {…}
}

Fig. 2. The Classes of Person and Customer

3. Flexible Design by Contract

This section explains the two pillars of our solution to improve the flexibility and expres-
siveness of design by contract. First we explore flexibility, which is accomplished by the
distinction between flexible and rigid contract clauses. Second, we look into restrictions
versus permissions, a classification of contract clauses which allows a more powerful
specification than the traditional restrictive clauses.

3.1 The Flexibility Principle
The first constituent of our principle is the flexibility principle. In programming by contract,
the definitions of all possible clauses in a contract state that the clause is valid for a class and
all its subclasses. The flexibility principle changes the way in which this validity is deter-
mined: a contract clause will no longer automatically be always valid, nor valid for all
subclasses. Instead, this will be optional and configurable. The definitions of the principle
state as follows:

The Flexible Restriction Principle classifies contract clauses in two kinds: flexible clauses
and rigid clauses. Flexible clauses are not inherited through subclassing, and are therefore

not subject to any principles of substitutability. Rigid clauses are the traditional kind.

Actually, three different levels of guarantee are defined by this principle. The least level, not
included in the definition, guarantees nothing: anything not specified by a flexible or rigid

Flexible Design by Contract 107

There are two problems with Meyer’s approach: the first is the lack of coherence between
the different kinds of assertions available: the lack of any assertion, whether it is a pre- or
postcondition, means the assertion is true, but this still defines a big difference between the
two kinds of assertions, because they are inherited differently. Preconditions in subclasses
are OR’ed with those in superclasses, whereas postconditions are AND’ed. This results in
preconditions that can only be made weaker (once you have true, the or-operation will make
the result always true) and postconditions that can only be made stronger (once you have
false, the and-operation will make the result always false).
The second problem lies in the fact that the developer of Stack needs to know he has to
make an abstract precondition. If the developers of the two classes are different, however,
they usually do not know such things. The superclass provider may guess that a precondi-
tion will be necessary in a subclass, but how is he to know which one and how it will be
introduced?
So what we need is the option to leave certain things undetermined in a superclass, so
subclass developers can still choose for themselves. Having a postcondition of ‘true’ comes
close to non-determination, but for the precondition, there’s no easy way to introduce it (a
precondition of ‘false’ would make the execution of the method in the superclass impossible,
regardless of the fact we can still weaken it in subclasses). Furthermore, we also need a more
symmetrical approach to assertions, which will make it easier to reason about them.

2.3 Expressivity
When discussing flexibility, we already mentioned the problem of inconsistency: pre-
conditions and postconditions being handled differently. The problem is actually much
wider than simply the default precondition being false and the default postcondition being
true: it is generally difficult to express that which is left undetermined. Lack of any asser-
tion, whether it be pre- or postcondition, should mean that the assertion is left unspecified.
We should generally be able to express what is certainly a precondition, what is certainly
not a precondition, and what is left in the middle. The same is true for postconditions and
invariants.
Consider the example in Figure 2: again, we’ve made an illegal strengthening of the
precondition. Nevertheless, what we want to express here, is that a general Person can have
an age from 0 to 200, but a Customer – clearly a subclass of Person, because not everyone is
our customer – needs to be older than 18.
For this to work, we would need to be able to introduce a distinction between necessary
preconditions and sufficient preconditions. For a Person, it is necessary and sufficient to
have an age between 0 and 200. For a customer, however, this is also necessary but not
sufficient.
What we would like to express is that values outside of the range between 0 and 200 are
always illegal values, but the legality of the values inside that range is left undetermined for
now. This is only possible by using tricks such as using a boolean method in the precondi-
tion, of which the postcondition can be strengthened. The method would state ‘if (age<0 ||
age >200) then result==false’, leaving unspecified when it returns true.
To conclude this section, we list what we need to be able to specify: first, we want to be able
to specify that which is not to change in subclasses, whether it is an assertion that restricts
certain things or one that permits certain things. Second, we also want to be able to specify
what is not to change in future versions of some class (also called: a change in time). Being

able to express what will not change will provide guarantees to clients. Third, we want the
option of being able to change what is still allowed to change in flexible ways, giving us full
control over all which is not yet specified. Being able to specify anything left unspecified
however we wish, will give us, and our clients, the possibility to make more adaptable
software.

public class Person {

 /**
 * Precondition: argument should be a reasonable number
 * arg >= 0 && arg <= 200
 */
 public void setAge(int arg) {…}
}

public class Customer extends Person {

 /**
 * Precondition: our customers must be adults
 * arg >= 18
 public void setAge(int arg) {…}
}

Fig. 2. The Classes of Person and Customer

3. Flexible Design by Contract

This section explains the two pillars of our solution to improve the flexibility and expres-
siveness of design by contract. First we explore flexibility, which is accomplished by the
distinction between flexible and rigid contract clauses. Second, we look into restrictions
versus permissions, a classification of contract clauses which allows a more powerful
specification than the traditional restrictive clauses.

3.1 The Flexibility Principle
The first constituent of our principle is the flexibility principle. In programming by contract,
the definitions of all possible clauses in a contract state that the clause is valid for a class and
all its subclasses. The flexibility principle changes the way in which this validity is deter-
mined: a contract clause will no longer automatically be always valid, nor valid for all
subclasses. Instead, this will be optional and configurable. The definitions of the principle
state as follows:

The Flexible Restriction Principle classifies contract clauses in two kinds: flexible clauses
and rigid clauses. Flexible clauses are not inherited through subclassing, and are therefore

not subject to any principles of substitutability. Rigid clauses are the traditional kind.

Actually, three different levels of guarantee are defined by this principle. The least level, not
included in the definition, guarantees nothing: anything not specified by a flexible or rigid

Engineering the Computer Science and IT108

restriction is left undetermined and thus unguaranteed. The flexible level is therefore an
intermediate level: anything guaranteed by a flexible clause, is guaranteed for the current
class, whatever versions of the class are still to come. It is thus a guarantee in time. The
highest level of guarantee is given by a rigid clause: the specification given by such clauses
remains guaranteed not only through time, but also through inheritance. Hence, this can be
called a guarantee in all dimensions.
It would not make sense to establish a form of guarantee that would be fixed for inheritance,
and thus inherited by subclasses, but not in time, which means it could be changed in future
versions. This would cause a fragile base class problem (Szyperski, 1998), as such an
assertion could be dropped in a future version of a superclass, possibly invalidating a
subclass depending on it.
The two kinds of clauses, and the absence of clauses, can now be defined:

A flexible contract clause is a contract clause asserting a fact about objects
of the current class. It may or may not be inherited in subclasses, where it can also,

as a convenience, be converted into a rigid clause. It can be changed in time,
but only according to well-defined principles of substitutability

A rigid clause is a contract clause asserting a fact about objects of the current class

and all of its subclasses. It is automatically inherited and can only be changed
in subclasses according to well-defined principles of substitutability

Anything that cannot be asserted by a contract clause, whether because of the lack

of any clauses or because the existent clauses do not cover
every possible ascertainable fact, is left undetermined, it can be changed at will

A simpler way of understanding these three definitions is as follows: as long as we have no
contract at all, we can still add contract clauses. Once we introduce certain contract clauses,
we can only add new clauses as long as these do not somehow conflict with the already
existing clauses. We could also change these existing clauses, but only in ways that do not
conflict with their previous version. In subclasses, we only have to take the rigid classes of
the superclass into account, not the flexible ones. For example, suppose we have a method
returning an integer. In its initial version, the method has no postcondition and can thus
return any number in the integer range determined by the language. We then add a
traditional, restrictive postcondition, stating the result has to be greater than or equal to 10.
We call this a restrictive postcondition because it restricts any values smaller than 10, but
does not specify anything about values greater than 10 (see the next subsection). If this is a
flexible clause, the subclasses are still able to add any postcondition, even that the result
would have to be smaller than 10. In the class itself, or also in subclasses if our postcondition
were rigid, we can only add a postcondition that does not conflict. For example, we could
state that the method only returns numbers smaller than 30. The new postcondition would
be combined with the existing one using boolean conjunction. We could also introduce a
postcondition stating the result has to be greater than 15, which can be combined with the
existing clauses, but can also replace the greater-than-10 clause without conflict.
The flexibility principle allows developers to specify contracts for a certain class without
compromising the possibility to specify adapted contracts in its subclasses. Any contract

clause is enforced for objects of that specific class, but not automatically for instances of
subclasses. The developer can, however, also provide rigid clauses to deal with important
restrictions that also apply to subclasses, and supplement these rigid clauses with flexible
ones, that function more as guidelines, which can speed up the decision making process of
subclass developers by providing easily accessible examples of further assertion statements.
Furthermore, if a programming or specification language provides syntactic sugar to easily
transform a flexible clause into a rigid one, the flexible clauses can also function as ‘pick and
choose’ kind of clauses, speeding up the actual specification work of subclass developers by
providing reusable assertions.

3.2 Restrictive versus Permissive
Sometimes it becomes necessary in a specification to express not only what is certainly
incorrect, but also what will always be correct. Traditionally, this is only possible in a
contrived way. For example, suppose we want to express, as an invariant, that the value of a
certain integer field must always be positive, and is always allowed to be bigger than 18,
leaving the interval between 0 and 18 unspecified. This would allow subclass developers to
decide about that interval, and only that interval. Using only restrictions, the most we can
do in a straightforward manner, is force subclass developers to accept that negative values
are unacceptable; we cannot force them to leave the 18+ interval alone, since they are
usually only allowed to make restrictions stronger.
To express these kinds of permissive domains, we introduce permissions. They are the
opposite of restrictions, which are the traditional contract clauses. When permissions
converge with restrictions, they become immutabilities. In the next section, we will see what
the permissive qualification alters about the three simplest contract clause types: invariants,
preconditions and postconditions. In this section, we provide the general definition:

A permission is a contract clause that expresses a fact that, although it will sometimes
be false, is always allowed to be true. No other contract clause may be introduced that

contradicts this fact. A rigid permission can be made more permissive, or less restrictive,
in subclasses, as long as it does not contradict other contract clauses.

A restriction is a contract clause that expresses a fact that must always be true.

It is never allowed to be false. No other contract clause may be introduced
that contradicts this fact. A rigid restriction can be made more restrictive,

or less permissive, in subclasses, as long as it does not contradict other contract clauses.

An immutability is a permission and a restriction at the same time. It is a fact
that must always be true. No other contract clause may be introduced that contradicts

this fact. A rigid immutability cannot be changed in subclasses.

The difference between these definitions is apparently small: a permission is always allowed
to be true, whereas a restriction is simply always true. Yet they are two opposites that
perfectly complement each other, allowing the expression of complex specifications. They
relate to each other in the following way: a permission may be made less restrictive in
subclasses, but not less restrictive than any restrictions about the same fact that could be
present. The reciprocal is true for the restriction: it can be made more restrictive in sub-

Flexible Design by Contract 109

restriction is left undetermined and thus unguaranteed. The flexible level is therefore an
intermediate level: anything guaranteed by a flexible clause, is guaranteed for the current
class, whatever versions of the class are still to come. It is thus a guarantee in time. The
highest level of guarantee is given by a rigid clause: the specification given by such clauses
remains guaranteed not only through time, but also through inheritance. Hence, this can be
called a guarantee in all dimensions.
It would not make sense to establish a form of guarantee that would be fixed for inheritance,
and thus inherited by subclasses, but not in time, which means it could be changed in future
versions. This would cause a fragile base class problem (Szyperski, 1998), as such an
assertion could be dropped in a future version of a superclass, possibly invalidating a
subclass depending on it.
The two kinds of clauses, and the absence of clauses, can now be defined:

A flexible contract clause is a contract clause asserting a fact about objects
of the current class. It may or may not be inherited in subclasses, where it can also,

as a convenience, be converted into a rigid clause. It can be changed in time,
but only according to well-defined principles of substitutability

A rigid clause is a contract clause asserting a fact about objects of the current class

and all of its subclasses. It is automatically inherited and can only be changed
in subclasses according to well-defined principles of substitutability

Anything that cannot be asserted by a contract clause, whether because of the lack

of any clauses or because the existent clauses do not cover
every possible ascertainable fact, is left undetermined, it can be changed at will

A simpler way of understanding these three definitions is as follows: as long as we have no
contract at all, we can still add contract clauses. Once we introduce certain contract clauses,
we can only add new clauses as long as these do not somehow conflict with the already
existing clauses. We could also change these existing clauses, but only in ways that do not
conflict with their previous version. In subclasses, we only have to take the rigid classes of
the superclass into account, not the flexible ones. For example, suppose we have a method
returning an integer. In its initial version, the method has no postcondition and can thus
return any number in the integer range determined by the language. We then add a
traditional, restrictive postcondition, stating the result has to be greater than or equal to 10.
We call this a restrictive postcondition because it restricts any values smaller than 10, but
does not specify anything about values greater than 10 (see the next subsection). If this is a
flexible clause, the subclasses are still able to add any postcondition, even that the result
would have to be smaller than 10. In the class itself, or also in subclasses if our postcondition
were rigid, we can only add a postcondition that does not conflict. For example, we could
state that the method only returns numbers smaller than 30. The new postcondition would
be combined with the existing one using boolean conjunction. We could also introduce a
postcondition stating the result has to be greater than 15, which can be combined with the
existing clauses, but can also replace the greater-than-10 clause without conflict.
The flexibility principle allows developers to specify contracts for a certain class without
compromising the possibility to specify adapted contracts in its subclasses. Any contract

clause is enforced for objects of that specific class, but not automatically for instances of
subclasses. The developer can, however, also provide rigid clauses to deal with important
restrictions that also apply to subclasses, and supplement these rigid clauses with flexible
ones, that function more as guidelines, which can speed up the decision making process of
subclass developers by providing easily accessible examples of further assertion statements.
Furthermore, if a programming or specification language provides syntactic sugar to easily
transform a flexible clause into a rigid one, the flexible clauses can also function as ‘pick and
choose’ kind of clauses, speeding up the actual specification work of subclass developers by
providing reusable assertions.

3.2 Restrictive versus Permissive
Sometimes it becomes necessary in a specification to express not only what is certainly
incorrect, but also what will always be correct. Traditionally, this is only possible in a
contrived way. For example, suppose we want to express, as an invariant, that the value of a
certain integer field must always be positive, and is always allowed to be bigger than 18,
leaving the interval between 0 and 18 unspecified. This would allow subclass developers to
decide about that interval, and only that interval. Using only restrictions, the most we can
do in a straightforward manner, is force subclass developers to accept that negative values
are unacceptable; we cannot force them to leave the 18+ interval alone, since they are
usually only allowed to make restrictions stronger.
To express these kinds of permissive domains, we introduce permissions. They are the
opposite of restrictions, which are the traditional contract clauses. When permissions
converge with restrictions, they become immutabilities. In the next section, we will see what
the permissive qualification alters about the three simplest contract clause types: invariants,
preconditions and postconditions. In this section, we provide the general definition:

A permission is a contract clause that expresses a fact that, although it will sometimes
be false, is always allowed to be true. No other contract clause may be introduced that

contradicts this fact. A rigid permission can be made more permissive, or less restrictive,
in subclasses, as long as it does not contradict other contract clauses.

A restriction is a contract clause that expresses a fact that must always be true.

It is never allowed to be false. No other contract clause may be introduced
that contradicts this fact. A rigid restriction can be made more restrictive,

or less permissive, in subclasses, as long as it does not contradict other contract clauses.

An immutability is a permission and a restriction at the same time. It is a fact
that must always be true. No other contract clause may be introduced that contradicts

this fact. A rigid immutability cannot be changed in subclasses.

The difference between these definitions is apparently small: a permission is always allowed
to be true, whereas a restriction is simply always true. Yet they are two opposites that
perfectly complement each other, allowing the expression of complex specifications. They
relate to each other in the following way: a permission may be made less restrictive in
subclasses, but not less restrictive than any restrictions about the same fact that could be
present. The reciprocal is true for the restriction: it can be made more restrictive in sub-

Engineering the Computer Science and IT110

classes, but not more so than any present permission about the same fact. When both a
restriction and permission are maximally made more or less restrictive, they can no longer
be changed in subclasses. This we call an immutable contract clause. The different possibili-
ties for contract clauses are put together in Figure 3.
Different contract clauses in a class will be combined as follows: restrictions of the same
kind (invariants, preconditions…) will be logically conjoined to make the complete restric-
tion. Permissions of the same kind will also be logically conjoined, and also conjoined with
the complete restriction. This is because we cannot permit anything that is already re-
stricted, so any permission always implies the active restrictions.

NO ASSERTIONS
(UNDETERMINED)

add
restriction

add
permission

PERMISSIONSRESTRICTIONS

BOTH

add
restriction

add
permission

add
permission

add
restriction

subclassing change when
rigid, change in time when

flexible

IMMUTABILITY
(DETERMINED)

add maximal
permission

add maximal
restriction

PARTIALLY
DETERMINED

add
both

add
both

add
any

Fig. 3. State Diagram of Restrictions and Permissions

When inheriting rigid contract clauses, they will always be logically conjoined with the
clauses of the same kind that are added in the subclass: restrictions with new restrictions of

the same kind (invariants, preconditions,…) and permissions with permissions of the same
kind. This coherence is different from traditional design by contract, where inherited
preconditions were combined using the disjunctive boolean operator instead of conjoined
like postconditions.
When using flexible contract clauses, they are similarly conjoined with the rigid clauses of
the same kind, whether inherited or local, to form the complete assertion for the current
class.

4. Application to Properties

In this section we will digress from flexible design by contract and introduce properties; part
of our previous research. In the following section, our principles will be applied to proper-
ties to demonstrate them in detail. Properties were first introduced in (Vanderkimpen et al.,
2007a) and further elaborated on in (Vanderkimpen et al., 2007b). They are a language
feature introduced in statically typed object oriented programming languages to replace the
concept of fields with a more versatile concept. In section 4.2, we will demonstrate that the
readonly modifier for properties is already an early example of flexible design by contract.

4.1 Basic Properties
The main contribution of properties is the greatly increased flexibility when they are used
under inheritance. Many things about a property, such as its being a stored or a derived
property, can be overridden in subclasses. The traditional fields in languages like JAVA
(Gosling et al., 2005) do not leave room for redefinitions at all, which is why good practices
such as using beans have been established. With properties, there’s no more need for beans;
all their benefits are now part of the language.
Properties are best demonstrated using an example. Consider Figure 4, it demonstrates two
classes: the class of Persons, and its subclass of BornPersons. The first class has a simple
property age, denoting, in a number of years, the age of a Person. The keyword property
denotes that the age is a property, which means it is actually the combination of a field, an
accessor or getter, and a mutator or setter. Since this property has a primitive type, we call it
a primitive property. Unlike the properties in the subclass, the age property in Person does
not have a property block, which means it will be a default stored property. Default stored
properties have a private value, stored in a field with the same type as the property, a
default getter, which simply returns the stored field, and a default setter, which stores its
argument in the field. The purpose of properties is to allow access to a field through the
methods that encapsulate it, but with the same syntax as if it were a public field. An
example of the use of a property is seen in the first and last lines of the setter for the age
property in the subclass, where the birthDate property is first accessed, and later assigned
to. This access actually uses the getter and setter defined in the birthDate property.
So far, we see no difference with C# properties, which are syntactic sugar for a field with a
getter and a setter. The main benefit of our properties lies in its use with inheritance.
Suppose we were not allowed to change the class of Persons, but we still wanted to make a
better implementation, using a birth date to represent a Person’s age instead of an integer
denoting the age in years. For this purpose, we introduce a BornPerson class, subclassing
Person and introducing a birthDate property. The age of a person must now be derived
from that person’s birthDate, which means we have to override the age property to make

Flexible Design by Contract 111

classes, but not more so than any present permission about the same fact. When both a
restriction and permission are maximally made more or less restrictive, they can no longer
be changed in subclasses. This we call an immutable contract clause. The different possibili-
ties for contract clauses are put together in Figure 3.
Different contract clauses in a class will be combined as follows: restrictions of the same
kind (invariants, preconditions…) will be logically conjoined to make the complete restric-
tion. Permissions of the same kind will also be logically conjoined, and also conjoined with
the complete restriction. This is because we cannot permit anything that is already re-
stricted, so any permission always implies the active restrictions.

NO ASSERTIONS
(UNDETERMINED)

add
restriction

add
permission

PERMISSIONSRESTRICTIONS

BOTH

add
restriction

add
permission

add
permission

add
restriction

subclassing change when
rigid, change in time when

flexible

IMMUTABILITY
(DETERMINED)

add maximal
permission

add maximal
restriction

PARTIALLY
DETERMINED

add
both

add
both

add
any

Fig. 3. State Diagram of Restrictions and Permissions

When inheriting rigid contract clauses, they will always be logically conjoined with the
clauses of the same kind that are added in the subclass: restrictions with new restrictions of

the same kind (invariants, preconditions,…) and permissions with permissions of the same
kind. This coherence is different from traditional design by contract, where inherited
preconditions were combined using the disjunctive boolean operator instead of conjoined
like postconditions.
When using flexible contract clauses, they are similarly conjoined with the rigid clauses of
the same kind, whether inherited or local, to form the complete assertion for the current
class.

4. Application to Properties

In this section we will digress from flexible design by contract and introduce properties; part
of our previous research. In the following section, our principles will be applied to proper-
ties to demonstrate them in detail. Properties were first introduced in (Vanderkimpen et al.,
2007a) and further elaborated on in (Vanderkimpen et al., 2007b). They are a language
feature introduced in statically typed object oriented programming languages to replace the
concept of fields with a more versatile concept. In section 4.2, we will demonstrate that the
readonly modifier for properties is already an early example of flexible design by contract.

4.1 Basic Properties
The main contribution of properties is the greatly increased flexibility when they are used
under inheritance. Many things about a property, such as its being a stored or a derived
property, can be overridden in subclasses. The traditional fields in languages like JAVA
(Gosling et al., 2005) do not leave room for redefinitions at all, which is why good practices
such as using beans have been established. With properties, there’s no more need for beans;
all their benefits are now part of the language.
Properties are best demonstrated using an example. Consider Figure 4, it demonstrates two
classes: the class of Persons, and its subclass of BornPersons. The first class has a simple
property age, denoting, in a number of years, the age of a Person. The keyword property
denotes that the age is a property, which means it is actually the combination of a field, an
accessor or getter, and a mutator or setter. Since this property has a primitive type, we call it
a primitive property. Unlike the properties in the subclass, the age property in Person does
not have a property block, which means it will be a default stored property. Default stored
properties have a private value, stored in a field with the same type as the property, a
default getter, which simply returns the stored field, and a default setter, which stores its
argument in the field. The purpose of properties is to allow access to a field through the
methods that encapsulate it, but with the same syntax as if it were a public field. An
example of the use of a property is seen in the first and last lines of the setter for the age
property in the subclass, where the birthDate property is first accessed, and later assigned
to. This access actually uses the getter and setter defined in the birthDate property.
So far, we see no difference with C# properties, which are syntactic sugar for a field with a
getter and a setter. The main benefit of our properties lies in its use with inheritance.
Suppose we were not allowed to change the class of Persons, but we still wanted to make a
better implementation, using a birth date to represent a Person’s age instead of an integer
denoting the age in years. For this purpose, we introduce a BornPerson class, subclassing
Person and introducing a birthDate property. The age of a person must now be derived
from that person’s birthDate, which means we have to override the age property to make

Engineering the Computer Science and IT112

sure the birthDate property is used behind the scenes. The age property is now completely
derived, which can be inferred by the compiler: the value keyword representing the private
field to store the property in is absent from the implementation. The only other special
keyword is argument, which denotes the argument given to the setter. Since our properties
are more than just syntactic sugar and since the private values of stored properties are kept
completely encapsulated inside the properties at all times, we can drop the private field
from the storage space needed to store an object of type BornPerson.
A second benefit of properties can be seen in the implementation of the getter and setter for
the birthDate property: by default, we do not have to declare the private value, since it will
have the same type as the property. For the birthDate property, however, we were able to
declare a private value of a completely different type: the primitive type long. This is an
acceptable choice, as long as we also make sure that the getter and setter of the property
take this difference in types into account (otherwise, this would create an error at compile-
time). This mechanism is so versatile, we can even change the type when overriding the
property.

public class Person {
 public property int age;
}

public class BornPerson extends Person {
 public property Date birthDate {
 long value = 0;
 get {
 if (value==0) return null;
 return new Date(value);
 }
 set {
 if (argument==null) value = 0;
 value = argument.getTime();
 }
 }
 public property int age {
 get {
 return (new Date()).getYear()-birthDate.getYear();
 }
 set {
 Date date = birthDate;
 date.setYear((new Date()).getYear()-argument);
 birthDate = date;
 }
 }
}

Fig. 4. The Classes of Persons and BornPersons

4.2 Readonly Properties
As the name implies, a readonly property is a property that can only be read. This means the
property cannot be assigned to by clients. As demonstrated in figure 5, it can be introduced

by adding the readonly modifier to the declaration. For default properties, the result will be
the absence of a setter, and hence a compile-time error will occur when an attempt to assign
to the property is made. For a readonly property with customizations, it would be a
compile-time error to introduce a setter inside the property block. Readonly properties
should not be confused with constant properties: they can still change, only not through
assignment.
In (Vanderkimpen et al., 2007b), we introduced one more modifier: the immutable modifier.
The reason for this is that a readonly property can still be overridden to become writable.
According to the substitution principles, this is acceptable: only when accessed through its
subtype, the redeclared property can be written to. Clients relying on the supertype
declaration experience no problems, because a readonly property is not the same as a
constant property: it can still change, only not through assignment. An immutable property,
contrary to a readonly property, can no longer be made writable in subclasses, making it a
stronger constraint.

public class Person {
 public readonly property String firstName;
 public readonly property String lastName;
}

public class BornPerson extends Person {
 public property String firstName;
 public immutable property String lastName;
}

Fig. 5. Readonly Modifiers

In the example in Figure 5, we introduce names in the class of Persons: a first name and a
last name, both readonly. In the class of BornPersons, the first name is made writable: from
now on, it can be changed and this option can no longer be taken away in further subclasses.
The lastname property, on the other hand, is made immutable, which means the option of
making it writable is unavailable for any further subclasses.
Making a property readonly is a restriction: the ability to change it is completely taken
away, and thus maximally restricted (so actually it is an immutability). Furthermore, this
restriction can be seen as flexible, as it is only applied to the current class (although by
default repeated in subclasses, but this is only a matter of choice and a syntactic conven-
ience). Finally, it could also be seen as a ‘false’ precondition for the setter of the property,
because having a precondition of false means it cannot be used.
Making a property writable, on the other hand, is the absence of a restriction or permission.
It could actually be seen as a maximal permission, but this would hamper future change,
because it would also be rigid. This is because the writable status is automatically inherited.
In the absence of any other restrictions or permissions, the ability to write the property is
thus left undetermined, with the syntactical effect of being able to assign to it.
Finally, the immutable modifier for properties, like the readonly modifier, is a maximal
restriction, but unlike the readonly modifier, it is rigid, as it is automatically inherited in
subclasses.
So, what we have demonstrated here, is that the readonly modifier for properties is actually
already a special case of the application of flexible design by contract to the precondition of

Flexible Design by Contract 113

sure the birthDate property is used behind the scenes. The age property is now completely
derived, which can be inferred by the compiler: the value keyword representing the private
field to store the property in is absent from the implementation. The only other special
keyword is argument, which denotes the argument given to the setter. Since our properties
are more than just syntactic sugar and since the private values of stored properties are kept
completely encapsulated inside the properties at all times, we can drop the private field
from the storage space needed to store an object of type BornPerson.
A second benefit of properties can be seen in the implementation of the getter and setter for
the birthDate property: by default, we do not have to declare the private value, since it will
have the same type as the property. For the birthDate property, however, we were able to
declare a private value of a completely different type: the primitive type long. This is an
acceptable choice, as long as we also make sure that the getter and setter of the property
take this difference in types into account (otherwise, this would create an error at compile-
time). This mechanism is so versatile, we can even change the type when overriding the
property.

public class Person {
 public property int age;
}

public class BornPerson extends Person {
 public property Date birthDate {
 long value = 0;
 get {
 if (value==0) return null;
 return new Date(value);
 }
 set {
 if (argument==null) value = 0;
 value = argument.getTime();
 }
 }
 public property int age {
 get {
 return (new Date()).getYear()-birthDate.getYear();
 }
 set {
 Date date = birthDate;
 date.setYear((new Date()).getYear()-argument);
 birthDate = date;
 }
 }
}

Fig. 4. The Classes of Persons and BornPersons

4.2 Readonly Properties
As the name implies, a readonly property is a property that can only be read. This means the
property cannot be assigned to by clients. As demonstrated in figure 5, it can be introduced

by adding the readonly modifier to the declaration. For default properties, the result will be
the absence of a setter, and hence a compile-time error will occur when an attempt to assign
to the property is made. For a readonly property with customizations, it would be a
compile-time error to introduce a setter inside the property block. Readonly properties
should not be confused with constant properties: they can still change, only not through
assignment.
In (Vanderkimpen et al., 2007b), we introduced one more modifier: the immutable modifier.
The reason for this is that a readonly property can still be overridden to become writable.
According to the substitution principles, this is acceptable: only when accessed through its
subtype, the redeclared property can be written to. Clients relying on the supertype
declaration experience no problems, because a readonly property is not the same as a
constant property: it can still change, only not through assignment. An immutable property,
contrary to a readonly property, can no longer be made writable in subclasses, making it a
stronger constraint.

public class Person {
 public readonly property String firstName;
 public readonly property String lastName;
}

public class BornPerson extends Person {
 public property String firstName;
 public immutable property String lastName;
}

Fig. 5. Readonly Modifiers

In the example in Figure 5, we introduce names in the class of Persons: a first name and a
last name, both readonly. In the class of BornPersons, the first name is made writable: from
now on, it can be changed and this option can no longer be taken away in further subclasses.
The lastname property, on the other hand, is made immutable, which means the option of
making it writable is unavailable for any further subclasses.
Making a property readonly is a restriction: the ability to change it is completely taken
away, and thus maximally restricted (so actually it is an immutability). Furthermore, this
restriction can be seen as flexible, as it is only applied to the current class (although by
default repeated in subclasses, but this is only a matter of choice and a syntactic conven-
ience). Finally, it could also be seen as a ‘false’ precondition for the setter of the property,
because having a precondition of false means it cannot be used.
Making a property writable, on the other hand, is the absence of a restriction or permission.
It could actually be seen as a maximal permission, but this would hamper future change,
because it would also be rigid. This is because the writable status is automatically inherited.
In the absence of any other restrictions or permissions, the ability to write the property is
thus left undetermined, with the syntactical effect of being able to assign to it.
Finally, the immutable modifier for properties, like the readonly modifier, is a maximal
restriction, but unlike the readonly modifier, it is rigid, as it is automatically inherited in
subclasses.
So, what we have demonstrated here, is that the readonly modifier for properties is actually
already a special case of the application of flexible design by contract to the precondition of

Engineering the Computer Science and IT114

a property’s setter. Readonly is a flexible immutability, immutable is a rigid immutability
and writable is the absence of any assertion. In figure 5, we show a state diagram demon-
strating the possibilities of the readonly modifier for properties. The full application of our
principle to preconditions in general, and also to other kinds of contract clauses, will be
elaborated in the next section.

Fig. 6. Readonly State Diagram

5. The Principle in General

In section 3, we explained the new principle’s general semantics, introducing the concepts of
flexibility versus rigidity and restrictive versus permissive contract clauses. In this section,
we apply these formalisms to invariants, preconditions and postconditions, introducing
syntax to apply these contract clauses to the property concept from section 4. We present a
set of short keywords to indicate these constructs as flexible or rigid and as restrictions or
permissions. Furthermore, some single-word modifiers, which map to invariants, can be
easily adapted to be used with our principle, similar to the readonly concept in the previous
section. These modifiers are not supported in Java by default, so we will also provide a short
explanation on them.

5.1 Invariants
In design by contract (Meyer, 1992), an invariant is a clause in the contract denoting a fact
that will always be true. For a class contract, this fact will be true for all objects of that class
throughout the object life cycle, starting immediately after construction and ending
immediately before destruction. Usually, with ‘objects of that class’, objects of that class and
all its subclasses are meant. Using the flexible restriction principle, however, we will make a
clear distinction between invariants valid for a single class and invariants valid for the
whole hierarchy. Additionally, we will make a distinction between the traditional restrictive
invariants and the newly introduced permissive invariants.
For the scope of this work, we limit the invariants in our contracts to invariants that revolve
around specific properties. Consequentially, the invariants will be added to the property
block. We call these invariants ‘property invariants’, as opposed to the regular class
invariants. They do, however, have the same semantics.

We explain all these different invariants by means of an example. In these examples, Java
code will sometimes be complemented with pseudo code (in italics) to increase readability
and conciseness.
In Figure 7, we see the class of Files, having several invariant clauses for its property name.
A first distinction is made between flexible and rigid invariants: all contract clauses will by
default be flexible, unless the keyword rigid is added, that’s why the invariants without the
rigid keyword are flexible. A second distinction is the presence or absence of the permit
keyword, which indicates a clause as being a permission, rather than a restriction, which is,
again, the default. Finally, all invariants are indicated as such by the keyword invar, which
is followed by an optional name and an obligatory boolean statement enclosed in braces,
indicating the actual invariant.
The class of Files has four invariant clauses. The first two are rigid restrictions; they tell us,
that for all files, including subclasses of File, the name must never contain a slash or a delete
character and the name must be between 0 and 256 characters. This is the traditional
invariant clause: any object of type File for which the boolean statement is not true, is
violating the class invariant. The invariant clause is inherited in all subclasses and can never
be made less restrictive, according to the Liskov substitution principles (Liskov 1994).

public class File {
 public property String name {
 rigid invar(!name.contains(/,DEL) && name.length()<256);
 rigid invar(name.length()>=1);
 rigid permit invar(name.length()<=12);
 rigid permit invar(name.matches(alphanumerics));
 permit invar wildcards(!name.contains(?,*));
 permit invar (name.length()<=16);
 invar (name.length()<=32);
 invar notnull(name!=null);
 }
}

Fig. 7. The Class of Files

The third and fourth clauses indicate rigid permissions. They tell us, that for all files,
including subclasses of File, if the name has at most 12 alphanumeric characters, it will be a
valid name. This is the opposite of the traditional invariant: any object of type File for which
the boolean statements are all true, is obeying the class invariant. The invariant clause is
inherited in all subclasses and cannot be made more restrictive, which means it also defines
a limit to how strong the class invariant can become.
In the absence of flexible invariant clauses, the combination of the rigid restrictions and
permissions determines how the full domain of possible objects is divided into objects that
respect the class invariant, objects that violate it, and objects for which this is undetermined.
The third group are the objects for which the restriction conditions all evaluate to true, but
not all of the permissions evaluate to true. For example, a filename that does not contain
slashes or delete signs, but does contain non-alphanumerical characters, is not a restricted
filename, but we cannot be certain it will always be a permitted one.
The situation is slightly different when flexible invariants are present. In such a case, the
flexible invariant clauses further shrink the domain of undetermined values for an object’s

Flexible Design by Contract 115

a property’s setter. Readonly is a flexible immutability, immutable is a rigid immutability
and writable is the absence of any assertion. In figure 5, we show a state diagram demon-
strating the possibilities of the readonly modifier for properties. The full application of our
principle to preconditions in general, and also to other kinds of contract clauses, will be
elaborated in the next section.

Fig. 6. Readonly State Diagram

5. The Principle in General

In section 3, we explained the new principle’s general semantics, introducing the concepts of
flexibility versus rigidity and restrictive versus permissive contract clauses. In this section,
we apply these formalisms to invariants, preconditions and postconditions, introducing
syntax to apply these contract clauses to the property concept from section 4. We present a
set of short keywords to indicate these constructs as flexible or rigid and as restrictions or
permissions. Furthermore, some single-word modifiers, which map to invariants, can be
easily adapted to be used with our principle, similar to the readonly concept in the previous
section. These modifiers are not supported in Java by default, so we will also provide a short
explanation on them.

5.1 Invariants
In design by contract (Meyer, 1992), an invariant is a clause in the contract denoting a fact
that will always be true. For a class contract, this fact will be true for all objects of that class
throughout the object life cycle, starting immediately after construction and ending
immediately before destruction. Usually, with ‘objects of that class’, objects of that class and
all its subclasses are meant. Using the flexible restriction principle, however, we will make a
clear distinction between invariants valid for a single class and invariants valid for the
whole hierarchy. Additionally, we will make a distinction between the traditional restrictive
invariants and the newly introduced permissive invariants.
For the scope of this work, we limit the invariants in our contracts to invariants that revolve
around specific properties. Consequentially, the invariants will be added to the property
block. We call these invariants ‘property invariants’, as opposed to the regular class
invariants. They do, however, have the same semantics.

We explain all these different invariants by means of an example. In these examples, Java
code will sometimes be complemented with pseudo code (in italics) to increase readability
and conciseness.
In Figure 7, we see the class of Files, having several invariant clauses for its property name.
A first distinction is made between flexible and rigid invariants: all contract clauses will by
default be flexible, unless the keyword rigid is added, that’s why the invariants without the
rigid keyword are flexible. A second distinction is the presence or absence of the permit
keyword, which indicates a clause as being a permission, rather than a restriction, which is,
again, the default. Finally, all invariants are indicated as such by the keyword invar, which
is followed by an optional name and an obligatory boolean statement enclosed in braces,
indicating the actual invariant.
The class of Files has four invariant clauses. The first two are rigid restrictions; they tell us,
that for all files, including subclasses of File, the name must never contain a slash or a delete
character and the name must be between 0 and 256 characters. This is the traditional
invariant clause: any object of type File for which the boolean statement is not true, is
violating the class invariant. The invariant clause is inherited in all subclasses and can never
be made less restrictive, according to the Liskov substitution principles (Liskov 1994).

public class File {
 public property String name {
 rigid invar(!name.contains(/,DEL) && name.length()<256);
 rigid invar(name.length()>=1);
 rigid permit invar(name.length()<=12);
 rigid permit invar(name.matches(alphanumerics));
 permit invar wildcards(!name.contains(?,*));
 permit invar (name.length()<=16);
 invar (name.length()<=32);
 invar notnull(name!=null);
 }
}

Fig. 7. The Class of Files

The third and fourth clauses indicate rigid permissions. They tell us, that for all files,
including subclasses of File, if the name has at most 12 alphanumeric characters, it will be a
valid name. This is the opposite of the traditional invariant: any object of type File for which
the boolean statements are all true, is obeying the class invariant. The invariant clause is
inherited in all subclasses and cannot be made more restrictive, which means it also defines
a limit to how strong the class invariant can become.
In the absence of flexible invariant clauses, the combination of the rigid restrictions and
permissions determines how the full domain of possible objects is divided into objects that
respect the class invariant, objects that violate it, and objects for which this is undetermined.
The third group are the objects for which the restriction conditions all evaluate to true, but
not all of the permissions evaluate to true. For example, a filename that does not contain
slashes or delete signs, but does contain non-alphanumerical characters, is not a restricted
filename, but we cannot be certain it will always be a permitted one.
The situation is slightly different when flexible invariants are present. In such a case, the
flexible invariant clauses further shrink the domain of undetermined values for an object’s

Engineering the Computer Science and IT116

properties, if that object is a direct instance of the current class. Flexible contract clauses are
logically conjoined with their rigid counterparts.
Consider the fifth and sixth clause in Figure 7. They are flexible permissive invariant clauses,
which tell us that, for instances of File, names shorter than 16 characters and not containing
wildcards, will always be valid names, when they also respect the restrictive invariant
clauses. Note that the fifth clause is named as the wildcards clause; this will prove conven-
ient when the clause becomes important for a subclass, as it is easily referred to. Further-
more, an error-reporting tool able to detect the violation of invariants can create more
meaningful error messages by using the name of the invariant clauses involved.
The last two clauses are flexible restrictions, further restricting the rigid restrictions for
instances of File to the point where names of files cannot be null and can at most count 32
characters.
Please note a hypothetical conflict between the wildcards flexible permission and the first
rigid restriction: it seems as if names not containing wildcards would always be valid
names, even if they contain deletion sign or slashes, because the permission does not repeat
those characters in the list of prohibited characters. This is of course not a real conflict: the
rules we introduce to combine restrictions and permissions state that permissions always
automatically imply any active restrictions, which means that only objects that respect the
restrictions as well as the permissions are valid objects (objects respecting only the restric-
tions but not the permissions have an undefined validity; objects that don’t comply with the
restrictions are, of course, invalid). This is also the case for inherited rigid restrictions and
permissions, which are AND’ed with the restrictions and permissions of the subclass.
An illustration of the invariant clauses determining filename length can be seen in figure 8.
There is still a range of values not covered by any of the invariants: it is the range between
16 and 32. This is left undetermined by the developer: no guarantees are given that these
values will be legal, and likewise, no guarantee is given that they will be illegal. This allows
the developer of the class to further restrict or slacken the invariant in future versions of the
class of Files. Clients are guaranteed the current restrictions and permissions; use of the
undetermined range of values is at their own risk.

Fig. 8. Filename Length

In the subclass of files for ms-dos operating systems, shown in Figure 9, the invariants for
the filename are altered. The first rigid clause further restricts the list of available characters
for filenames; obviously, the new illegal symbols cannot be alphanumerical characters, since
they are already explicitly permitted in the superclass. The second line in the contract states
that the name will only contain majuscules.
The third contract clause in DosFile is an immutable invariant clause: it restricts the length
of filenames to 12 characters or less. Since there is already a rigid permission, defined in the

superclass File, that allows filenames to have up to 12 characters, we cannot restrict the
length to shorter than this, and we must therefore make this clause an immutability. This
means it cannot be further restricted or slackened; it is a rigid permission as well as a rigid
restriction.

public class DosFile extends File {
 public property String name {
 rigid invar(!name.contains(0x00-0x1F, ,”,:,<,>,\,|));
 rigid invar(name.equals(name.toUpperCase());
 immutable invar(name.length()<=12);
 rigid invar wildcards,notnull;
 }
}

Fig. 9. The Class of DosFiles

The fourth invariant clause is a syntactic convenience: the flexible invariant clauses from the
superclass are normally not inherited, but we wish to repeat them nevertheless, and even
make them rigid. Since they have names, we can easily do this by modifying them with the
right keywords, which of course is only syntactic sugar for repeating the code.
When discussing inheritance of class contracts, we cannot fail to mention the Liskov
principles of substitution (Liskov, 1994). According to these, traditional class invariants can
only be made more restrictive than the invariants in the superclass, as objects of the subclass
must comply with the same rules as objects of the superclass, and optionally some extra
rules. The situation is different using the flexible restriction principle. First and foremost,
flexible invariants are not inherited at all, so we can ignore them for the remainder of this
discussion. The system of restrictions and permissions, however, has a notable effect.
Ordinarily, anything not explicitly forbidden by a class invariant is allowed; this is no longer
the case: only that which is explicitly permitted is by default allowed, and vice versa, only
that which is explicitly restricted is by default forbidden. The most important consequence
of this is that a part of the domain of legal objects can remain undetermined, which allows
us to later enlarge the part that is legal. Using only restrictions, we were only allowed to
increase the part of the domain that was illegal.
The new principles of substitution are thus as follows: a rigid restrictive invariant can be
made more restrictive, as long as it does not conflict with a rigid permissive invariant, and a
rigid permissive invariant can be made less restrictive, as long as it does not conflict with a
rigid restrictive invariant. When both are impossible because of conflicts, we have created an
immutable invariant clause, which means the domain of legal values for what concerns that
specific invariant clause, is completely determined.

5.2 Preconditions
A precondition, in programming by contract, is a fact that has to be made true by the caller
of a method before that method may be called. Failure to do so would result in undefined
behaviour. Preconditions, when applied to properties, will be facts that have to be true
before calling the setter of the property, and thus before assigning a value to the property.
Consider Figure 10: the argument keyword represents the argument that will be passed to
the setter, as explained in section 4. The first precondition of the name property in the figure,
states that the property must not be assigned values containing slashes or delete characters.

Flexible Design by Contract 117

properties, if that object is a direct instance of the current class. Flexible contract clauses are
logically conjoined with their rigid counterparts.
Consider the fifth and sixth clause in Figure 7. They are flexible permissive invariant clauses,
which tell us that, for instances of File, names shorter than 16 characters and not containing
wildcards, will always be valid names, when they also respect the restrictive invariant
clauses. Note that the fifth clause is named as the wildcards clause; this will prove conven-
ient when the clause becomes important for a subclass, as it is easily referred to. Further-
more, an error-reporting tool able to detect the violation of invariants can create more
meaningful error messages by using the name of the invariant clauses involved.
The last two clauses are flexible restrictions, further restricting the rigid restrictions for
instances of File to the point where names of files cannot be null and can at most count 32
characters.
Please note a hypothetical conflict between the wildcards flexible permission and the first
rigid restriction: it seems as if names not containing wildcards would always be valid
names, even if they contain deletion sign or slashes, because the permission does not repeat
those characters in the list of prohibited characters. This is of course not a real conflict: the
rules we introduce to combine restrictions and permissions state that permissions always
automatically imply any active restrictions, which means that only objects that respect the
restrictions as well as the permissions are valid objects (objects respecting only the restric-
tions but not the permissions have an undefined validity; objects that don’t comply with the
restrictions are, of course, invalid). This is also the case for inherited rigid restrictions and
permissions, which are AND’ed with the restrictions and permissions of the subclass.
An illustration of the invariant clauses determining filename length can be seen in figure 8.
There is still a range of values not covered by any of the invariants: it is the range between
16 and 32. This is left undetermined by the developer: no guarantees are given that these
values will be legal, and likewise, no guarantee is given that they will be illegal. This allows
the developer of the class to further restrict or slacken the invariant in future versions of the
class of Files. Clients are guaranteed the current restrictions and permissions; use of the
undetermined range of values is at their own risk.

Fig. 8. Filename Length

In the subclass of files for ms-dos operating systems, shown in Figure 9, the invariants for
the filename are altered. The first rigid clause further restricts the list of available characters
for filenames; obviously, the new illegal symbols cannot be alphanumerical characters, since
they are already explicitly permitted in the superclass. The second line in the contract states
that the name will only contain majuscules.
The third contract clause in DosFile is an immutable invariant clause: it restricts the length
of filenames to 12 characters or less. Since there is already a rigid permission, defined in the

superclass File, that allows filenames to have up to 12 characters, we cannot restrict the
length to shorter than this, and we must therefore make this clause an immutability. This
means it cannot be further restricted or slackened; it is a rigid permission as well as a rigid
restriction.

public class DosFile extends File {
 public property String name {
 rigid invar(!name.contains(0x00-0x1F, ,”,:,<,>,\,|));
 rigid invar(name.equals(name.toUpperCase());
 immutable invar(name.length()<=12);
 rigid invar wildcards,notnull;
 }
}

Fig. 9. The Class of DosFiles

The fourth invariant clause is a syntactic convenience: the flexible invariant clauses from the
superclass are normally not inherited, but we wish to repeat them nevertheless, and even
make them rigid. Since they have names, we can easily do this by modifying them with the
right keywords, which of course is only syntactic sugar for repeating the code.
When discussing inheritance of class contracts, we cannot fail to mention the Liskov
principles of substitution (Liskov, 1994). According to these, traditional class invariants can
only be made more restrictive than the invariants in the superclass, as objects of the subclass
must comply with the same rules as objects of the superclass, and optionally some extra
rules. The situation is different using the flexible restriction principle. First and foremost,
flexible invariants are not inherited at all, so we can ignore them for the remainder of this
discussion. The system of restrictions and permissions, however, has a notable effect.
Ordinarily, anything not explicitly forbidden by a class invariant is allowed; this is no longer
the case: only that which is explicitly permitted is by default allowed, and vice versa, only
that which is explicitly restricted is by default forbidden. The most important consequence
of this is that a part of the domain of legal objects can remain undetermined, which allows
us to later enlarge the part that is legal. Using only restrictions, we were only allowed to
increase the part of the domain that was illegal.
The new principles of substitution are thus as follows: a rigid restrictive invariant can be
made more restrictive, as long as it does not conflict with a rigid permissive invariant, and a
rigid permissive invariant can be made less restrictive, as long as it does not conflict with a
rigid restrictive invariant. When both are impossible because of conflicts, we have created an
immutable invariant clause, which means the domain of legal values for what concerns that
specific invariant clause, is completely determined.

5.2 Preconditions
A precondition, in programming by contract, is a fact that has to be made true by the caller
of a method before that method may be called. Failure to do so would result in undefined
behaviour. Preconditions, when applied to properties, will be facts that have to be true
before calling the setter of the property, and thus before assigning a value to the property.
Consider Figure 10: the argument keyword represents the argument that will be passed to
the setter, as explained in section 4. The first precondition of the name property in the figure,
states that the property must not be assigned values containing slashes or delete characters.

Engineering the Computer Science and IT118

It is a rigid precondition, which means it can be made more restrictive. The rest of the
preconditions in the example are strongly akin to the invariants from section 5.1. This is
typical: in order to guarantee the class invariant, the developer introduces preconditions
that make it illegal for the client to invalidate the object by assigning a value to it that would
be against the invariant. It is, however, not mandatory; for example, we omitted a precondi-
tion reflecting the permissive invariant that makes alphanumerical file names legal.
This classical similarity between invariants and preconditions pleads for a way to declare in
short that the preconditions are meant to enforce the invariants. This would be a beautiful
addition to our concepts, but is, for now, out of scope. We will re-examine it in section 9,
together with other future work.

public class File {
 public property String name {
 rigid pre(!argument.contains(/,DEL));
 rigid pre(1<=argument.length()<256);
 rigid permit pre(argument.length()<=12);
 permit pre wildcardsarg(!argument.contains(?,*));
 permit pre (argument.length()<=16);
 pre (argument.length()<=32);
 pre notnullarg(argument!=null);
 }

 someMethod() {
 File someFile = getSomeFile();
 someFile.name ?= “myFileNamedTooLong”; //returns true
 someFile.name ??= “myFileNamedTooLong”;//returns false
 }
}

Fig. 10. The Class of Files, Preconditions

In the method someMethod in Figure 10, the single question mark-equation mark operator
checks if a given value satisfies the restrictive preconditions of a property setter. The
operator takes an object or primitive value of the same type on its left-hand and right-hand
side. Its result will always be boolean. It differs from the regular assignment operator
because it does not actually assign anything, it only checks the preconditions. When it
returns true, we know our argument is not invalid, but we are not sure it is valid, as it could
still be in the undetermined domain of values.
The double question mark-equation mark operator, on the other hand, checks the permis-
sive preconditions and returns true only if these are met. The restrictive preconditions are of
course automatically met in this case, since they are implied by the permissive ones. This
check can thus give a stronger guarantee if it returns true, because we know the argument is
valid for certain. In the example, the second check returns false because the permissive
precondition ‘<=16’ is not met.
Both operators are an easy way for clients that wish to make an assignment to a property
depending on its preconditions. It would be an easy exercise to introduce assignment
operators that would check the preconditions and then make the assignment if they are met,
which is simply syntactic sugar for an if-statement; we leave this to future work.
An example of rigid preconditions being inherited can be seen in Figure 11.

public class DosFile {

 public property String name {
 rigid pre(!argument.contains(0x00-0x1F, ,”,:,<,>,\,|));
 immutable pre(argument.length()<=12);
 rigid pre wildcardsarg,notnullarg;
 }
}

Fig. 11. Precondition in the class of DosFiles

In the class of DosFiles, the first rigid restrictive precondition strengthens the precondition
by disallowing more characters. The second line makes the permission to have a name
shorter than 12 characters immutable, meaning this is now also a restriction. The third line
turns the flexible permissions wildcardsarg and notnullarg of the superclass into an
immutable precondition: the argument is now required not to contain wildcards and must
also be non-null. Note that a restriction for the argument to consist only of capitals, is not
given. This means the implementation of the setter will somehow have to make sure that the
name is capitalized in order not to break the class invariant for DosFile. We will see to this
when discussing postconditions.
From the example, we see that the substitution principles for preconditions are analogous to
those for invariants. One important fact must be mentioned: the traditional precondition,
when inherited, can only be made weaker, as opposed to the traditional invariants, which
can only be made stronger. This is because the client is key in design by contract, and the
actions of the client cannot be further restricted. Using the flexible restriction principle, this
inconsistency is absent: restrictive preconditions can be made more restrictive, just like
restrictive invariants. This correspondence is granted by the fact that our principles allow
part of the domain of legal values to remain unspecified. From client-centric, we have
evolved to a system where the provider still has some freedom in adapting the specification.

5.3 Postconditions
A postcondition, in programming by contract, is a fact that has to be made true by a method
by the end of that method. Postconditions, when applied to properties, pertain only the
result of the setter, which usually means they will be little used with simple single-valued
properties. The default postcondition for non-primitive properties is shown in Figure 12. For
primitive properties, it would make use of identity (==). This default does not need to be
provided and is overridden by the user when a postcondition is introduced in the property
block. A more useful set of postconditions is shown for the copy method in Figure 12.
Postconditions differ from invariants in that they need not always be true. They only have to
be true immediately after the execution of a method. The flexible restriction principle,
applied to postconditions, alters the definition of the standard postcondition in the follow-
ing way: The postcondition must be true after execution of an assignment to a property, if
the assignment was dynamically bound to the property’s setter as defined in the class
declaring the postcondition. Adding the rigid keyword to the postcondition ensures that the
postcondition must always be made true after executing the method call, regardless of
which class the object containing the property belongs to. Just as was the case with invari-
ants, this does not break the substitution principles, because the definition of the flexible
postcondition is different from the definition of a rigid one.

Flexible Design by Contract 119

It is a rigid precondition, which means it can be made more restrictive. The rest of the
preconditions in the example are strongly akin to the invariants from section 5.1. This is
typical: in order to guarantee the class invariant, the developer introduces preconditions
that make it illegal for the client to invalidate the object by assigning a value to it that would
be against the invariant. It is, however, not mandatory; for example, we omitted a precondi-
tion reflecting the permissive invariant that makes alphanumerical file names legal.
This classical similarity between invariants and preconditions pleads for a way to declare in
short that the preconditions are meant to enforce the invariants. This would be a beautiful
addition to our concepts, but is, for now, out of scope. We will re-examine it in section 9,
together with other future work.

public class File {
 public property String name {
 rigid pre(!argument.contains(/,DEL));
 rigid pre(1<=argument.length()<256);
 rigid permit pre(argument.length()<=12);
 permit pre wildcardsarg(!argument.contains(?,*));
 permit pre (argument.length()<=16);
 pre (argument.length()<=32);
 pre notnullarg(argument!=null);
 }

 someMethod() {
 File someFile = getSomeFile();
 someFile.name ?= “myFileNamedTooLong”; //returns true
 someFile.name ??= “myFileNamedTooLong”;//returns false
 }
}

Fig. 10. The Class of Files, Preconditions

In the method someMethod in Figure 10, the single question mark-equation mark operator
checks if a given value satisfies the restrictive preconditions of a property setter. The
operator takes an object or primitive value of the same type on its left-hand and right-hand
side. Its result will always be boolean. It differs from the regular assignment operator
because it does not actually assign anything, it only checks the preconditions. When it
returns true, we know our argument is not invalid, but we are not sure it is valid, as it could
still be in the undetermined domain of values.
The double question mark-equation mark operator, on the other hand, checks the permis-
sive preconditions and returns true only if these are met. The restrictive preconditions are of
course automatically met in this case, since they are implied by the permissive ones. This
check can thus give a stronger guarantee if it returns true, because we know the argument is
valid for certain. In the example, the second check returns false because the permissive
precondition ‘<=16’ is not met.
Both operators are an easy way for clients that wish to make an assignment to a property
depending on its preconditions. It would be an easy exercise to introduce assignment
operators that would check the preconditions and then make the assignment if they are met,
which is simply syntactic sugar for an if-statement; we leave this to future work.
An example of rigid preconditions being inherited can be seen in Figure 11.

public class DosFile {

 public property String name {
 rigid pre(!argument.contains(0x00-0x1F, ,”,:,<,>,\,|));
 immutable pre(argument.length()<=12);
 rigid pre wildcardsarg,notnullarg;
 }
}

Fig. 11. Precondition in the class of DosFiles

In the class of DosFiles, the first rigid restrictive precondition strengthens the precondition
by disallowing more characters. The second line makes the permission to have a name
shorter than 12 characters immutable, meaning this is now also a restriction. The third line
turns the flexible permissions wildcardsarg and notnullarg of the superclass into an
immutable precondition: the argument is now required not to contain wildcards and must
also be non-null. Note that a restriction for the argument to consist only of capitals, is not
given. This means the implementation of the setter will somehow have to make sure that the
name is capitalized in order not to break the class invariant for DosFile. We will see to this
when discussing postconditions.
From the example, we see that the substitution principles for preconditions are analogous to
those for invariants. One important fact must be mentioned: the traditional precondition,
when inherited, can only be made weaker, as opposed to the traditional invariants, which
can only be made stronger. This is because the client is key in design by contract, and the
actions of the client cannot be further restricted. Using the flexible restriction principle, this
inconsistency is absent: restrictive preconditions can be made more restrictive, just like
restrictive invariants. This correspondence is granted by the fact that our principles allow
part of the domain of legal values to remain unspecified. From client-centric, we have
evolved to a system where the provider still has some freedom in adapting the specification.

5.3 Postconditions
A postcondition, in programming by contract, is a fact that has to be made true by a method
by the end of that method. Postconditions, when applied to properties, pertain only the
result of the setter, which usually means they will be little used with simple single-valued
properties. The default postcondition for non-primitive properties is shown in Figure 12. For
primitive properties, it would make use of identity (==). This default does not need to be
provided and is overridden by the user when a postcondition is introduced in the property
block. A more useful set of postconditions is shown for the copy method in Figure 12.
Postconditions differ from invariants in that they need not always be true. They only have to
be true immediately after the execution of a method. The flexible restriction principle,
applied to postconditions, alters the definition of the standard postcondition in the follow-
ing way: The postcondition must be true after execution of an assignment to a property, if
the assignment was dynamically bound to the property’s setter as defined in the class
declaring the postcondition. Adding the rigid keyword to the postcondition ensures that the
postcondition must always be made true after executing the method call, regardless of
which class the object containing the property belongs to. Just as was the case with invari-
ants, this does not break the substitution principles, because the definition of the flexible
postcondition is different from the definition of a rigid one.

Engineering the Computer Science and IT120

To illustrate the difference between restrictive and permissive postconditions, we consider
the File example again, in Figure 12. The rigid restriction of the copy method tells us that we
can expect the method to always create a file with a name that is at least equal to the copied
file’s name, ignoring case and dropping any part beyond the first 12 characters. The flexible
restriction strengthens this further by stating the names need to be exactly equal, but only
for direct instances of File.
The rigid permission of the copy method tells us that if the new name equals the existing
name, the postcondition will always be fulfilled. This means a permission is the maximum
postcondition that well ever need to be achieved by the method’s developer, and the
restrictive postcondition is the minimum required. Another way of explaining this, is that a
restrictive postcondition is the necessary condition a method needs to fulfil, and the
permissive postcondition a sufficient condition. Clients can rely on the necessary condition
to be met, but not on the sufficient one. The (rigid) permission can be made less restrictive in
subclasses, while the restrictive postcondition, like traditional postconditions, can only be
made stronger.

public class File {
 public property String name {
 post(this.name.equals(argument)) //default postcondition
 }

 public File copy(Directory target) {
 rigid pre(target!=this.getDirectory())
 rigid post
 (result.name.substring(0,11).equalsIgnoreCase(
 name.substring(0,11))
 rigid permit post(result.name.equals(name))
 post(result.name.equals(name))
 }
}

public class DosFile {
 public property String name {
 post(this.name.equals(argument.toUpperCase()))
 }

 public File copy(Directory target) {
 immutable post(result.name.equals(name))
 }
}

Fig. 12. Postconditions in the Class of Files

In the subclass of DosFiles, also in Figure 12, the postcondition of the setter needs to be
changed from the default, because the invariant for DosFile (in Figure 9) names state they
need to be capitalized, so this is exactly what the setter will do. The rigid postcondition of
the copy method becomes immutable: it needs to be rigid, because the name of the result
being equal to the current name is a necessity, and it is also equally restrictive as the rigid
permission in the superclass, which means it cannot be further restricted or weakened
anymore.

5.4 More Modifiers
In specification languages like JML (Leavens, 1999), many single-word assertions are
introduced on fields or methods. These can sometimes be brought back to some invariant or
pre- or postcondition.
An example is the nullable keyword. In JML, all declarations are by default declared non-
null, which means the declaration in question cannot evaluate to null. The nullable keyword
is introduced to declare that something is allowed to be null.
Applying our principle, we could state that any property declaration has, by default, a
flexible immutable invariant stating that the property is not allowed to be null. If we want
the property to be able to become null, we can use the same keyword, nullable, to declare a
flexible permission invariant stating that the property is valid when null. This, as usual,
replaces the default, so it is not conflicting.
Another option is to enforce non-null even further, by making it a rigid immutable inva-
riant. We introduce the keyword ‘nevernull’ for this purpose. At the other extreme, we
could make the nullable permission rigid, by modifying the property with an ‘alwaysnulla-
ble’ keyword.
As we can see, our principles are applicable to many forms of assertions, even single-word
modifiers, like nullable.

6. Evaluation

The flexible restriction principle adds qualifiers to clauses of a class contract denoting their
precise meaning. At first sight, this adds complexity to programming by contract. It replaces
three standard kinds of contract clauses – the precondition, postcondition and invariant – by
the same number of clauses, multiplied by two times two distinctions: either a flexible or a
rigid clause, and either a restrictive or a permissive clause. This distinction, however, also
simplifies the paradigm. The division in four kinds of clauses can be seen as a modification
of the clauses by additional meta-information that makes the clause easier to use. Once you
know what kind of clause you’re dealing with, you know how it impacts the contract, how
far its influence goes, and by how much it limits future change. Furthermore, the three
revised standard contract clauses are now completely consistent in the way they can be used
and transformed.
Another benefit is the increased flexibility with which contracts can be written, thanks to the
flexibility principle. The distinction between no clause, a flexible clause and a rigid clause
allows developers to exactly determine which parts of the contract are fixed, and which are
still flexible, and thus open to future adaptation. Lack of adaptability is an oft-used reason
not to use programming by contract, a paradigm which, even in its traditional form, has a
great impact on software quality. The increased flexibility established by our ameliorations
makes this reason obsolete.
This increased flexibility nevertheless comes at a cost: we are now forced to think about
assertions when we write code. How de we know which facts are true or false for all
subclasses? How do we know what is sure not to change in future versions of the current
class? How much flexibility do clients need? How many guarantees? Of course, this need to
think, just as the lack of adaptability, is likewise a popular reason not to use traditional
programming by contract. Our enhanced principles are designed to make it easier to reason
about these issues in a controlled way. For each assertion conceivable, developers can now

Flexible Design by Contract 121

To illustrate the difference between restrictive and permissive postconditions, we consider
the File example again, in Figure 12. The rigid restriction of the copy method tells us that we
can expect the method to always create a file with a name that is at least equal to the copied
file’s name, ignoring case and dropping any part beyond the first 12 characters. The flexible
restriction strengthens this further by stating the names need to be exactly equal, but only
for direct instances of File.
The rigid permission of the copy method tells us that if the new name equals the existing
name, the postcondition will always be fulfilled. This means a permission is the maximum
postcondition that well ever need to be achieved by the method’s developer, and the
restrictive postcondition is the minimum required. Another way of explaining this, is that a
restrictive postcondition is the necessary condition a method needs to fulfil, and the
permissive postcondition a sufficient condition. Clients can rely on the necessary condition
to be met, but not on the sufficient one. The (rigid) permission can be made less restrictive in
subclasses, while the restrictive postcondition, like traditional postconditions, can only be
made stronger.

public class File {
 public property String name {
 post(this.name.equals(argument)) //default postcondition
 }

 public File copy(Directory target) {
 rigid pre(target!=this.getDirectory())
 rigid post
 (result.name.substring(0,11).equalsIgnoreCase(
 name.substring(0,11))
 rigid permit post(result.name.equals(name))
 post(result.name.equals(name))
 }
}

public class DosFile {
 public property String name {
 post(this.name.equals(argument.toUpperCase()))
 }

 public File copy(Directory target) {
 immutable post(result.name.equals(name))
 }
}

Fig. 12. Postconditions in the Class of Files

In the subclass of DosFiles, also in Figure 12, the postcondition of the setter needs to be
changed from the default, because the invariant for DosFile (in Figure 9) names state they
need to be capitalized, so this is exactly what the setter will do. The rigid postcondition of
the copy method becomes immutable: it needs to be rigid, because the name of the result
being equal to the current name is a necessity, and it is also equally restrictive as the rigid
permission in the superclass, which means it cannot be further restricted or weakened
anymore.

5.4 More Modifiers
In specification languages like JML (Leavens, 1999), many single-word assertions are
introduced on fields or methods. These can sometimes be brought back to some invariant or
pre- or postcondition.
An example is the nullable keyword. In JML, all declarations are by default declared non-
null, which means the declaration in question cannot evaluate to null. The nullable keyword
is introduced to declare that something is allowed to be null.
Applying our principle, we could state that any property declaration has, by default, a
flexible immutable invariant stating that the property is not allowed to be null. If we want
the property to be able to become null, we can use the same keyword, nullable, to declare a
flexible permission invariant stating that the property is valid when null. This, as usual,
replaces the default, so it is not conflicting.
Another option is to enforce non-null even further, by making it a rigid immutable inva-
riant. We introduce the keyword ‘nevernull’ for this purpose. At the other extreme, we
could make the nullable permission rigid, by modifying the property with an ‘alwaysnulla-
ble’ keyword.
As we can see, our principles are applicable to many forms of assertions, even single-word
modifiers, like nullable.

6. Evaluation

The flexible restriction principle adds qualifiers to clauses of a class contract denoting their
precise meaning. At first sight, this adds complexity to programming by contract. It replaces
three standard kinds of contract clauses – the precondition, postcondition and invariant – by
the same number of clauses, multiplied by two times two distinctions: either a flexible or a
rigid clause, and either a restrictive or a permissive clause. This distinction, however, also
simplifies the paradigm. The division in four kinds of clauses can be seen as a modification
of the clauses by additional meta-information that makes the clause easier to use. Once you
know what kind of clause you’re dealing with, you know how it impacts the contract, how
far its influence goes, and by how much it limits future change. Furthermore, the three
revised standard contract clauses are now completely consistent in the way they can be used
and transformed.
Another benefit is the increased flexibility with which contracts can be written, thanks to the
flexibility principle. The distinction between no clause, a flexible clause and a rigid clause
allows developers to exactly determine which parts of the contract are fixed, and which are
still flexible, and thus open to future adaptation. Lack of adaptability is an oft-used reason
not to use programming by contract, a paradigm which, even in its traditional form, has a
great impact on software quality. The increased flexibility established by our ameliorations
makes this reason obsolete.
This increased flexibility nevertheless comes at a cost: we are now forced to think about
assertions when we write code. How de we know which facts are true or false for all
subclasses? How do we know what is sure not to change in future versions of the current
class? How much flexibility do clients need? How many guarantees? Of course, this need to
think, just as the lack of adaptability, is likewise a popular reason not to use traditional
programming by contract. Our enhanced principles are designed to make it easier to reason
about these issues in a controlled way. For each assertion conceivable, developers can now

Engineering the Computer Science and IT122

take two recurring steps to decide how to put them in the contract: first, decide if you want
to restrict the options, or to delimit a domain of permitted options. Second, decide if you
want this assertion in subclasses or not. In traditional programming by contract, these
decisions had to be taken implicitly and they impacted how the actual assertions needed to
be written instead of simply being expressed by a number of contract clause modifiers.
Making developers think about these questions in a controlled way will have a positive
effect on the quality of the code they write.
Besides ease of use and flexibility, there is also an increase in expressiveness, thanks to the
permission principle. This makes the writing of contracts easier, since certain assertions can
now be expressed within a single clause, whereas they traditionally required the use of
contrived mechanisms using auxiliary methods.
The possibility to add meta-information to contract clauses allows developers of the class to
decide exactly which parts of the implementation are under a strict contract, fostering better
robustness, and which parts are more suitable to change by subclasses. A criticism that can
be made, is that the flexible assertions used to indicate the latter parts, do not provide any
real guarantees: because of polymorphism, clients may not know if they are using instances
of a class, or of its subclasses. For the developers of a class, this is not really a problem, since
they have full control. For clients, a small amount of discipline when using the class is
enough to ensure the flexible guarantees. For example, clients could create a subclass in
which all flexible guarantees are made rigid, neutralizing the need for instances to be of a
certain type as long as they use this subclass’s static type. At the same time, the clients could
introduce changes to any parts of the class contract that are still flexible. These changes can
either be a fortification of the restrictions of the contract, improving robustness, or a
fortification of its permissions, where more customization is required.
Another way of making sure objects of a certain type are used, is to create them in factories,
and have those factories state in their postconditions that the created objects will be of a
certain type, which guarantees the flexible assertions of that type will be applicable to the
created objects. In Java (Gosling et al., 2005) for example, this can be done with the ‘getClass’
method and the ‘.class’ expression, both resulting in types that can be compared with the
‘==’ operator (using the instanceof would prove of no use, since it returns true even for
subtypes).

7. Implementation

Implementing the proposed principle in Java would require language support for properties
and class contracts. Several languages, Eiffel (Meyer, 1997), for example, exist already that
integrate contracts in the language, as opposed to creating a separate specification language
to be used on top of the programming language, like the Java Modelling Language (Leav-
ens, 1998) for Java. Both of these approaches have the benefit of seamlessness: the fact that
documentation and code should be one, which means: in the same document. This seam-
lessness is the best way to ensure that the code and its specification remain consistent, which
is indispensable for reliable reuse.
A benefit that direct language support has over third party languages is easier acceptance: if
the assertions are part of the language, nothing else is needed to start using them, so
developers will more easily be inclined to do so.

In any case, language support, whether in a separate documentation language or in the core
programming language, requires a compiler, and optionally modifications to the virtual
machine (for runtime support). We are currently working on adapting the Java compiler to
support our properties, and support for design by contract is future work.
Language support for flexible design by contract would allow for a myriad of useful tools.
IDEs could do syntax checking on our assertions, and simple analysis tools could check
them for inconsistencies, such as restrictions that restrict further than an already present
permission. More advanced tools could check if the program code adheres to the provided
assertions, and hence check if it is correct. How far this can go depends on the state of the art
of tools for static verification. As it is now, a lot can be accomplished with certain tools
(Chalin, 2006; Barnett et al., 2006), but complete verification of the correctness of general
program code is not entirely possible. The development of such tools for our concepts, while
extremely beneficial, is out of scope.

8. Related Work

The two main ingredients of this work are inheritance and class contracts. We are not the
first to focus on these concepts to improve reuse of software.
Concentrating on inheritance, the notion of weak subtyping (Lowe et al., 1998) alleviates the
principles of substitutability (Liskov & Wing, 1994) by looking at conformance not in
general, but for a concrete application. This is called weak conformance. The difference with
our approach is that we do not slacken the principles of substitution, but introduce new
concepts which allow the easy identification of parts in the code or contract that are not
subject to them.
Weak subtyping is not to be confused with the notion of weak behavioural subtyping
(Dhara & Leavens, 1995). The latter defines a different weakening of the subtyping rules,
which, as its most important contribution, allows mutable types to be subtypes of immuta-
ble types. The possible unexpected side effects resulting from this are prevented by
prohibiting direct aliasing between objects of different types.
Weak behavioural subtyping is a weak version of Liskov’s strong behavioural subtyping,
simply called behavioural subtyping in (Liskov & Wing, 1994), which explicitly forbids
mutations of immutable supertype state by mutable subtypes. Using strong behavioural
subtyping, inheritance between such types can usually be accomplished by providing an
abstract supertype to both the mutable and immutable versions of the type in question. Such
a supertype leaves mutability undetermined. This is similar to our notions: our version of
programming by contract explicitly states that anything left unspecified is also undeter-
mined. The difference with our approach is the scope: certain assumptions about unspeci-
fied constraints still appear in Liskov’s notions of subtyping that do not occur in ours. For
example, we do not automatically presume that the only state-changes that occur are the
explicitly specified ones.
The same example can be found in the Java Modelling Language (Leavens et al., 1999), a
language to write contracts for Java-code (Gosling et al., 2005), JML introduces an assignable
clause, specifying the allowed state-changes done by methods; the default for this clause is
‘\everything’, which means there is no constraint on what state-changes are affected by the
method. In general, the assignable clauses in JML are called frame axioms (McCarthy &
Hayes, 1987). One could argue the default frame axiom be that anything not mentioned is

Flexible Design by Contract 123

take two recurring steps to decide how to put them in the contract: first, decide if you want
to restrict the options, or to delimit a domain of permitted options. Second, decide if you
want this assertion in subclasses or not. In traditional programming by contract, these
decisions had to be taken implicitly and they impacted how the actual assertions needed to
be written instead of simply being expressed by a number of contract clause modifiers.
Making developers think about these questions in a controlled way will have a positive
effect on the quality of the code they write.
Besides ease of use and flexibility, there is also an increase in expressiveness, thanks to the
permission principle. This makes the writing of contracts easier, since certain assertions can
now be expressed within a single clause, whereas they traditionally required the use of
contrived mechanisms using auxiliary methods.
The possibility to add meta-information to contract clauses allows developers of the class to
decide exactly which parts of the implementation are under a strict contract, fostering better
robustness, and which parts are more suitable to change by subclasses. A criticism that can
be made, is that the flexible assertions used to indicate the latter parts, do not provide any
real guarantees: because of polymorphism, clients may not know if they are using instances
of a class, or of its subclasses. For the developers of a class, this is not really a problem, since
they have full control. For clients, a small amount of discipline when using the class is
enough to ensure the flexible guarantees. For example, clients could create a subclass in
which all flexible guarantees are made rigid, neutralizing the need for instances to be of a
certain type as long as they use this subclass’s static type. At the same time, the clients could
introduce changes to any parts of the class contract that are still flexible. These changes can
either be a fortification of the restrictions of the contract, improving robustness, or a
fortification of its permissions, where more customization is required.
Another way of making sure objects of a certain type are used, is to create them in factories,
and have those factories state in their postconditions that the created objects will be of a
certain type, which guarantees the flexible assertions of that type will be applicable to the
created objects. In Java (Gosling et al., 2005) for example, this can be done with the ‘getClass’
method and the ‘.class’ expression, both resulting in types that can be compared with the
‘==’ operator (using the instanceof would prove of no use, since it returns true even for
subtypes).

7. Implementation

Implementing the proposed principle in Java would require language support for properties
and class contracts. Several languages, Eiffel (Meyer, 1997), for example, exist already that
integrate contracts in the language, as opposed to creating a separate specification language
to be used on top of the programming language, like the Java Modelling Language (Leav-
ens, 1998) for Java. Both of these approaches have the benefit of seamlessness: the fact that
documentation and code should be one, which means: in the same document. This seam-
lessness is the best way to ensure that the code and its specification remain consistent, which
is indispensable for reliable reuse.
A benefit that direct language support has over third party languages is easier acceptance: if
the assertions are part of the language, nothing else is needed to start using them, so
developers will more easily be inclined to do so.

In any case, language support, whether in a separate documentation language or in the core
programming language, requires a compiler, and optionally modifications to the virtual
machine (for runtime support). We are currently working on adapting the Java compiler to
support our properties, and support for design by contract is future work.
Language support for flexible design by contract would allow for a myriad of useful tools.
IDEs could do syntax checking on our assertions, and simple analysis tools could check
them for inconsistencies, such as restrictions that restrict further than an already present
permission. More advanced tools could check if the program code adheres to the provided
assertions, and hence check if it is correct. How far this can go depends on the state of the art
of tools for static verification. As it is now, a lot can be accomplished with certain tools
(Chalin, 2006; Barnett et al., 2006), but complete verification of the correctness of general
program code is not entirely possible. The development of such tools for our concepts, while
extremely beneficial, is out of scope.

8. Related Work

The two main ingredients of this work are inheritance and class contracts. We are not the
first to focus on these concepts to improve reuse of software.
Concentrating on inheritance, the notion of weak subtyping (Lowe et al., 1998) alleviates the
principles of substitutability (Liskov & Wing, 1994) by looking at conformance not in
general, but for a concrete application. This is called weak conformance. The difference with
our approach is that we do not slacken the principles of substitution, but introduce new
concepts which allow the easy identification of parts in the code or contract that are not
subject to them.
Weak subtyping is not to be confused with the notion of weak behavioural subtyping
(Dhara & Leavens, 1995). The latter defines a different weakening of the subtyping rules,
which, as its most important contribution, allows mutable types to be subtypes of immuta-
ble types. The possible unexpected side effects resulting from this are prevented by
prohibiting direct aliasing between objects of different types.
Weak behavioural subtyping is a weak version of Liskov’s strong behavioural subtyping,
simply called behavioural subtyping in (Liskov & Wing, 1994), which explicitly forbids
mutations of immutable supertype state by mutable subtypes. Using strong behavioural
subtyping, inheritance between such types can usually be accomplished by providing an
abstract supertype to both the mutable and immutable versions of the type in question. Such
a supertype leaves mutability undetermined. This is similar to our notions: our version of
programming by contract explicitly states that anything left unspecified is also undeter-
mined. The difference with our approach is the scope: certain assumptions about unspeci-
fied constraints still appear in Liskov’s notions of subtyping that do not occur in ours. For
example, we do not automatically presume that the only state-changes that occur are the
explicitly specified ones.
The same example can be found in the Java Modelling Language (Leavens et al., 1999), a
language to write contracts for Java-code (Gosling et al., 2005), JML introduces an assignable
clause, specifying the allowed state-changes done by methods; the default for this clause is
‘\everything’, which means there is no constraint on what state-changes are affected by the
method. In general, the assignable clauses in JML are called frame axioms (McCarthy &
Hayes, 1987). One could argue the default frame axiom be that anything not mentioned is

Engineering the Computer Science and IT124

not allowed to change. Unfortunately, this is often too restrictive for systems that need to be
highly adaptable, and therefore, our principles make this optional, stating that anything left
undetermined is not under any contract. However, the use of properties (Vanderkimpen et
al., 2007a) as a means of implementing our principles, fosters encapsulation (Snyder, 1986)
and high cohesion, which lower the chance for unexpected (or undocumented) side effects
and thus reduces the frame problem (Borgida et al., 1995). The JML is widely adopted and
several tools exist for both static analysis (Chalin et al., 2006) as runtime checking of the
contracts. Beyond the new principles introduced by this chapter, using JML differs from our
approach because we make the specification part of the programming language, making it
more natural in use.
Other languages exist that incorporate class contracts in the code. An important example is
Eiffel (Meyer, 1997), which was invented by Bertrand Meyer, who also was the first to
introduce the notion of design by contract (Meyer, 1992). Our approach is based on this
notion, and expanded with the new concepts of flexibility and permissions.
Inheritance and contracts have also been combined before in a different way. Reuse
contracts (Steyaert et al., 1996) allow developers and users of reusable code to specify a
protocol for reuse. The contract’s main contribution is the identification of method depend-
encies, which, in the absence of contracts, can cause problems like the fragile base class
problem (Mikhajlov & Sekerinski, 1998). Subclassing Contracts (Ruby & Leavens, 2000) are a
similar construct, but add this dependency identification to the more general class contracts
of JML. Whatever their name, such contracts are indeed an interesting addition to general
contracts and can thus also be combined with this work.
The distinction between inherited and uninherited parts of a contract, reflected in our
approach by the flexibility principle, is also not entirely new. In Verified Design by Contract
(Crocker, 2004) a distinction is made between postconditions and postassertions. Postasser-
tions are actually the traditional, inherited postconditions, stating the facts that need to be
true after execution of a method. They must be provable consequences of the postconditions,
which are not inherited and thus have to be supplied anew in the subclass in order to still be
able to prove the inherited postassertion. These postconditions, however, are more expres-
sive than the traditional ones; they are in fact complete, which means they specify precisely
what state is changed and how it is changed, which brings us back to frame axioms. The
biggest difference between VDBC and our approach is precisely this completeness: in our
approach, we are deliberately incomplete in specifications, to allow maximum flexibility of
the design.

9. Conclusion & Future Work

In this chapter, we have shown how design by contract can impede the development of
adaptable software because of its lack of flexibility. We have also shown how the expressiv-
ity of many contracts is often too limited. Focusing on the importance of both adaptable and
reliable software, we have introduced flexible design by contract, a methodology aimed at
reconciling the reliability of design by contract with a programming style that fosters
adaptability.
Flexible design by contract introduces the distinction between flexible and rigid assertions,
the latter of which concern whole type hierarchies, as in traditional design by contract, while
the former focus only on a single type, not its subtypes. Furthermore, flexible design by

contract clarifies the third option, not to provide an assertion, as undetermined, maximizing
the opportunities for future change.
A second distinction principle introduced by flexible design by contract is the distinction
between restrictions and permissions, which allow for the division of a domain of possible
values for a certain feature in three parts: valid, invalid and undetermined. This goes against
the tradition of making anything left unspecified automatically valid or invalid, depending
on which of the two has been specified.
We have demonstrated how both these changes to design by contract not only increase
flexibility and expressiveness, but also the coherence of the paradigm, by eliminating certain
ambiguities such as allowing preconditions only to weaken under inheritance, but postcon-
ditions only to strengthen.
We have shown how flexible design by contract can be applied to properties, part of our
previous research, by adding invariants, preconditions and postconditions to property
declarations. We have also discussed how an implementation in the form of language
support can help developers use our methodology and how tools can be used to better test
software written this way.
Finally, we have considered the benefits and drawbacks of our principles, and contrasted
them with existing work.
Future work could include the addition of more kinds of contract clauses, such as the
exception clause, which will be similar to the precondition clause, and clauses that can
express the frame axioms of the code. Another branch of future work involves implementa-
tion in the form of adaptations to the Java compiler, and tool support. Finally, we note that
there are often important similarities between invariant clauses and precondition clauses.
Devising a short-hand notation to make preconditions implement the invariants can thus be
future work that would strongly alleviate the burden of writing semi-duplicate specifica-
tions.

10. References

Barnett, M.; Chang, B.; DeLine, R.; Jacobs, B. & Leino, K. (2006). Boogie: A Modular Reusable
Verifier for Object-Oriented Programs, In: Formal Methods for Components and Ob-
jects, de Boer, F.; Bonsangue, M.; Graf, S. & de Roever, W.-P., (Ed.), 364-387, Sprin-
ger, 978-3-540-36749-9, Heidelberg, Germany

Borgida, A.; Mylopoulos, J. & Reiter, R. (1995). On the Frame Problem in Procedure
Specifications. IEEE Trans. Softw. Eng., 21, 10, (October 1995) 785-798, 0098-5589

Chalin, P.; Kiniry, J.; Leavens, G. & Poll, E. (2006). Beyond Assertions: Advanced Specifica-
tion and Verification with JML and ESC/Java2, In: Formal Methods for Components
and Objects, de Boer, F.; Bonsangue, M.; Graf, S. & de Roever, W.-P., (Ed.), 342-363,
Springer, 978-3-540-36749-9, Heidelberg, Germany

Crocker, D. (2004). Safe Object-Oriented Software: The Verified Design-by-contract Para-
digm, In: Practical Elements of Safety: Proceedings of the Twelfth Safety-critical Systems
Symposium, Birmingham, UK, 17-19 February 2004, Redmill, F. & Anderson T. (Eds.),
19-43, Springer-Verlag, 978-1-852-33800-8, New York, United States

Dhara, K & Leavens, G. (1995). Weak Behavioral Subtyping for Types with Mutable Objects.
Electronic Notes in Theoretical Computer Science, 1, (1995) 91-113, 1571-0061

Flexible Design by Contract 125

not allowed to change. Unfortunately, this is often too restrictive for systems that need to be
highly adaptable, and therefore, our principles make this optional, stating that anything left
undetermined is not under any contract. However, the use of properties (Vanderkimpen et
al., 2007a) as a means of implementing our principles, fosters encapsulation (Snyder, 1986)
and high cohesion, which lower the chance for unexpected (or undocumented) side effects
and thus reduces the frame problem (Borgida et al., 1995). The JML is widely adopted and
several tools exist for both static analysis (Chalin et al., 2006) as runtime checking of the
contracts. Beyond the new principles introduced by this chapter, using JML differs from our
approach because we make the specification part of the programming language, making it
more natural in use.
Other languages exist that incorporate class contracts in the code. An important example is
Eiffel (Meyer, 1997), which was invented by Bertrand Meyer, who also was the first to
introduce the notion of design by contract (Meyer, 1992). Our approach is based on this
notion, and expanded with the new concepts of flexibility and permissions.
Inheritance and contracts have also been combined before in a different way. Reuse
contracts (Steyaert et al., 1996) allow developers and users of reusable code to specify a
protocol for reuse. The contract’s main contribution is the identification of method depend-
encies, which, in the absence of contracts, can cause problems like the fragile base class
problem (Mikhajlov & Sekerinski, 1998). Subclassing Contracts (Ruby & Leavens, 2000) are a
similar construct, but add this dependency identification to the more general class contracts
of JML. Whatever their name, such contracts are indeed an interesting addition to general
contracts and can thus also be combined with this work.
The distinction between inherited and uninherited parts of a contract, reflected in our
approach by the flexibility principle, is also not entirely new. In Verified Design by Contract
(Crocker, 2004) a distinction is made between postconditions and postassertions. Postasser-
tions are actually the traditional, inherited postconditions, stating the facts that need to be
true after execution of a method. They must be provable consequences of the postconditions,
which are not inherited and thus have to be supplied anew in the subclass in order to still be
able to prove the inherited postassertion. These postconditions, however, are more expres-
sive than the traditional ones; they are in fact complete, which means they specify precisely
what state is changed and how it is changed, which brings us back to frame axioms. The
biggest difference between VDBC and our approach is precisely this completeness: in our
approach, we are deliberately incomplete in specifications, to allow maximum flexibility of
the design.

9. Conclusion & Future Work

In this chapter, we have shown how design by contract can impede the development of
adaptable software because of its lack of flexibility. We have also shown how the expressiv-
ity of many contracts is often too limited. Focusing on the importance of both adaptable and
reliable software, we have introduced flexible design by contract, a methodology aimed at
reconciling the reliability of design by contract with a programming style that fosters
adaptability.
Flexible design by contract introduces the distinction between flexible and rigid assertions,
the latter of which concern whole type hierarchies, as in traditional design by contract, while
the former focus only on a single type, not its subtypes. Furthermore, flexible design by

contract clarifies the third option, not to provide an assertion, as undetermined, maximizing
the opportunities for future change.
A second distinction principle introduced by flexible design by contract is the distinction
between restrictions and permissions, which allow for the division of a domain of possible
values for a certain feature in three parts: valid, invalid and undetermined. This goes against
the tradition of making anything left unspecified automatically valid or invalid, depending
on which of the two has been specified.
We have demonstrated how both these changes to design by contract not only increase
flexibility and expressiveness, but also the coherence of the paradigm, by eliminating certain
ambiguities such as allowing preconditions only to weaken under inheritance, but postcon-
ditions only to strengthen.
We have shown how flexible design by contract can be applied to properties, part of our
previous research, by adding invariants, preconditions and postconditions to property
declarations. We have also discussed how an implementation in the form of language
support can help developers use our methodology and how tools can be used to better test
software written this way.
Finally, we have considered the benefits and drawbacks of our principles, and contrasted
them with existing work.
Future work could include the addition of more kinds of contract clauses, such as the
exception clause, which will be similar to the precondition clause, and clauses that can
express the frame axioms of the code. Another branch of future work involves implementa-
tion in the form of adaptations to the Java compiler, and tool support. Finally, we note that
there are often important similarities between invariant clauses and precondition clauses.
Devising a short-hand notation to make preconditions implement the invariants can thus be
future work that would strongly alleviate the burden of writing semi-duplicate specifica-
tions.

10. References

Barnett, M.; Chang, B.; DeLine, R.; Jacobs, B. & Leino, K. (2006). Boogie: A Modular Reusable
Verifier for Object-Oriented Programs, In: Formal Methods for Components and Ob-
jects, de Boer, F.; Bonsangue, M.; Graf, S. & de Roever, W.-P., (Ed.), 364-387, Sprin-
ger, 978-3-540-36749-9, Heidelberg, Germany

Borgida, A.; Mylopoulos, J. & Reiter, R. (1995). On the Frame Problem in Procedure
Specifications. IEEE Trans. Softw. Eng., 21, 10, (October 1995) 785-798, 0098-5589

Chalin, P.; Kiniry, J.; Leavens, G. & Poll, E. (2006). Beyond Assertions: Advanced Specifica-
tion and Verification with JML and ESC/Java2, In: Formal Methods for Components
and Objects, de Boer, F.; Bonsangue, M.; Graf, S. & de Roever, W.-P., (Ed.), 342-363,
Springer, 978-3-540-36749-9, Heidelberg, Germany

Crocker, D. (2004). Safe Object-Oriented Software: The Verified Design-by-contract Para-
digm, In: Practical Elements of Safety: Proceedings of the Twelfth Safety-critical Systems
Symposium, Birmingham, UK, 17-19 February 2004, Redmill, F. & Anderson T. (Eds.),
19-43, Springer-Verlag, 978-1-852-33800-8, New York, United States

Dhara, K & Leavens, G. (1995). Weak Behavioral Subtyping for Types with Mutable Objects.
Electronic Notes in Theoretical Computer Science, 1, (1995) 91-113, 1571-0061

Engineering the Computer Science and IT126

Gosling J.; Joy, B.; Steele, G. & Bracha, G. (2005). The Java™ Language Specification (Third
Edition), Addison Wesley, 978-0321246783, United States

Leavens, G.; Baker, A. & Ruby, C. (1998). JML: a Java modeling language. In: OOPSLA '98
Addendum: Addendum to the 1998 proceedings of the conference on Object-oriented pro-
gramming, systems, languages, and applications (Addendum), ACM, 1-58113-286-7,
Vancouver, Canada

Leavens, G.; Baker, A. & Ruby, C. (1999). JML: a Notation for Detailed Design. In: Behavioral
Specifications for Businesses and Systems, Kilov, H.; Rumpe, B. & Simmonds, I. (Ed.),
175-188, Springer, 978-0792386292, Heidelberg, Germany

Liskov, B. & Wing, J. (1994). A behavioral notion of subtyping, ACM Transactions on
Programming Languages and Systems, 16, 6, (November 1994) 1811-1841, 0164-0925

Lowe, W.; Neumann, R.; Trapp, M. & Zimmerman, W. (1998). Weak subtyping – yet another
notion of inheritance, Technology of Object-Oriented Languages, 1998, Tools 26, Pro-
ceedings, 333-345, 0-8186-8482-8, Santa Barbara, CA, USA, August 1998, IEEE Com-
puter Society, Washington, DC

McCarthy, J. & Hayes, P. (1987). Some philosophical problems from the standpoint of
artificial intelligence. In: Readings in nonmonotonic reasoning, Ginsberg, M. (Ed.), 26-
45, Morgan Kaufmann Publishers Inc., 0-934613-45-1, San Francisco, United States

Meyer, B. (1992). Applying “Design by Contract”. Computer, 25, 10, (October 1992) 40-51,
0018-9162

Meyer, B. (1997). Object Oriented Software Construction (2nd Ed.), Prentice-Hall, 0-13-629155-4,
United States

Mikhajlov, L. & Sekerinski, E. (1998). A study of The Fragile Base Class Problem. In: ECOOP
'98: Proceedings of the 12th European Conference on Object-Oriented Programming, Jul, E.
(Ed.), 355-382, Springer-Verlag, 3-540-64737-6, London, United Kingdom

Ruby, C. & Leavens, G. (2000). Safely creating correct subclasses without seeing superclass
code. In: OOPSLA '00: Proceedings of the 15th ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications, Rosson, M. & Lea, D.
(Eds.), 208-228, ACM, 1-58113-200-X, New York, United States

Snyder, A. (1986). Encapsulation and inheritance in object-oriented programming languag-
es, In: OOPLSA '86: Conference proceedings on Object-oriented programming systems,
languages and applications, 38-45, ACM, 0-89791-204-7, New York, United States

Steyaert, P.; Lucas, C.; Mens, K. & D’Hondt, T. (1996). Reuse Contracts: Managing the
Evolution of Reusable Assets, In: OOPSLA '96: Proceedings of the 11th ACM SIG-
PLAN conference on Object-oriented programming, systems, languages, and applications,
268-285, ACM, 0-89791-788-X, San Jose, California, United States

Szyperski, C. (1998). Component software: beyond object oriented programming (2nd Ed.),
Addison-Wesley Professional, 0-201-17457-20, United States

Vanderkimpen, K.; van Dooren, M. & Steegmans, E. (2007a). Flexible Object Representation
using Properties, Proceedings of the International Multiconference on Computer Science
and Information Technology, 1103-1112, 1896-7094, Wisła, Poland, October 2007, PTI

Vanderkimpen, K.; van Dooren, M. & Steegmans, E. (2007b). Using Customizable Properties
to make Object Representation a First-class Citizen. Computer Science and Information
Systems, 4, 2, (December 2007) 27-46, 1820-0214

Application of semantic networks in natural language issues 127

Application of semantic networks in natural language issues

Wojciech Górka, Adam Piasecki and Łukasz Bownik

X

Application of semantic networks
in natural language issues

Wojciech Górka, Adam Piasecki and Łukasz Bownik

Centre EMAG
Poland

1. Introduction

Semantic networks are becoming a more and more popular issue these days. This popularity
is mostly related to the idea of the so called Web 3.0. However, the use of ontologies and
semantic networks is not limited to the Internet. They can find application in data
integration, formal description of a domain, identification of facts, etc. Semantic networks
are related to natural language applications.
Natural language analysis is based on understanding the user’s question and generating an
answer. Within the analysis of the user’s question there are solutions based both on full-text
analysis and on patterns. Full-text analysis is related mostly to Internet browsers or ready-
to-use tools which perform such functions. On the other hand, there are solutions based on
question patters developed for chatterbot applications. Semantic networks can provide extra
qualities to both these solutions, i.e. the possibility to define hierarchies, dependencies
between concepts, which will allow the data search to become a more intelligent process.
Semantic networks make it possible to record certain facts and data related by concepts
which give meaning to these facts and data. It is especially evident now with the
development of data publication (Linked data) in social network services. The advantages of
such knowledge collecting processes are: easy navigation between particular concepts,
browsing the data in a cross-sectional manner, flexible data structure, and the possibility to
record information about meta-data (data structure). On the other hand, there are situations
when the information about a particular element should be available as text – sometimes the
text is more understandable and readable for the user than a table or structure. Semantic
networks, equipped with tools suitable for a given language, easily enable such
functionality.
The first section of this chapter will describe semantic network issues. Then two sample
solutions will be shown, which use semantic networks for natural language analysis and for
generating texts on the basis of data recorded in semantic networks. In the first section the
semantic networks issues will be described. Next, two examples of the adaptation of
semantic networks in a natural language will be proposed: search engine and natural
language generation engine based on semantic networks. The examples will be based on
works and tests performed with the use of the Polish language. Still, it seems that the
presented ideas will find applications in other languages too.

8

Engineering the Computer Science and IT128

1.1 Semantic network
The semantic network concept was introduced as an answer to new requirements connected
with the progress of the Internet network (Berners-Lee, 2001). The functionality of the
Internet (share files, contents, websites, services made available through a variety of forms)
is gradually becoming insufficient. Shared resources are primarily intended for use directly
by humans. Poor standardization of contents makes it impossible to precise search and
process data in an automated manner. For example, e-mail addresses, contact information,
calendar of events on a web page are readable for humans. However, if it had to be
automatically imported into the mail, calendar, etc. this will be confusing. So it became
necessary to build a formalized standard for describing data, knowledge and relationships
between them. Formally described data could be both human readable and easily accessible
to programs operating on them. A standardized form of data storage will allow to use them
in different systems, applications, etc.

1.1.1 Standards related to semantic networks
World Wide Web Consortium (W3C) started to process a knowledge description standard.
In 1997 a standard was proposed, and as early as in 1999 W3C published the Resource
Description Framework (RDF) standard1 . The standard was complemented in 2004 with the
RDF Schema (RDF-S) (Brickley, 2004) specification.
RDF allows to record triples of concepts. Each triple is a subject-predicate-object expression.
Such a way of concepts recording forms a network of definitions (each object can be a
subject in a different triple). RDF-S introduced the possibility to build meta-concepts:
classes, sub-classes, features. It also launches a non-standard way of defining the name of
the notion (label) and its description (comment).
The next stage to extend the semantic web standards was to increase the expressiveness of
languages intended for ontology recording. W3C published the OWL (Web Ontology
Language) standard (McGuiness & Harmelen, 2004). The language allows, among others, to
express the number of concept sets, to show how one concept belongs to or differs from the
other, to identify necessary and sufficient conditions for a given concept. Greater
expressiveness of the language allows to verify concepts added to the ontology and to
search out certain facts and features indirectly. Additionally, OWL makes it possible to
integrate two ontologies by means of associating their identical concepts.

1.1.2 Defined ontologies until now
Standards (defined and well known ontologies) allow describing the concepts and
connections between concepts. These standards are currently creating a base for the specific
schema-ontologies which introduce certain aspects of reality. Sample ontologies:

 Dublin Core (DC) 2– ontology defining the schema for describing library collections
such as books, photos, videos and other multimedia resources;

 Friend of a Friend (FOAF) 3– ontology which describes the person and the friends
of that person, thereby creating a network of connected people;

1 http://www.w3.org/RDF/
2 http://dublincore.org/documents/dcmi-terms/
3 http://www.foaf-project.org/docs/specs

 Semantically-Interlinked Online Communities (SIOC)4 – ontology which describes
social networks;

 DBPedia 5 – ontology which provides data from Wikipedia in the structural way;
 OpenCyc6 – ontology describing the data collected within the Cyc project. The

project aims at mapping the concepts found in the real world and the relationships
between them.

Currently, there is also an initiative aimed at linking together different ontologies (Berners-
Lee, 2006). This initiative is led by W3C SWEO Linking Open Data. Its purpose is to provide
infrastructure for publishing data by means of semantic techniques.

Fig. 1. Existing ontologies and connections between them [source:Linking Open Data
Community7].

This initiative is primarily concerned with ensuring consistency between existing ontologies
(and, therefore, data they describe), so that there would be a smooth transition between the
information from different knowledge bases ex. Wikipedia - DBPedia, WordNet,
MusicBraintz, Geonames (Figure 1).

4 http://sioc-project.org/ontology
5 http://dbpedia.org/About
6 http://www.cyc.com/cyc/opencyc/overview
7 http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/LinkingOpenData

Application of semantic networks in natural language issues 129

1.1 Semantic network
The semantic network concept was introduced as an answer to new requirements connected
with the progress of the Internet network (Berners-Lee, 2001). The functionality of the
Internet (share files, contents, websites, services made available through a variety of forms)
is gradually becoming insufficient. Shared resources are primarily intended for use directly
by humans. Poor standardization of contents makes it impossible to precise search and
process data in an automated manner. For example, e-mail addresses, contact information,
calendar of events on a web page are readable for humans. However, if it had to be
automatically imported into the mail, calendar, etc. this will be confusing. So it became
necessary to build a formalized standard for describing data, knowledge and relationships
between them. Formally described data could be both human readable and easily accessible
to programs operating on them. A standardized form of data storage will allow to use them
in different systems, applications, etc.

1.1.1 Standards related to semantic networks
World Wide Web Consortium (W3C) started to process a knowledge description standard.
In 1997 a standard was proposed, and as early as in 1999 W3C published the Resource
Description Framework (RDF) standard1 . The standard was complemented in 2004 with the
RDF Schema (RDF-S) (Brickley, 2004) specification.
RDF allows to record triples of concepts. Each triple is a subject-predicate-object expression.
Such a way of concepts recording forms a network of definitions (each object can be a
subject in a different triple). RDF-S introduced the possibility to build meta-concepts:
classes, sub-classes, features. It also launches a non-standard way of defining the name of
the notion (label) and its description (comment).
The next stage to extend the semantic web standards was to increase the expressiveness of
languages intended for ontology recording. W3C published the OWL (Web Ontology
Language) standard (McGuiness & Harmelen, 2004). The language allows, among others, to
express the number of concept sets, to show how one concept belongs to or differs from the
other, to identify necessary and sufficient conditions for a given concept. Greater
expressiveness of the language allows to verify concepts added to the ontology and to
search out certain facts and features indirectly. Additionally, OWL makes it possible to
integrate two ontologies by means of associating their identical concepts.

1.1.2 Defined ontologies until now
Standards (defined and well known ontologies) allow describing the concepts and
connections between concepts. These standards are currently creating a base for the specific
schema-ontologies which introduce certain aspects of reality. Sample ontologies:

 Dublin Core (DC) 2– ontology defining the schema for describing library collections
such as books, photos, videos and other multimedia resources;

 Friend of a Friend (FOAF) 3– ontology which describes the person and the friends
of that person, thereby creating a network of connected people;

1 http://www.w3.org/RDF/
2 http://dublincore.org/documents/dcmi-terms/
3 http://www.foaf-project.org/docs/specs

 Semantically-Interlinked Online Communities (SIOC)4 – ontology which describes
social networks;

 DBPedia 5 – ontology which provides data from Wikipedia in the structural way;
 OpenCyc6 – ontology describing the data collected within the Cyc project. The

project aims at mapping the concepts found in the real world and the relationships
between them.

Currently, there is also an initiative aimed at linking together different ontologies (Berners-
Lee, 2006). This initiative is led by W3C SWEO Linking Open Data. Its purpose is to provide
infrastructure for publishing data by means of semantic techniques.

Fig. 1. Existing ontologies and connections between them [source:Linking Open Data
Community7].

This initiative is primarily concerned with ensuring consistency between existing ontologies
(and, therefore, data they describe), so that there would be a smooth transition between the
information from different knowledge bases ex. Wikipedia - DBPedia, WordNet,
MusicBraintz, Geonames (Figure 1).

4 http://sioc-project.org/ontology
5 http://dbpedia.org/About
6 http://www.cyc.com/cyc/opencyc/overview
7 http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/LinkingOpenData

Engineering the Computer Science and IT130

1.2 Semantic network use cases
Although the idea of semantic networks has been mainly in providing interoperability in the
Internet, the work associated with it is also applied in related issues. Currently, semantic
networks are seen in the following aspects (Bruijn, 2003):

 as an integrated network of data with different formats;
 as a standard that enables data to define the interface between different fields. As a

result, at the intersection of different fields new applications can be produced,
benefitting from the recognition of a multi-dimensional issue;

 to support exchange, data sharing, and cooperation on the basis of the same data.

The following areas of application of the semantic network can be highlighted (Saab, 2006):

 linking data with applications (inserting data on a web page and possibility to
automatically use them by means of different applications such as: calendar, email,
phone etc.) This is due to the standardization of metadata and the implementation
of a variety of browser plug-ins that “understand“ the data stored in the contents
of web pages (e.g. email address, url links, phone numbers, etc.);

 to facilitate filling in the forms. Using ontologies can help to understand the
meaning of individual fields in the form;

 combining and integrating data from different sources - the replacement of manual
data integration from multiple sources (W3C, 2001). Creating a data bus, the
release of data from the application, which allows to create new functionality and
easy integration of new systems with the existing ones;

 supporting human cooperation and knowledge acquisition (Davies et al., 2003).
Semantic networks facilitate the organization of saving and retrieving knowledge.
A sample scenario is the knowledge which is collected by people involved in
production and supervision in a factory, etc. They gain knowledge, make decisions,
gain experience. However, if it is not recorded, the employees leave it only for
themselves. If they do not justify their decisions, a part of their work could be
useless in the case they change their jobs. Additionally, in the case of a group of
people working on an issue, it is necessary to support the process of saving
knowledge, decisions and their justifications. It also permits to track the progress
and planning of projects. Other examples of the semantic network application in
this area may be as follows:

o the development of the log of the decisions taken at the stage of
production, treatment, evaluation of some facts;

o maintaining consistency of documentation and informing the service
networks about faults;

o biology, genetics, describing genes, genomes, classification, etc.;
o description of images and their fragments;
o customizing therapies with respect to particular patients on the basis of

the experience with other cases;
o integration of research data – different types of data, the structure of the

record in the form of troika is more flexible, it is easier to find some
"contacts" of data and to view the data multidimensionally;

o warning about the dangers based on conditions, rules.

 use of semantic networks in the natural language processing (Zaihrayeu et al.,
2007), (Jupp et al. 2008);

 integration of geographical data – integration of different data formats, differences
in formats and their integration can be assisted by RDF.

As semantic networks are related largely to information processing and organizing, they are
also inevitably linked to the issue of natural language. Semantic networks can be used in
understanding the text, classification of documents, interpretation of the user’s expressions,
or to generate dynamic information from the gathered knowledge base. The applications of
semantic networks, connected with understanding the users’ question and the natural
language generation will be described in next sections. The works related to these issues
were conducted in the Virtual Consultant for Public Services (WKUP) project, whose
objective was to build a service that allows the users to obtain information in the field of
competences of the system by means of natural-language communication with the system.

2. Search engine based on semantic networks

The communication with the user is mainly based on understanding the user's question. The
issue of interpreting the question can be achieved by text searching as in the case of full-text
search engines. On the other hand, there are solutions based on templates related to the
user’s questions. In the beginning, the existing solutions will be presented. Then, the
solution based on semantic networks and ontology Simple Knowledge Organization System
(SKOS)8 will be presented.

2.1 Searching data solutions
In the field of search engines there are widely used solutions as well as those that are not yet
applied in production. This section will present the different search solutions available on
the market and those which are at the stage of experiments.

2.1.1 Full text search engines
There are many solutions in the realm of information search which allow to index the
information contents and search for documents based on the contents. The full-text search
solutions are mostly based on statistics and there have been many algorithms developed in
order to standardize the search results (Salton & Buckley, 1987). Relatively new solutions are
algorithms which allow clustering search results (Manning et al., 2007). The clusterization
introduces documents selection with respect to areas of interest (a sort of categorization)
based on words used in a given text. A category is, to certain extent, a representation of the
document contents determined on the basis of the statistics of words used in the document.
Examples of such solutions are Vivismo9 and Carrot210 .

8 http://www.w3.org/2004/02/skos/
9 http://vivisimo.com/
10 http://www.carrot2.org/

Application of semantic networks in natural language issues 131

1.2 Semantic network use cases
Although the idea of semantic networks has been mainly in providing interoperability in the
Internet, the work associated with it is also applied in related issues. Currently, semantic
networks are seen in the following aspects (Bruijn, 2003):

 as an integrated network of data with different formats;
 as a standard that enables data to define the interface between different fields. As a

result, at the intersection of different fields new applications can be produced,
benefitting from the recognition of a multi-dimensional issue;

 to support exchange, data sharing, and cooperation on the basis of the same data.

The following areas of application of the semantic network can be highlighted (Saab, 2006):

 linking data with applications (inserting data on a web page and possibility to
automatically use them by means of different applications such as: calendar, email,
phone etc.) This is due to the standardization of metadata and the implementation
of a variety of browser plug-ins that “understand“ the data stored in the contents
of web pages (e.g. email address, url links, phone numbers, etc.);

 to facilitate filling in the forms. Using ontologies can help to understand the
meaning of individual fields in the form;

 combining and integrating data from different sources - the replacement of manual
data integration from multiple sources (W3C, 2001). Creating a data bus, the
release of data from the application, which allows to create new functionality and
easy integration of new systems with the existing ones;

 supporting human cooperation and knowledge acquisition (Davies et al., 2003).
Semantic networks facilitate the organization of saving and retrieving knowledge.
A sample scenario is the knowledge which is collected by people involved in
production and supervision in a factory, etc. They gain knowledge, make decisions,
gain experience. However, if it is not recorded, the employees leave it only for
themselves. If they do not justify their decisions, a part of their work could be
useless in the case they change their jobs. Additionally, in the case of a group of
people working on an issue, it is necessary to support the process of saving
knowledge, decisions and their justifications. It also permits to track the progress
and planning of projects. Other examples of the semantic network application in
this area may be as follows:

o the development of the log of the decisions taken at the stage of
production, treatment, evaluation of some facts;

o maintaining consistency of documentation and informing the service
networks about faults;

o biology, genetics, describing genes, genomes, classification, etc.;
o description of images and their fragments;
o customizing therapies with respect to particular patients on the basis of

the experience with other cases;
o integration of research data – different types of data, the structure of the

record in the form of troika is more flexible, it is easier to find some
"contacts" of data and to view the data multidimensionally;

o warning about the dangers based on conditions, rules.

 use of semantic networks in the natural language processing (Zaihrayeu et al.,
2007), (Jupp et al. 2008);

 integration of geographical data – integration of different data formats, differences
in formats and their integration can be assisted by RDF.

As semantic networks are related largely to information processing and organizing, they are
also inevitably linked to the issue of natural language. Semantic networks can be used in
understanding the text, classification of documents, interpretation of the user’s expressions,
or to generate dynamic information from the gathered knowledge base. The applications of
semantic networks, connected with understanding the users’ question and the natural
language generation will be described in next sections. The works related to these issues
were conducted in the Virtual Consultant for Public Services (WKUP) project, whose
objective was to build a service that allows the users to obtain information in the field of
competences of the system by means of natural-language communication with the system.

2. Search engine based on semantic networks

The communication with the user is mainly based on understanding the user's question. The
issue of interpreting the question can be achieved by text searching as in the case of full-text
search engines. On the other hand, there are solutions based on templates related to the
user’s questions. In the beginning, the existing solutions will be presented. Then, the
solution based on semantic networks and ontology Simple Knowledge Organization System
(SKOS)8 will be presented.

2.1 Searching data solutions
In the field of search engines there are widely used solutions as well as those that are not yet
applied in production. This section will present the different search solutions available on
the market and those which are at the stage of experiments.

2.1.1 Full text search engines
There are many solutions in the realm of information search which allow to index the
information contents and search for documents based on the contents. The full-text search
solutions are mostly based on statistics and there have been many algorithms developed in
order to standardize the search results (Salton & Buckley, 1987). Relatively new solutions are
algorithms which allow clustering search results (Manning et al., 2007). The clusterization
introduces documents selection with respect to areas of interest (a sort of categorization)
based on words used in a given text. A category is, to certain extent, a representation of the
document contents determined on the basis of the statistics of words used in the document.
Examples of such solutions are Vivismo9 and Carrot210 .

8 http://www.w3.org/2004/02/skos/
9 http://vivisimo.com/
10 http://www.carrot2.org/

Engineering the Computer Science and IT132

One of the full-text search products is the Lucene11 search engine. The engine enables to
create a properly compressed index and to efficiently search for documents (even concrete
places in documents) which are the answer to the question asked by the user. Additionally,
Lucene makes it possible to create adapters which allow browsing different types of
documents (Microsoft Office documents, XML documents, PDF documents, etc.)

2.1.2 Solutions based on semantic networks
The application of semantic networks solutions also contributes to improving the search
results. Semantic networks allow to describe information in a formal way and to introduce
interdependencies between particular pieces of information. This way the information
search is broader. The use of semantic webs will allow the search tools developers to design
new-quality products. The search tools, equipped with the knowledge about the concepts
hierarchy and their interdependencies, will make an impression of intelligent software. Such
knowledge allows searching not only for the key words given by the user but also for the
related concepts, and shows how this relation is made. On the market, there are search
engines which use semantic networks, or at least build results based on the hierarchy of
concepts (Hakia12, Google13)

2.1.3 Solutions based on language corpora
Irrespective of the development of information technologies, there are works carried out in
the realm of text corpora which enable to determine, among others, dependencies between
words and the frequency of their occurrence in texts (Przepiórkowski, 2005).
Such works allow creating word nets (WordNet14). The works on the word net for the
English language have been carried out since 1985. The works on other European languages
(Czech, Danish, German, Spanish, Italian, French, Estonian) were carried out between 1996-
1999 within the EuroWordNet15 project.
In Poland the works have been conducted within the plWordNet16 project. Constructing a
word net is done automatically, to a certain extent, thanks to the use of the Polish text
corpus. The data from word nets, actually – relations between words, can be used to
associate the words which appear in the indexed texts. This way it is possible for the user to
find documents on the basis of the question in which the key words included in the
document have not been used directly. Thus this solution is similar to proposals derived
from the semantic webs concept.
In the realm of information search it is possible to determine the qualities of systems whose
objective is to answer the questions. An example is the AnswerBus17 system based on the
knowledge indexed by Internet search tools. The search results are interpreted in an

11 http://lucene.apache.org
12 http://www.hakia.com
13 http://www.google.com
14 http://wordnet.princeton.edu
15 http://www.illc.uva.nl/EuroWordNet
16 http://www.plwordnet.pwr.wroc.pl
17 http://www.answerbus.com

adequate way so that the information looked for by the user could be extracted from the
document found by the search tool.

2.1.4 Solutions based on questions templates
The issue how to interpret the user’s questions and conduct a dialogue with him/her was a
motive to introduce the AIML18 language. This language makes the way to create solutions
enabling conversation with templates based on questions and answers. The AIML language
allows to define the templates of the questions asked by the users. The response is generated
based on the found templates. AIML enables to reach simple context dialogues, to store
personal information about the user with whom the conversation is processed.
This solution, in spite of various constructions which support the management of templates,
seems to be difficult to maintain in the context of a large number of predefined templates.

2.2 SKOS ontology
The Simple Knowledge Organization System (SKOS)19 the specification developed and
extended under the auspices of W3C, defines an ontology which allows to express the basic
structure and contents of concept diagrams, including thesauruses, thematic lists, heading
lists, taxonomies, terminologies, glossaries, and other kinds of controlled dictionaries. The
specification is divided into three parts:

 SKOS-Core - defines basic concepts and relations which enable to develop concepts
and relations between them;

 SKOS-Mapping - introduces relations which allow to describe similarities between
concepts created in different ontologies;

 SKOS-Extensions - introduces extensions of the intensity of hierarchical relations
from SKOS-Core.

The SKOS ontology assumes describing “Concepts”. Each “Concept” can be labelled. The
SKOS ontology extends (compared to RDF-S) labels that can be used:

 prefLabel (chief label of a given concept);
 altLabel (auxiliary label, alternative for a given concept);
 hiddenLabel (hidden label, e.g. for casual words or other words treated as

“hidden” due to other reasons).
The concepts can be linked into hierarchies by means of broader and narrower relations. For
example the “Car” concept is broader than the “Van” concept. The SKOS-Extensions
specification introduces extra semantics of hierarchy relations, among others by the
following relations:

 broaderInstantive / narrowerInstantive (express context hierarchies – instances,
e.g. Dog and Azorek20);

 relatedPartOf / relatedHasPart (express the whole-part semantics, e.g. Car and
Wheel).

18 http://alicebot.blogspot.com
19 http://www.w3.org/2004/02/skos/, http://www.w3.org/TR/2005/WD-swbp-skos-
core-guide-20051102/
20 Popular dog name in Poland

Application of semantic networks in natural language issues 133

One of the full-text search products is the Lucene11 search engine. The engine enables to
create a properly compressed index and to efficiently search for documents (even concrete
places in documents) which are the answer to the question asked by the user. Additionally,
Lucene makes it possible to create adapters which allow browsing different types of
documents (Microsoft Office documents, XML documents, PDF documents, etc.)

2.1.2 Solutions based on semantic networks
The application of semantic networks solutions also contributes to improving the search
results. Semantic networks allow to describe information in a formal way and to introduce
interdependencies between particular pieces of information. This way the information
search is broader. The use of semantic webs will allow the search tools developers to design
new-quality products. The search tools, equipped with the knowledge about the concepts
hierarchy and their interdependencies, will make an impression of intelligent software. Such
knowledge allows searching not only for the key words given by the user but also for the
related concepts, and shows how this relation is made. On the market, there are search
engines which use semantic networks, or at least build results based on the hierarchy of
concepts (Hakia12, Google13)

2.1.3 Solutions based on language corpora
Irrespective of the development of information technologies, there are works carried out in
the realm of text corpora which enable to determine, among others, dependencies between
words and the frequency of their occurrence in texts (Przepiórkowski, 2005).
Such works allow creating word nets (WordNet14). The works on the word net for the
English language have been carried out since 1985. The works on other European languages
(Czech, Danish, German, Spanish, Italian, French, Estonian) were carried out between 1996-
1999 within the EuroWordNet15 project.
In Poland the works have been conducted within the plWordNet16 project. Constructing a
word net is done automatically, to a certain extent, thanks to the use of the Polish text
corpus. The data from word nets, actually – relations between words, can be used to
associate the words which appear in the indexed texts. This way it is possible for the user to
find documents on the basis of the question in which the key words included in the
document have not been used directly. Thus this solution is similar to proposals derived
from the semantic webs concept.
In the realm of information search it is possible to determine the qualities of systems whose
objective is to answer the questions. An example is the AnswerBus17 system based on the
knowledge indexed by Internet search tools. The search results are interpreted in an

11 http://lucene.apache.org
12 http://www.hakia.com
13 http://www.google.com
14 http://wordnet.princeton.edu
15 http://www.illc.uva.nl/EuroWordNet
16 http://www.plwordnet.pwr.wroc.pl
17 http://www.answerbus.com

adequate way so that the information looked for by the user could be extracted from the
document found by the search tool.

2.1.4 Solutions based on questions templates
The issue how to interpret the user’s questions and conduct a dialogue with him/her was a
motive to introduce the AIML18 language. This language makes the way to create solutions
enabling conversation with templates based on questions and answers. The AIML language
allows to define the templates of the questions asked by the users. The response is generated
based on the found templates. AIML enables to reach simple context dialogues, to store
personal information about the user with whom the conversation is processed.
This solution, in spite of various constructions which support the management of templates,
seems to be difficult to maintain in the context of a large number of predefined templates.

2.2 SKOS ontology
The Simple Knowledge Organization System (SKOS)19 the specification developed and
extended under the auspices of W3C, defines an ontology which allows to express the basic
structure and contents of concept diagrams, including thesauruses, thematic lists, heading
lists, taxonomies, terminologies, glossaries, and other kinds of controlled dictionaries. The
specification is divided into three parts:

 SKOS-Core - defines basic concepts and relations which enable to develop concepts
and relations between them;

 SKOS-Mapping - introduces relations which allow to describe similarities between
concepts created in different ontologies;

 SKOS-Extensions - introduces extensions of the intensity of hierarchical relations
from SKOS-Core.

The SKOS ontology assumes describing “Concepts”. Each “Concept” can be labelled. The
SKOS ontology extends (compared to RDF-S) labels that can be used:

 prefLabel (chief label of a given concept);
 altLabel (auxiliary label, alternative for a given concept);
 hiddenLabel (hidden label, e.g. for casual words or other words treated as

“hidden” due to other reasons).
The concepts can be linked into hierarchies by means of broader and narrower relations. For
example the “Car” concept is broader than the “Van” concept. The SKOS-Extensions
specification introduces extra semantics of hierarchy relations, among others by the
following relations:

 broaderInstantive / narrowerInstantive (express context hierarchies – instances,
e.g. Dog and Azorek20);

 relatedPartOf / relatedHasPart (express the whole-part semantics, e.g. Car and
Wheel).

18 http://alicebot.blogspot.com
19 http://www.w3.org/2004/02/skos/, http://www.w3.org/TR/2005/WD-swbp-skos-
core-guide-20051102/
20 Popular dog name in Poland

Engineering the Computer Science and IT134

The SKOS ontology also provides the class definition which describes a set of concepts –
Collection. Such a set can help to manage the ontology and facilitate its edition by grouping
concepts of similar meanings. Possible ways to use the structures of concepts built on the
basis of the SKOS ontology were described in use cases (W3C, 2007). What is derived from
these use cases is, among others, the application of SKOS to the following:

 to order and formalize the concepts used in a given domain, to search – on the
basis on the concepts and a part of relations between them – for resources assigned
to the concepts;

 to search for information in different languages (thanks to an easy method of
translating labels in the ontology with an unchanged relation structure);

 to label press articles, TV programmes, etc. with key words from a thesaurus
recorded in accordance with the SKOS ontology.

The above objectives of the SKOS ontology satisfy, to a large extent, the requirements of the
search tool which was build during experiments. Therefore a decision was made to apply
this ontology. The application was justified by the possibility to provide the tool with a wide
and, at the same time, precise “understanding” of concepts. Thanks to semantics it is
possible to record the relations between concepts which, in turn, allows to better interpret
the questions. In comparison with the solutions based on AIML language, this solution
seems to be more flexible and easier to maintain and managed. It also allows to control and
precisely define the search results.

2.3 The applied search algorithm
The use of the SKOS ontology in the built system consists of two stages: edition and
production (search tool operations). The way of using the concepts, defined in accordance
with the SKOS ontology, with a view to search for certain resources – data – related to these
concepts is demonstrated in Figure 2.
At the edition stage (before the system starts) the administrator defines concepts and their
mutual relations. Then he/she creates relations of the defined concepts with the data which
are to be searched for. The ontologies defined in this manner are used at the search stage
(production operations of the system). The user’s question is analyzed based on the used
concepts. The identified concepts are processed. On the basis of mutual relations between
concepts, the best fitting answers of the system are found – the resources the user is looking
for.
The analysis algorithm of the user’s question was divided into successive stages. The first
stage is “cleaning” the user’s question from redundant non-alphanumeric signs as well as
lemmatization of particular words in the sentence. For the statement prepared in such a
way, at the next stage the best-fit concepts are searched for based on their labels (relations
prefLabel, altLabel and hiddenLabel). In the case when the found concepts are not related to
the resources, the broaderInstantive, broader and relatedPartOf relations are used in order
to search the network for the concepts which have certain resources assigned. This allows to
find concepts whose meaning is broader than the meaning of concepts used in the sentence.

Fig. 2. The use of concepts defined in accordance with the SKOS ontology in the search
process. [source: own].

The SKOS ontology has been supplemented by additional structures – sets of concepts
which are directly connected to searched resources. The aim of the sets is to model a part of
the user’s question. The more sets are found in the user’s question, the greater significance
of the searched resource is. This way it is possible to model connections between concepts,
based on the knowledge of a particular domain.
The last stage of the sentence analysis is the use of information about the words location
with respect to one another in the user’s sentence. The words which are closer to one
another and point at the same resource simultaneously raise the priority of the found
resource. This results from the prerequisite that, usually, the words which determine the
same object are located close to one another in the sentence.
Such analysis allows to present the found resources to the user, according to the assigned
search ranking.
Figure 3 shows a sample SKOS concepts structure and its relation to resources that are to be
searched for. Three issues (real life situations) have been defined: finding an ID, losing an ID
and getting a new ID. Additionally, the following concepts have been defined: finding, loss,
theft, getting and issuing. The related relations allow to “strengthen” certain relations other
than broader and relatedPartOf. With such defined relationships it is possible to address the
questions about “robbery“, or about “finding“, both using the word “ID card“ or “proof of
identification“.
Building a net of concepts and assigning resources to the concepts allow to model the
system answers to the user’s questions. This way the data administrator, who defines the
system answer by himself/herself, has a clear picture of the system behavior with respect to
a given class of questions. Such a solution is more deterministic than full-text search tools
which operate on the basis of statistical methods only.

Application of semantic networks in natural language issues 135

The SKOS ontology also provides the class definition which describes a set of concepts –
Collection. Such a set can help to manage the ontology and facilitate its edition by grouping
concepts of similar meanings. Possible ways to use the structures of concepts built on the
basis of the SKOS ontology were described in use cases (W3C, 2007). What is derived from
these use cases is, among others, the application of SKOS to the following:

 to order and formalize the concepts used in a given domain, to search – on the
basis on the concepts and a part of relations between them – for resources assigned
to the concepts;

 to search for information in different languages (thanks to an easy method of
translating labels in the ontology with an unchanged relation structure);

 to label press articles, TV programmes, etc. with key words from a thesaurus
recorded in accordance with the SKOS ontology.

The above objectives of the SKOS ontology satisfy, to a large extent, the requirements of the
search tool which was build during experiments. Therefore a decision was made to apply
this ontology. The application was justified by the possibility to provide the tool with a wide
and, at the same time, precise “understanding” of concepts. Thanks to semantics it is
possible to record the relations between concepts which, in turn, allows to better interpret
the questions. In comparison with the solutions based on AIML language, this solution
seems to be more flexible and easier to maintain and managed. It also allows to control and
precisely define the search results.

2.3 The applied search algorithm
The use of the SKOS ontology in the built system consists of two stages: edition and
production (search tool operations). The way of using the concepts, defined in accordance
with the SKOS ontology, with a view to search for certain resources – data – related to these
concepts is demonstrated in Figure 2.
At the edition stage (before the system starts) the administrator defines concepts and their
mutual relations. Then he/she creates relations of the defined concepts with the data which
are to be searched for. The ontologies defined in this manner are used at the search stage
(production operations of the system). The user’s question is analyzed based on the used
concepts. The identified concepts are processed. On the basis of mutual relations between
concepts, the best fitting answers of the system are found – the resources the user is looking
for.
The analysis algorithm of the user’s question was divided into successive stages. The first
stage is “cleaning” the user’s question from redundant non-alphanumeric signs as well as
lemmatization of particular words in the sentence. For the statement prepared in such a
way, at the next stage the best-fit concepts are searched for based on their labels (relations
prefLabel, altLabel and hiddenLabel). In the case when the found concepts are not related to
the resources, the broaderInstantive, broader and relatedPartOf relations are used in order
to search the network for the concepts which have certain resources assigned. This allows to
find concepts whose meaning is broader than the meaning of concepts used in the sentence.

Fig. 2. The use of concepts defined in accordance with the SKOS ontology in the search
process. [source: own].

The SKOS ontology has been supplemented by additional structures – sets of concepts
which are directly connected to searched resources. The aim of the sets is to model a part of
the user’s question. The more sets are found in the user’s question, the greater significance
of the searched resource is. This way it is possible to model connections between concepts,
based on the knowledge of a particular domain.
The last stage of the sentence analysis is the use of information about the words location
with respect to one another in the user’s sentence. The words which are closer to one
another and point at the same resource simultaneously raise the priority of the found
resource. This results from the prerequisite that, usually, the words which determine the
same object are located close to one another in the sentence.
Such analysis allows to present the found resources to the user, according to the assigned
search ranking.
Figure 3 shows a sample SKOS concepts structure and its relation to resources that are to be
searched for. Three issues (real life situations) have been defined: finding an ID, losing an ID
and getting a new ID. Additionally, the following concepts have been defined: finding, loss,
theft, getting and issuing. The related relations allow to “strengthen” certain relations other
than broader and relatedPartOf. With such defined relationships it is possible to address the
questions about “robbery“, or about “finding“, both using the word “ID card“ or “proof of
identification“.
Building a net of concepts and assigning resources to the concepts allow to model the
system answers to the user’s questions. This way the data administrator, who defines the
system answer by himself/herself, has a clear picture of the system behavior with respect to
a given class of questions. Such a solution is more deterministic than full-text search tools
which operate on the basis of statistical methods only.

Engineering the Computer Science and IT136

Fig. 3. Sample SKOS structure and its relation to the resources to be searched for [source:
own].

Additionally, to improve the data administrator’s operations in the system, the mechanisms
were introduced which function in traditional search tools solutions, but at the edition stage
of the ontology. Thus the possibility of automatic collection of concepts from the indexed
elements (descriptions of life cases) was applied, and the process of assigning the concepts
to life cases was automated. In order to perform this task, the algorithm was used to
calculate normalized words priorities for documents (dt indicator) (Salton & Buckley, 1987).
The algorithm allows to calculate the adequacy ranking of a given word for the indicated
life case. Therefore the work with the tool can start from automatic indexing of life cases and
then can proceed to successive introduction of revisions by means of successive introduction
of relations between concepts, changing labels and their classification (pref, alt, hidden), etc.

2.4 Conclusions about search engine based on semantic networks
The presented solution is a proposal to solve a certain issue related to information search. It
seems that the solution can improve the search in resources which are limited in terms of the
number of indexed documents, and in the situation in which it is assumed that the users will
ask “questions” to the search tool. The solution appears especially adequate in the case of
the so called FAQ lists. They define ready answers to certain questions and, more
importantly, the questions are usually relatively short. In such cases full-text search tools
can have problems to properly index the contents.
On the basis of the conducted tests it seems that the efficiency of the search tool operations
depends mainly on a well constructed ontology. Therefore the ontology is the key element
which affects the functioning of the system. It is necessary to adopt a relevant methodology
for building ontologies. The key issue in building an ontology is making it easy to manage
in the future.
On the basis of the existing solution it is possible to introduce an extra feature – possibility
to clarify the user’s question. The proposed solution could be an engine which would
control the conversation with the user in a specific manner.. In such a solution, in the first
step the issue asked by the user would be found and then the engine should ask some

questions (assigned to the chosen issue) to precise the question and give the most correct
answer.

3. Natural language text generation

Recording knowledge and facts is related to the introduction of concepts, the features of
these concepts, and relationships between concepts. Recording knowledge in the form of a
natural-language sentence (descriptive text) contains the above mentioned concepts,
dependencies and features. However, due to its nature, this way of recording limits the
possibilities to process knowledge as well as to compare and connect similar concepts. Thus
it is not possible to automatically combine knowledge from two different sources with the
purpose to obtain some extra cross-sectional information based on two separate documents.
Such cases refer particularly to the knowledge that resembles data structures where there is
focus on certain dependencies between entities. An example is a description of a device and
sub-assemblies the device consists of (catalogue of products, catalogue of sub-assemblies).
The description will comprise not only typical information on a given sub-assembly but also
the dependencies, e.g. which of other sub-assemblies is able to replace the given one, what
other sub-assemblies it consists of, what material it is made of, etc. Similarly, scientific
research results that contain parameters and their mutual dependencies can be described
with the use of such a structure. This kind of solution enables to easily connect data from
various sources and to find new dependencies.
Although this way of data description can be easily processed by a computer, it is less
readable for the user. An ideal situation for the user would be the possibility to “question”
the structural knowledge base with the use of a natural language and obtain answers in the
form of grammatical sentences.
In this section the natural language generation will be described. In the first step storing
knowledge as a semantic network will be described. Then we will show the state of the art
in the natural language generation and specific issues connected with the Polish language.
Next, a natural language generation engine based on semantic networks will be presented,
which was built in the course of the Virtual Consultant for Public Services project.

3.1 Knowledge stored as semantic networks
As it has been already mentioned, semantic networks allow to describe concepts, their
properties, classification of concepts and relationships between concepts. Semantic data can
be used to describe documents (assigning tags), or they can be a source of knowledge by
themselves. Ontologies which store knowledge have many properties and relationships
defined between elements.
Sample ontologies for tagging texts, documents are:

 SKOS ontology21 which allows to build vocabulary for a particular domain -
concepts and relations between them. There are also special relationships between
concepts: hierarchy, part-of relation, associations;

 OpenCYC22 ontology which represents data within the CYC initiative. The main
objective of the CYC Project is to collect concepts from real word and build
relationships between them.

21 http://www.w3.org/2004/02/skos/

Application of semantic networks in natural language issues 137

Fig. 3. Sample SKOS structure and its relation to the resources to be searched for [source:
own].

Additionally, to improve the data administrator’s operations in the system, the mechanisms
were introduced which function in traditional search tools solutions, but at the edition stage
of the ontology. Thus the possibility of automatic collection of concepts from the indexed
elements (descriptions of life cases) was applied, and the process of assigning the concepts
to life cases was automated. In order to perform this task, the algorithm was used to
calculate normalized words priorities for documents (dt indicator) (Salton & Buckley, 1987).
The algorithm allows to calculate the adequacy ranking of a given word for the indicated
life case. Therefore the work with the tool can start from automatic indexing of life cases and
then can proceed to successive introduction of revisions by means of successive introduction
of relations between concepts, changing labels and their classification (pref, alt, hidden), etc.

2.4 Conclusions about search engine based on semantic networks
The presented solution is a proposal to solve a certain issue related to information search. It
seems that the solution can improve the search in resources which are limited in terms of the
number of indexed documents, and in the situation in which it is assumed that the users will
ask “questions” to the search tool. The solution appears especially adequate in the case of
the so called FAQ lists. They define ready answers to certain questions and, more
importantly, the questions are usually relatively short. In such cases full-text search tools
can have problems to properly index the contents.
On the basis of the conducted tests it seems that the efficiency of the search tool operations
depends mainly on a well constructed ontology. Therefore the ontology is the key element
which affects the functioning of the system. It is necessary to adopt a relevant methodology
for building ontologies. The key issue in building an ontology is making it easy to manage
in the future.
On the basis of the existing solution it is possible to introduce an extra feature – possibility
to clarify the user’s question. The proposed solution could be an engine which would
control the conversation with the user in a specific manner.. In such a solution, in the first
step the issue asked by the user would be found and then the engine should ask some

questions (assigned to the chosen issue) to precise the question and give the most correct
answer.

3. Natural language text generation

Recording knowledge and facts is related to the introduction of concepts, the features of
these concepts, and relationships between concepts. Recording knowledge in the form of a
natural-language sentence (descriptive text) contains the above mentioned concepts,
dependencies and features. However, due to its nature, this way of recording limits the
possibilities to process knowledge as well as to compare and connect similar concepts. Thus
it is not possible to automatically combine knowledge from two different sources with the
purpose to obtain some extra cross-sectional information based on two separate documents.
Such cases refer particularly to the knowledge that resembles data structures where there is
focus on certain dependencies between entities. An example is a description of a device and
sub-assemblies the device consists of (catalogue of products, catalogue of sub-assemblies).
The description will comprise not only typical information on a given sub-assembly but also
the dependencies, e.g. which of other sub-assemblies is able to replace the given one, what
other sub-assemblies it consists of, what material it is made of, etc. Similarly, scientific
research results that contain parameters and their mutual dependencies can be described
with the use of such a structure. This kind of solution enables to easily connect data from
various sources and to find new dependencies.
Although this way of data description can be easily processed by a computer, it is less
readable for the user. An ideal situation for the user would be the possibility to “question”
the structural knowledge base with the use of a natural language and obtain answers in the
form of grammatical sentences.
In this section the natural language generation will be described. In the first step storing
knowledge as a semantic network will be described. Then we will show the state of the art
in the natural language generation and specific issues connected with the Polish language.
Next, a natural language generation engine based on semantic networks will be presented,
which was built in the course of the Virtual Consultant for Public Services project.

3.1 Knowledge stored as semantic networks
As it has been already mentioned, semantic networks allow to describe concepts, their
properties, classification of concepts and relationships between concepts. Semantic data can
be used to describe documents (assigning tags), or they can be a source of knowledge by
themselves. Ontologies which store knowledge have many properties and relationships
defined between elements.
Sample ontologies for tagging texts, documents are:

 SKOS ontology21 which allows to build vocabulary for a particular domain -
concepts and relations between them. There are also special relationships between
concepts: hierarchy, part-of relation, associations;

 OpenCYC22 ontology which represents data within the CYC initiative. The main
objective of the CYC Project is to collect concepts from real word and build
relationships between them.

21 http://www.w3.org/2004/02/skos/

Engineering the Computer Science and IT138

Sample ontologies for knowledge management and storage are:
 FOAF ontology23 which describes the person and the friends of that person,

thereby creating a network of connected people;
 DBPedia24 – ontology which provides data from Wikipedia in the structural way;
 Ontology for describing photos (Lafon & Bos, 2002);
 Ontology for describing spatial data25.

Currently, the LikedData26 initiative is promoting the idea to publish various types of
already collected data as semantic data and combining them with each other. There are
many tools available that help to publish data over HTTP as semantic data directly from
existing relational databases. Thanks to such initiatives, the data published on the Internet
will be readable not only for humans but also for different kinds of services, systems,
applications. Computer systems will be able to use those data, combine them with each
other and perform new functionalities.
Storing knowledge in such a way can be also used by programs that generate texts (readable
for humans) from structural data.

3.2 State of the art in natural language generation
The natural language generation has been already described in many publications (Reiter &
Dale, 1997), (Paris et al., 1991), (Cole et al., 1997). Some classes of software to generate text
have been defined depending on algorithm complexity and quality results of a generated
text. Some stages in the generation process were also defined.
The first stage is called text planning. At that stage it should be planned which part of
knowledge should be described in a textual form.
In the next stage, the sentence content and order should be stipulated. The last stage is
dedicated to generating sentences in a proper grammatical form. This process can be
performed in different algorithm complexity, depending on language tools.
Natural language generation systems can be classified into (Cole et al., 1997):

 information systems which produce messages without infrastructure for text
planning, sentence order and any language tools;

 systems which base on sentence templates. This solution depends on prepared
templates which are filled with changeable elements;

 systems based on phrase templates. This solution depends on a part of sentence
templates – phrases which are used recursively up to generate a meaningful
sentence;

 systems based on sentences properties. In such solution, sentence templates with
defined properties (question sentence, statement) are a starting point. Iterating
through the successive stages, these templates are completed with additional
details up to generate a meaningful sentence.

22 http://www.cyc.com/cyc/opencyc/overview
23 http://www.foaf-project.org/docs/specs
24 http://dbpedia.org/About
25 http://www.geonames.org/ontology/
26 http://esw.w3.org

In the natural language generation it is important to use language tools specific for a
particular language. They are especially important for inflective languages. It is important to
use a proper grammatical form of the word: gender, tense, mode, plural/singular form.

3.3 Polish language specifics and language tools
Natural languages have different ways of building sentences. In English, the position of a
word in the sentence is strictly determined. This facilitates the sentence analysis which, in
turn, allows to precisely determine the meaning of the sentence. Polish is not a positional
language. Verb, subject, attribute, etc. can occur in different positions in the sentence
(Vetulani, 2004). However, Polish has fixed connections between parts of speech. These
connections determine dependencies between particular parts of the sentence, i.e. the
grammatical form of one part of the sentence enforces the grammatical form of the other
part (Saloni & Świdziński, 1981). Unfortunately, these dependencies do not have strict
character. They depend on the style of the sentences and their types too. For example,
questions will have a different word order and different dependencies between forms
compared to statements.
Polish language is also inflective. Depending on its gender, case, tense, a particular word is
in a different form. Differences in grammatical forms are not manifested only by the endings
of words. In comparison with other languages (for example English), there are many more
irregular forms in Polish.
Some conclusions:

 Using the rules for sentence building can be very complex, especially for Polish.
Formal description of the Polish language is carried out in IPI PAN. The formal
description of the Polish language is defined in Gramatyka Świdzińskiego
(Świdziński, 1992). There is also an implementation of that formalism, but it is on
the experimental stage;

 It is important to use tools for getting a word in its primary form – lemma
generation tool – when analyzing a piece of text;

 During the sentence generation it is necessary to use words in appropriate forms
(correct case, gender, tense etc.). That is why the tool for generating words in their
correct forms is needed.

When developing a natural language generation engine, the UTR tool was chosen for
generating lemma and correct word forms. The author of this tool is Jan Daciuk. UTR uses a
dictionary which contains words, their forms and form tags. Very good compression and
easy browsing through words was achieved thanks to the finite-state automata algorithm.
Technical details of the UTR tool have been widely described in the doctoral dissertation of
Jan Daciuk (Daciuk, 1999).

3.4 Generator implementation
The described natural language generation engine has been developed as a system which
depends on templates. The knowledge base for the generator is the data stored as a semantic
network. The engine describes a concept stored in semantic data with the use of its
properties and relationships between other concepts. The semantic network naturally
provides the text planning stage. Sentence templates are connected to properties defined in

Application of semantic networks in natural language issues 139

Sample ontologies for knowledge management and storage are:
 FOAF ontology23 which describes the person and the friends of that person,

thereby creating a network of connected people;
 DBPedia24 – ontology which provides data from Wikipedia in the structural way;
 Ontology for describing photos (Lafon & Bos, 2002);
 Ontology for describing spatial data25.

Currently, the LikedData26 initiative is promoting the idea to publish various types of
already collected data as semantic data and combining them with each other. There are
many tools available that help to publish data over HTTP as semantic data directly from
existing relational databases. Thanks to such initiatives, the data published on the Internet
will be readable not only for humans but also for different kinds of services, systems,
applications. Computer systems will be able to use those data, combine them with each
other and perform new functionalities.
Storing knowledge in such a way can be also used by programs that generate texts (readable
for humans) from structural data.

3.2 State of the art in natural language generation
The natural language generation has been already described in many publications (Reiter &
Dale, 1997), (Paris et al., 1991), (Cole et al., 1997). Some classes of software to generate text
have been defined depending on algorithm complexity and quality results of a generated
text. Some stages in the generation process were also defined.
The first stage is called text planning. At that stage it should be planned which part of
knowledge should be described in a textual form.
In the next stage, the sentence content and order should be stipulated. The last stage is
dedicated to generating sentences in a proper grammatical form. This process can be
performed in different algorithm complexity, depending on language tools.
Natural language generation systems can be classified into (Cole et al., 1997):

 information systems which produce messages without infrastructure for text
planning, sentence order and any language tools;

 systems which base on sentence templates. This solution depends on prepared
templates which are filled with changeable elements;

 systems based on phrase templates. This solution depends on a part of sentence
templates – phrases which are used recursively up to generate a meaningful
sentence;

 systems based on sentences properties. In such solution, sentence templates with
defined properties (question sentence, statement) are a starting point. Iterating
through the successive stages, these templates are completed with additional
details up to generate a meaningful sentence.

22 http://www.cyc.com/cyc/opencyc/overview
23 http://www.foaf-project.org/docs/specs
24 http://dbpedia.org/About
25 http://www.geonames.org/ontology/
26 http://esw.w3.org

In the natural language generation it is important to use language tools specific for a
particular language. They are especially important for inflective languages. It is important to
use a proper grammatical form of the word: gender, tense, mode, plural/singular form.

3.3 Polish language specifics and language tools
Natural languages have different ways of building sentences. In English, the position of a
word in the sentence is strictly determined. This facilitates the sentence analysis which, in
turn, allows to precisely determine the meaning of the sentence. Polish is not a positional
language. Verb, subject, attribute, etc. can occur in different positions in the sentence
(Vetulani, 2004). However, Polish has fixed connections between parts of speech. These
connections determine dependencies between particular parts of the sentence, i.e. the
grammatical form of one part of the sentence enforces the grammatical form of the other
part (Saloni & Świdziński, 1981). Unfortunately, these dependencies do not have strict
character. They depend on the style of the sentences and their types too. For example,
questions will have a different word order and different dependencies between forms
compared to statements.
Polish language is also inflective. Depending on its gender, case, tense, a particular word is
in a different form. Differences in grammatical forms are not manifested only by the endings
of words. In comparison with other languages (for example English), there are many more
irregular forms in Polish.
Some conclusions:

 Using the rules for sentence building can be very complex, especially for Polish.
Formal description of the Polish language is carried out in IPI PAN. The formal
description of the Polish language is defined in Gramatyka Świdzińskiego
(Świdziński, 1992). There is also an implementation of that formalism, but it is on
the experimental stage;

 It is important to use tools for getting a word in its primary form – lemma
generation tool – when analyzing a piece of text;

 During the sentence generation it is necessary to use words in appropriate forms
(correct case, gender, tense etc.). That is why the tool for generating words in their
correct forms is needed.

When developing a natural language generation engine, the UTR tool was chosen for
generating lemma and correct word forms. The author of this tool is Jan Daciuk. UTR uses a
dictionary which contains words, their forms and form tags. Very good compression and
easy browsing through words was achieved thanks to the finite-state automata algorithm.
Technical details of the UTR tool have been widely described in the doctoral dissertation of
Jan Daciuk (Daciuk, 1999).

3.4 Generator implementation
The described natural language generation engine has been developed as a system which
depends on templates. The knowledge base for the generator is the data stored as a semantic
network. The engine describes a concept stored in semantic data with the use of its
properties and relationships between other concepts. The semantic network naturally
provides the text planning stage. Sentence templates are connected to properties defined in

Engineering the Computer Science and IT140

the ontology. The lemma tool and the tool for generating forms provide proper forms of the
generated text in template gaps.

Fig. 4. Semantic data examples [source: own].

Browsing the knowledge base is primarily reviewing the different concepts, reading their
properties and navigating between related concepts. The concepts describe some entities, so
as a part of speech they are usually nouns. The properties define details about a concept or
define relationships between concepts. That is why they are usually verbs or adjectives.
Sample data are presented in Figure 4.

Fig. 5. Template examples [source: own].

The concept description consist of: textual description, properties (in fig: “has symptom”,
“treatment”, “contraindication”, “indication”, “description”) and relationships. Sentences
are generated based on relationships between concepts and templates connected with
properties (Figure 5). So the templates consist of the text which should be applied for a
particular property and pointers which point where other elements from the RDF triple
(subject and object) should be inserted.
In addition, the template contains information about the prescribed form of the expression
to be inserted in the template. Information about the prescribed form can contain additional
criteria: tense, gender, case, etc. It is not necessary to give each criterion. In such a case the

<Flu> <has symptom> <Headache>
<Flu> <has symptom> <Fever>

<Flu> <treatment> <Aspirin>

<Aspirin> <contraindication> <Blood
coagulability>
<Aspirin> <indication> <Flu>

<Aspirin> <description> „Popular
medicine. It is antiphlogistic and
antithermic. Used in flu and other
sicknesses.

Relationships between
concepts

Textual description

- for property <has symptom>
Objawy [[subject gen:sg:]] to [[object]]

 (English: Symptoms …are…)
- for property <treatement>
Możliwe jest leczenie poprzez [[object acc:]]
 (English: Treatement using…)
- for property <contraindication>
Nie może być [[$subject$ stosowany m:|stosowane n:|stosowana f:]]
w przypadku [[object gen:]]

 (English: It can’t be used for….)
- for property <indication>
[[$subject$ Używany m: | Używane n:| Używana f:]] jest przy
leczeniu [[object gen:]]

 (English: It is used for…)

missing criteria will be preserved from the original word. For example, when for a
particular field only tense is defined, the inserted words will preserve their gender and case.
To achieve some diversity in the generated text it is possible to define more than one
template for the same property. In such a case one template will be chosen from the defined
set of templates.
Some information may be stored as a text description. Property can point at a broader
textual description. In such a situation it is presented as hyperlink.

3.5 Conclusions about natural language generation based on semantic data
The presented solution is an attempt to develop a service providing a universal method of
searching and presenting the structural data sources. Not all types of information assets fit
this model. Therefore the solution can find application first of all in such cases where the
knowledge has an organized, structural character by nature. In the developed engine the
most complex stage was choosing an appropriate form for the gaps in the template. Despite
the use of markers that point at an appropriate form, there were some ambiguities and
confusions. An idea to solve that issue is to use the Google browser to check which version
of the phrase or part of sentence is more likely – which option has more results in the Google
search engine. For future development it is also possible to build up a phase in which the
knowledge is selected for generation and presentation. Currently, for the generation of the
text "the nearest environment" of the concept is selected. One can imagine that further
relationships are taken into account. It could be done by extending or changing algorithm
used by reasoner engine.

4. Summary

The presented solutions combine the knowledge of the semantic networks and natural
language processing. They verify the usefulness of the application of network-related issues
in the semantic processing of a natural language. Both solutions use the powers of the
semantic network in terms of modelling the relationships between concepts. The search
engine, through the use of semantics, can better "understand" questions asked by the user.
The impact is especially on the ability to define relationships (hierarchy, dependencies,
relationships conclusion) between concepts. The mechanism of texts generation shows that
semantic networks are a good way to store knowledge in a structural way with a flexible
approach to modelling the relationships between properties and concepts. The possibility to
describe properties (wide possibilities in metadata description) helps in developing an
engine for generating text from the web of relationships. The final result – a generated text
based on semantically stored knowledge makes information more readable for humans.
According to the presented solutions one can assume that using semantic networks can have
good influence on other issues associated with the natural language. However, it is
necessary to identify real needs in each case and define a proper place for using the semantic
network in the developed solution.

Application of semantic networks in natural language issues 141

the ontology. The lemma tool and the tool for generating forms provide proper forms of the
generated text in template gaps.

Fig. 4. Semantic data examples [source: own].

Browsing the knowledge base is primarily reviewing the different concepts, reading their
properties and navigating between related concepts. The concepts describe some entities, so
as a part of speech they are usually nouns. The properties define details about a concept or
define relationships between concepts. That is why they are usually verbs or adjectives.
Sample data are presented in Figure 4.

Fig. 5. Template examples [source: own].

The concept description consist of: textual description, properties (in fig: “has symptom”,
“treatment”, “contraindication”, “indication”, “description”) and relationships. Sentences
are generated based on relationships between concepts and templates connected with
properties (Figure 5). So the templates consist of the text which should be applied for a
particular property and pointers which point where other elements from the RDF triple
(subject and object) should be inserted.
In addition, the template contains information about the prescribed form of the expression
to be inserted in the template. Information about the prescribed form can contain additional
criteria: tense, gender, case, etc. It is not necessary to give each criterion. In such a case the

<Flu> <has symptom> <Headache>
<Flu> <has symptom> <Fever>

<Flu> <treatment> <Aspirin>

<Aspirin> <contraindication> <Blood
coagulability>
<Aspirin> <indication> <Flu>

<Aspirin> <description> „Popular
medicine. It is antiphlogistic and
antithermic. Used in flu and other
sicknesses.

Relationships between
concepts

Textual description

- for property <has symptom>
Objawy [[subject gen:sg:]] to [[object]]

 (English: Symptoms …are…)
- for property <treatement>
Możliwe jest leczenie poprzez [[object acc:]]
 (English: Treatement using…)
- for property <contraindication>
Nie może być [[$subject$ stosowany m:|stosowane n:|stosowana f:]]
w przypadku [[object gen:]]

 (English: It can’t be used for….)
- for property <indication>
[[$subject$ Używany m: | Używane n:| Używana f:]] jest przy
leczeniu [[object gen:]]

 (English: It is used for…)

missing criteria will be preserved from the original word. For example, when for a
particular field only tense is defined, the inserted words will preserve their gender and case.
To achieve some diversity in the generated text it is possible to define more than one
template for the same property. In such a case one template will be chosen from the defined
set of templates.
Some information may be stored as a text description. Property can point at a broader
textual description. In such a situation it is presented as hyperlink.

3.5 Conclusions about natural language generation based on semantic data
The presented solution is an attempt to develop a service providing a universal method of
searching and presenting the structural data sources. Not all types of information assets fit
this model. Therefore the solution can find application first of all in such cases where the
knowledge has an organized, structural character by nature. In the developed engine the
most complex stage was choosing an appropriate form for the gaps in the template. Despite
the use of markers that point at an appropriate form, there were some ambiguities and
confusions. An idea to solve that issue is to use the Google browser to check which version
of the phrase or part of sentence is more likely – which option has more results in the Google
search engine. For future development it is also possible to build up a phase in which the
knowledge is selected for generation and presentation. Currently, for the generation of the
text "the nearest environment" of the concept is selected. One can imagine that further
relationships are taken into account. It could be done by extending or changing algorithm
used by reasoner engine.

4. Summary

The presented solutions combine the knowledge of the semantic networks and natural
language processing. They verify the usefulness of the application of network-related issues
in the semantic processing of a natural language. Both solutions use the powers of the
semantic network in terms of modelling the relationships between concepts. The search
engine, through the use of semantics, can better "understand" questions asked by the user.
The impact is especially on the ability to define relationships (hierarchy, dependencies,
relationships conclusion) between concepts. The mechanism of texts generation shows that
semantic networks are a good way to store knowledge in a structural way with a flexible
approach to modelling the relationships between properties and concepts. The possibility to
describe properties (wide possibilities in metadata description) helps in developing an
engine for generating text from the web of relationships. The final result – a generated text
based on semantically stored knowledge makes information more readable for humans.
According to the presented solutions one can assume that using semantic networks can have
good influence on other issues associated with the natural language. However, it is
necessary to identify real needs in each case and define a proper place for using the semantic
network in the developed solution.

Engineering the Computer Science and IT142

5. References

Berners-Lee, T. (2001). The Semantic Web, Scientific American, (284(5)):34–43
Berners-Lee, T. (2006). Relational Databases on the Semantic Web, See: http://www.w3.org/

DesignIssues/RDB-RDF
Brickley, D. (2004). RDF Vocabulary Description Language 1.0: RDF Schema, W3C
Bruijn, J. (2003). Using ontologies, DERI Technical Report, DERI-2003-10-29
Cole, R. & Mariani, J. & Uszkoreit, H. & Zaenen, A. & Zue, V. (1997). Survey of the State of the

Art in Human Language Technology, Cambridge University Press, ISBN 0521592771
Daciuk, J. (1999). Incremental Construction of Finite-State Automata and Transducers, and their

Use in the Natural Language Processing,, Politechnika Gdańska
Davies, J. & Fensel, D. & Harmelen F. (2003). Towards the Semantic Web, Ontology-based

Knowledge Management at Work, John Wiley & Sons, LTD, ISBN 0470848677
Jupp, S. & Bechofer, S. & Stevens, R. (2008). A Flexible API and Editor for SKOS, The

Univeristy of Manchester
Lafon, Y. & Bos, B. (2002). Describing and retrieving photos using RDF and HTTP, W3C
Manning, C.D. & Raghavan, P. & Schütze, H. (2007). An Introduction to Information Retrieval,

Cambridge University Press, Draft,
McGuiness, D. & Harmelen, F. (2004). OWL Web Ontology Language Overview, W3C
Paris, C. & Swartout, W. & Mann, W. (1991). Natural Language Generation in Artificial

Intelligence and Computional Linguistic, Springer, ISBN 0792390989
Przepiórkowski, A. (2005). The Potential of The IPI PAN Corpus, Institute of Computer

Science, Polish Academy of Science, Warsaw
Reiter, E. & Dale, R. (1997). Building Applied Natural Language Generation Systems

Natural Language Engineering Vol. 3, No. 01. pp. 57-87 Cambridge University Press
Saab, S. (2006). The Semantic Web Revisited, University of Koblenz-Landau
Saloni, Z. & Świdziński M. (1981). Składnia współczesnego języka polskiego, Wydawnictwo

Uniwersytetu Warszawskiego, Warszawa
Salton, G. & Buckley, C. (1987). Term weighting approaches in automatic text retrieval.

Information Processing and Management 32:431–443. Technical Report TR87-881,
Department of Computer Science, Cornell University

Świdziński, M. (1992). Gramatyka formalna języka polskiego, Wydawnictwo Uniwersytetu
Warszawskiego, Warszawa

Vetulani, Z. (2004). Komunikacja człowieka z maszyną. Komputerowe modelowanie kompetencji
językowych, Akademicka Oficyna Wydawnicza Exit, ISBN 83-87674-66-4, Warszawa

W3C (2001). Semantic Web Use Cases and Case Studies, See: http://www.w3.org/2001/sw/
sweo/public/UseCases

W3C (2007). SKOS UseCase, See: http://www.w3.org/TR/2007/WD-skos-ucr-20070516/
Zaihrayeu, I. & Sun, L. & Giunchiglia, F. & Pan, W. &Ju, Q. & Chi, M. & Huang, X. (2007).

From Web Directories to Ontologies: Natural Language Processing Challenges, University
of Trento - Italy - UNITN-Eprints

Towards the Methodological Harmonization of Passive Testing Across ICT Communities 143

Towards the Methodological Harmonization of Passive Testing Across
ICT Communities

Krzysztof M. Brzeziński

X

Towards the Methodological Harmonization of
Passive Testing Across ICT Communities

Krzysztof M. Brzeziński

Institute of Telecommunications
Warsaw University of Technology

Poland

1. Introduction

According to its pervasive rôle in Information and Communications Technology (ICT) and
science in general, and also in everyday life, testing is justly expected to be particularly well
understood. Surprisingly, this does not seem to be the case. Unlike measurement science –
metrology, testing does not (yet) enjoy the status of a scientific discipline. There is no
”testology” entry, along with metrology, in general dictionaries and specialized
vocabularies (ISO/IEC, 2004).
Yet we claim that there is an identifiable (although still unnamed) science-in-the-making
that deals specifically with testing. However, at its conceptual level, it is currently only the
evolving set of approaches followed by the particular research groups. On numerous
occasions, various authors have noticed that certain communities ”largely failed to inform one
another and there was very little interaction between [them]” (Hierons et al., 2008); this
observation is strikingly pertinent to testing. In this setting, testing concepts and solutions
are being inevitably re-defined and re-invented, with the ensuing duplication of effort.
Additionally, research communities not dealing with testing as their primary field of study
are faced with problems that could be recognized as, or mapped onto, the testing problems.
The solutions to these problems are often available for potential adoption as testing patterns,
archetypes, and design paradigms. One of the plausible reasons for the non-recognition of
these patterns is the inability or reluctance to transcend a community-specific “language-
game”. Lamport (2008) notes that ”the obsession with language is a strong obstacle to any attempt
at unifying different parts of computer science. . . A recurring theme is the difficulty that arises when
necessary concepts cannot be introduced either because the language has no way of expressing them
or because they are considered to be politically incorrect”. We wish to think of testing as having
some inherent common characteristics, ”essence”, or higher-level conceptual framework
that transcends the results of any particular research community. Establishing ”testology” as
a science is clearly a formidable intellectual task, not to be undertaken lightly. Our
contribution towards this goal is delimited as follows:
• One way to uncover (some portions of) the ”essence” of testing is to look at different

languages which particular communities use to talk about testing. This meta-linguistic

9

Engineering the Computer Science and IT144

approach is similar in vein to (Brzeziński, 2007b). We try to reveal the underlying rules
that have become so natural for a given community that they are no longer “seen”.

• In order to avoid the premature and simultaneous generalization of every aspect of the
postulated ”essence”, we limit the technical scope of this chapter to testing that is
applicable to the behaviour of distributed, reactive systems characteristic of ICT.

• We intentionally focus on one of the most controversial dimensions of the overall
concept of testing, namely that of active vs. passive testing (this controversy itself is what
most communities actually agree upon). Whether ”passive testing” belongs with testing
at all, is subject to debate. Our initial conjecture, for which we seek corroboration, is that
passive testing is consistent with active testing, does form a part of a wider concept of
testing, and is useful as an encapsulated and reusable piece of technology.

Our discussion leads to the decoupling of the elements of (passive) testing methods from
their current, fixed place and role. They may then be encapsulated in quasi-independent
(”purpose-agnostic”) modules of technology, and reused in new combinations, according to
the evolving needs. This was the initial rationale for our PMM (Protocol MultiMeter)
research project (Brzeziński et al., 1996; Brzeziński, 1997, 2005) that led to the development
of the family of flexible, modular protocol monitors and testers. The same idea, in a very
similar context of formal methods, was later submitted by Rushby (2000) who postulated
that ”...the capabilities of monolithic formal methods tools be ’liberated’ and be made available as
standalone components that can be used inside other tools”.

2. General thoughts on testing

2.1 Extra-technical aspects of testing
Apart from technical aspects of the subject matter, we also consider it necessary to briefly
look into its much more general, philosophical aspects (testing as a science is not really
conceivable without some epistemological and ontological roots). Testing has not emerged
with technical systems. Initially, the concept of testing has been discussed and formalized in
the context of philosophy, and in particular one of its branches: epistemology (theory of
knowledge). We thus start off with the Scientific Method (SM) – a particular paradigm of
scientific enquiry, of ancient origins, but elaborated relatively recently by Charles Sanders
Peirce and Karl Popper. SM is one of the primary tools of natural (empirical) sciences – those
that seek explanations and predictions of phenomena. The application of SM consists in taking
a series of steps, in a generally fixed order (which does not exclude the possibility of
backtracking, ”looping”, and iterating):
• identifying a problem – a set of phenomena;
• stating a hypothesis about this set of phenomena: a statement p about ”the world” (but

not a valid, trivial, or vacuous logical formula);
• deducing predictions – a set of the necessary logical consequences of the hypothesis

. At this stage it is also possible to check (in a purely formal way) if
the deduced consequences are mutually consistent, as inconsistency invalidates a
hypothesis without the need for any empirical investigation: .

• establishing the empirical content of the hypothesis, i.e., expressing the selected
consequences in terms of predicted phenomena that are in principle amenable to
experimentation (empirical observation). If this empirical content is empty, then the
scientific method simply does not apply. By definition, for each selected consequence q

there is a phenomenon f such that q is true iff f exists. The ”existence” of a phenomenon
may take on diverse forms: the phenomenon may occur (as an event), hold (as a ratio
between two quantities), be present (as an entity or quality), but also be absent (as the
lack of influence or relation).

• testing the hypothesis: performing experiments aimed specifically at confirming or
denying the existence of pre-stated (predicted) phenomena.

Note that the same method and means of observation could be used in a different way, with
a different aim:, e.g., in the initial phase of the scientific method, to ”charge” one’s intuition
as to the phenomena about which one is about to propose an explanation. This activity,
although experimental, does not qualify as a test – we would rather call it monitoring of
some phenomena, with the obvious intention of applying the intuition behind this
distinction to technical devices – monitors and passive testers.
Two extreme approaches to how a hypothesis should be tested may be distinguished:
• verificationism, which maintains that a hypothesis, to be accepted as true, must be

convincingly confirmed – corroborated, or verified (i.e., “shown to be true”). Careless
application of verificationism may lead to the logical fallacy of affirming the consequent,
i.e., taking the confirmation of q as a proof of the truth of p. Even if this trap is avoided,
there is always the dilemma of what is the ”convincing level” of corroboration.

• falsificationism, which maintains that it is essentially not possible to empirically verify a
hypothesis, and the only sensible (meaningful) direction is to try to falsify (refute) it. By
a simple logical argument (Destructive Dilemma), it is sufficient to deny the existence of
a single predicted phenomenon to conclusively falsify a hypothesis.

The influence of Popperian falsificationism can be seen in the use of terms: ”scientific”,
”testable” and ”falsifiable” as quasi-synonyms. Taken to the ground of telecommunications
and computing systems, this is translated to the well known observation by Edsgar Dijkstra
that ”testing can only show the presence of bugs [i.e., falsify the claim of correctness] but never
their absence [i.e., verify that all the system’s properties are as predicted]”. However, ”pure”
approaches are not really advocated – practical applications of the scientific method always
combine the elements of verification and falsification, and individual schools of thought
differ in their proportions and emphasis. Two sets of experiments: those focused on
confirmation, and those focused on refutation, are thus expected.
We now consider the technical setting of testing and draw some analogies. For a predicted
phenomenon f, a method and means (apparatus) for observing it is required. If it is not readily
available, then it must be developed. The method and apparatus in which this method is
implemented is referred to as a Test System (TS). A Test System may be composed of many
Testers which are related to each other in the framework of a particular Test Architecture. The
”program” of the operation of a Test System while performing a particular experiment is
referred to as a Test. Normally, a single Test System is constructed so as to be able to
perform all the planned experiments, so that its operation is described by a number of tests:
a Test Suite consisting of individual Test Cases. By convention, the outcome of a test is
formalized by a test verdict, which values are:
• Pass, if a test confirms the predicted phenomenon (thus q = True);
• Fail, if a test denies the existence of the predicted phenomenon (thus q = False);
• Inconclusive (Inc for short), if a test (this particular execution of a test) does not allow

the conclusions to be drawn as to the truth value of q.

Towards the Methodological Harmonization of Passive Testing Across ICT Communities 145

approach is similar in vein to (Brzeziński, 2007b). We try to reveal the underlying rules
that have become so natural for a given community that they are no longer “seen”.

• In order to avoid the premature and simultaneous generalization of every aspect of the
postulated ”essence”, we limit the technical scope of this chapter to testing that is
applicable to the behaviour of distributed, reactive systems characteristic of ICT.

• We intentionally focus on one of the most controversial dimensions of the overall
concept of testing, namely that of active vs. passive testing (this controversy itself is what
most communities actually agree upon). Whether ”passive testing” belongs with testing
at all, is subject to debate. Our initial conjecture, for which we seek corroboration, is that
passive testing is consistent with active testing, does form a part of a wider concept of
testing, and is useful as an encapsulated and reusable piece of technology.

Our discussion leads to the decoupling of the elements of (passive) testing methods from
their current, fixed place and role. They may then be encapsulated in quasi-independent
(”purpose-agnostic”) modules of technology, and reused in new combinations, according to
the evolving needs. This was the initial rationale for our PMM (Protocol MultiMeter)
research project (Brzeziński et al., 1996; Brzeziński, 1997, 2005) that led to the development
of the family of flexible, modular protocol monitors and testers. The same idea, in a very
similar context of formal methods, was later submitted by Rushby (2000) who postulated
that ”...the capabilities of monolithic formal methods tools be ’liberated’ and be made available as
standalone components that can be used inside other tools”.

2. General thoughts on testing

2.1 Extra-technical aspects of testing
Apart from technical aspects of the subject matter, we also consider it necessary to briefly
look into its much more general, philosophical aspects (testing as a science is not really
conceivable without some epistemological and ontological roots). Testing has not emerged
with technical systems. Initially, the concept of testing has been discussed and formalized in
the context of philosophy, and in particular one of its branches: epistemology (theory of
knowledge). We thus start off with the Scientific Method (SM) – a particular paradigm of
scientific enquiry, of ancient origins, but elaborated relatively recently by Charles Sanders
Peirce and Karl Popper. SM is one of the primary tools of natural (empirical) sciences – those
that seek explanations and predictions of phenomena. The application of SM consists in taking
a series of steps, in a generally fixed order (which does not exclude the possibility of
backtracking, ”looping”, and iterating):
• identifying a problem – a set of phenomena;
• stating a hypothesis about this set of phenomena: a statement p about ”the world” (but

not a valid, trivial, or vacuous logical formula);
• deducing predictions – a set of the necessary logical consequences of the hypothesis

. At this stage it is also possible to check (in a purely formal way) if
the deduced consequences are mutually consistent, as inconsistency invalidates a
hypothesis without the need for any empirical investigation: .

• establishing the empirical content of the hypothesis, i.e., expressing the selected
consequences in terms of predicted phenomena that are in principle amenable to
experimentation (empirical observation). If this empirical content is empty, then the
scientific method simply does not apply. By definition, for each selected consequence q

there is a phenomenon f such that q is true iff f exists. The ”existence” of a phenomenon
may take on diverse forms: the phenomenon may occur (as an event), hold (as a ratio
between two quantities), be present (as an entity or quality), but also be absent (as the
lack of influence or relation).

• testing the hypothesis: performing experiments aimed specifically at confirming or
denying the existence of pre-stated (predicted) phenomena.

Note that the same method and means of observation could be used in a different way, with
a different aim:, e.g., in the initial phase of the scientific method, to ”charge” one’s intuition
as to the phenomena about which one is about to propose an explanation. This activity,
although experimental, does not qualify as a test – we would rather call it monitoring of
some phenomena, with the obvious intention of applying the intuition behind this
distinction to technical devices – monitors and passive testers.
Two extreme approaches to how a hypothesis should be tested may be distinguished:
• verificationism, which maintains that a hypothesis, to be accepted as true, must be

convincingly confirmed – corroborated, or verified (i.e., “shown to be true”). Careless
application of verificationism may lead to the logical fallacy of affirming the consequent,
i.e., taking the confirmation of q as a proof of the truth of p. Even if this trap is avoided,
there is always the dilemma of what is the ”convincing level” of corroboration.

• falsificationism, which maintains that it is essentially not possible to empirically verify a
hypothesis, and the only sensible (meaningful) direction is to try to falsify (refute) it. By
a simple logical argument (Destructive Dilemma), it is sufficient to deny the existence of
a single predicted phenomenon to conclusively falsify a hypothesis.

The influence of Popperian falsificationism can be seen in the use of terms: ”scientific”,
”testable” and ”falsifiable” as quasi-synonyms. Taken to the ground of telecommunications
and computing systems, this is translated to the well known observation by Edsgar Dijkstra
that ”testing can only show the presence of bugs [i.e., falsify the claim of correctness] but never
their absence [i.e., verify that all the system’s properties are as predicted]”. However, ”pure”
approaches are not really advocated – practical applications of the scientific method always
combine the elements of verification and falsification, and individual schools of thought
differ in their proportions and emphasis. Two sets of experiments: those focused on
confirmation, and those focused on refutation, are thus expected.
We now consider the technical setting of testing and draw some analogies. For a predicted
phenomenon f, a method and means (apparatus) for observing it is required. If it is not readily
available, then it must be developed. The method and apparatus in which this method is
implemented is referred to as a Test System (TS). A Test System may be composed of many
Testers which are related to each other in the framework of a particular Test Architecture. The
”program” of the operation of a Test System while performing a particular experiment is
referred to as a Test. Normally, a single Test System is constructed so as to be able to
perform all the planned experiments, so that its operation is described by a number of tests:
a Test Suite consisting of individual Test Cases. By convention, the outcome of a test is
formalized by a test verdict, which values are:
• Pass, if a test confirms the predicted phenomenon (thus q = True);
• Fail, if a test denies the existence of the predicted phenomenon (thus q = False);
• Inconclusive (Inc for short), if a test (this particular execution of a test) does not allow

the conclusions to be drawn as to the truth value of q.

Engineering the Computer Science and IT146

The application of a Scientific Method, e.g., for a hypothesis p=”a system is correct” is shown
in fig. 1. In general, Pass is not the converse of Fail (with the exception of certain formal
testing theories). In fig.1(a), tests are divided into two sets (classes): {Tm} – tests aiming at
falsification (so only able to issue a Fail or an Inc), and {T’n } – tests aiming at corroboration
(so only able to issue a Pass or an Inc). For some predicted phenomenon, like fa, tests of both
kinds may be conceived, while for other phenomena only falsification tests (as for fk) or only
corroboration tests (as for fn) will be considered. It may also be possible to combine a
falsification and corroboration test into a procedure that, operationally and technically, may
be considered as a single experimentation unit, as shown in fig.1(b). Such form of tests is
assumed in the telecommunications-oriented methodology of conformance testing (ISO/IEC
9646), and is also inherent in the design of the TTCN-3 testing language (ETSI ES 201 873,
2008).

Fig. 1. The Scientific Method: (a) with confirmation and refutation tests; (b) with joint tests

Nowhere in the exposition of the Scientific Method the tests (experiments) are, explicitly or
implicitly, described as active, i.e., those in which influence is purposefully exerted upon
investigated phenomena. This is not to say that philosophers have overlooked this issue: the
discussion of the relative merits of active and passive experiments can be found, e.g., in the
works of John Stuart Mill (Mill, 1974). As a means of scientific enquiry, Mill distinguishes
”pure observation” and ”artificial experiments”, which allow to, respectively, ”find an
instance in nature suited to our purposes, or, by an artificial arrangement of circumstances, make
one”. He goes on to notice ”no difference in kind, no real logical distinction, between the two
processes of investigation. . . as the uses of money are the same whether it is inherited or acquired”.

2.2 Components of the “testing” concept
In the most general sense, although already focused on technical systems, testing is
understood as:
• an activity with at least some empirical, experimental elements, i.e., not consisting

entirely of calculations;
• with experiments conducted on a particular Thing Under Test (Tut). “Tut” is not an

established term. We use it here, because more widespread terms, such as Sut (System

Under Test), Iut (Implementation Under Test), Eut (Equipment Under Test) are not general
enough. They are related to a particular test architecture or a kind of tests.

• aimed at (here follow the quasi-equivalent formulations which have been adopted by
different schools of thought, and differ mainly in the ”principal key-word”):
1. establishing whether a given relation holds between a Tut and a reference Ref.
2. establishing whether a given hypothesis concerning a Tut is true. This is clearly the

language of the Scientific Method, but SM can also be applied, as a kind of a
methodological landmark, in engineering (which deals with creating rather than
explaining). For testing, a hypothesis may be formulated as ”Tut is correct”.

3. obtaining knowledge as to whether Tut corresponds to a Ref in a specific way.
Developing knowledge is the subject matter of epistemology. One of the principal
notions of knowledge is that of justified true belief (JTB) where a subject ”knows”
proposition p, (e.g., p=”Tut is correct”) if jointly: (1) p is indeed true, (2) the subject
believes that p is true, and (3) the subject is justified in believing that p is true. The
need for testing may be restated as the need to know if a system is correct. A valid
question is when one accumulates sufficient justification, or – in the context of
testing – when one has ”tested enough”.

• and resulting in evaluating a certain object that partakes in testing – the object of
assessment, which must be unambiguously identified.

There are many conceivable relations binding a reference and a Tut. The intention of
defining them is captured in their generic names: ”satisfies”, ”conforms to”, ”is adequate
w.r.t.”, or ”is correct w.r.t...”. In a particular domain (”over programs or systems of
programs”), it has become customary to refer to the elements of a set TUT as
implementations, and to elements of a set REF as specifications (Wing, 1990) The generic
correctness relation is then usually called an implementation relation, write (Imp imp Spec).
Here, an ”implementation” and a ”specification” are used just as conventional names.
A test result always pertains to a Tut. A test verdict pertains to an object of assessment, which
may, or may not be a Tut. It is usually accepted that the domain of verdicts is

, where, conventionally, Pass means that the object of assessment is found to
be ”good enough” for imp to hold.
In engineering, and in particular in testing of telecommunications and computing systems, it
has been silently accepted that the object of testing (a Tut) is also an object of assessment - it
is an ''implementation'' that can be corrected if found to fail the tests, while a reference is
given and fixed. Note that Ref is arbitrary - it can also express a destructive or chaotic
behaviour. The need for the effective and correct development of products that are
destructive is obvious, not only in the military domain and the like, but also, e.g., in case of
active test systems that should be able to send erroneous or unexpected signals to a Tut. An
Imp that passes tests w.r.t. a destructive Spec is correct (in being ''destructive enough'').
In the primary application area of the Scientific Method, the Tut is some physical system,
but the object of assessment is a Ref – a hypothesis that models, explains, and predicts facts
about Tut. It is not asked whether ”the world” is correct, but rather whether our hypothesis
about this world is correct (sufficiently and consistently predicts and explains the test
outcomes). ”Reversing” the direction of assessment is also possible, and is practiced, e.g., in
reverse engineering (Brzeziński et al., 2008). Tut is then considered as given, and a test verdict
is used to assess a Ref (e.g., a specification being reconstructed). Note that Tut and Ref
cannot be simply swapped, as experiments are still conducted on the same Tut.

Towards the Methodological Harmonization of Passive Testing Across ICT Communities 147

The application of a Scientific Method, e.g., for a hypothesis p=”a system is correct” is shown
in fig. 1. In general, Pass is not the converse of Fail (with the exception of certain formal
testing theories). In fig.1(a), tests are divided into two sets (classes): {Tm} – tests aiming at
falsification (so only able to issue a Fail or an Inc), and {T’n } – tests aiming at corroboration
(so only able to issue a Pass or an Inc). For some predicted phenomenon, like fa, tests of both
kinds may be conceived, while for other phenomena only falsification tests (as for fk) or only
corroboration tests (as for fn) will be considered. It may also be possible to combine a
falsification and corroboration test into a procedure that, operationally and technically, may
be considered as a single experimentation unit, as shown in fig.1(b). Such form of tests is
assumed in the telecommunications-oriented methodology of conformance testing (ISO/IEC
9646), and is also inherent in the design of the TTCN-3 testing language (ETSI ES 201 873,
2008).

Fig. 1. The Scientific Method: (a) with confirmation and refutation tests; (b) with joint tests

Nowhere in the exposition of the Scientific Method the tests (experiments) are, explicitly or
implicitly, described as active, i.e., those in which influence is purposefully exerted upon
investigated phenomena. This is not to say that philosophers have overlooked this issue: the
discussion of the relative merits of active and passive experiments can be found, e.g., in the
works of John Stuart Mill (Mill, 1974). As a means of scientific enquiry, Mill distinguishes
”pure observation” and ”artificial experiments”, which allow to, respectively, ”find an
instance in nature suited to our purposes, or, by an artificial arrangement of circumstances, make
one”. He goes on to notice ”no difference in kind, no real logical distinction, between the two
processes of investigation. . . as the uses of money are the same whether it is inherited or acquired”.

2.2 Components of the “testing” concept
In the most general sense, although already focused on technical systems, testing is
understood as:
• an activity with at least some empirical, experimental elements, i.e., not consisting

entirely of calculations;
• with experiments conducted on a particular Thing Under Test (Tut). “Tut” is not an

established term. We use it here, because more widespread terms, such as Sut (System

Under Test), Iut (Implementation Under Test), Eut (Equipment Under Test) are not general
enough. They are related to a particular test architecture or a kind of tests.

• aimed at (here follow the quasi-equivalent formulations which have been adopted by
different schools of thought, and differ mainly in the ”principal key-word”):
1. establishing whether a given relation holds between a Tut and a reference Ref.
2. establishing whether a given hypothesis concerning a Tut is true. This is clearly the

language of the Scientific Method, but SM can also be applied, as a kind of a
methodological landmark, in engineering (which deals with creating rather than
explaining). For testing, a hypothesis may be formulated as ”Tut is correct”.

3. obtaining knowledge as to whether Tut corresponds to a Ref in a specific way.
Developing knowledge is the subject matter of epistemology. One of the principal
notions of knowledge is that of justified true belief (JTB) where a subject ”knows”
proposition p, (e.g., p=”Tut is correct”) if jointly: (1) p is indeed true, (2) the subject
believes that p is true, and (3) the subject is justified in believing that p is true. The
need for testing may be restated as the need to know if a system is correct. A valid
question is when one accumulates sufficient justification, or – in the context of
testing – when one has ”tested enough”.

• and resulting in evaluating a certain object that partakes in testing – the object of
assessment, which must be unambiguously identified.

There are many conceivable relations binding a reference and a Tut. The intention of
defining them is captured in their generic names: ”satisfies”, ”conforms to”, ”is adequate
w.r.t.”, or ”is correct w.r.t...”. In a particular domain (”over programs or systems of
programs”), it has become customary to refer to the elements of a set TUT as
implementations, and to elements of a set REF as specifications (Wing, 1990) The generic
correctness relation is then usually called an implementation relation, write (Imp imp Spec).
Here, an ”implementation” and a ”specification” are used just as conventional names.
A test result always pertains to a Tut. A test verdict pertains to an object of assessment, which
may, or may not be a Tut. It is usually accepted that the domain of verdicts is

, where, conventionally, Pass means that the object of assessment is found to
be ”good enough” for imp to hold.
In engineering, and in particular in testing of telecommunications and computing systems, it
has been silently accepted that the object of testing (a Tut) is also an object of assessment - it
is an ''implementation'' that can be corrected if found to fail the tests, while a reference is
given and fixed. Note that Ref is arbitrary - it can also express a destructive or chaotic
behaviour. The need for the effective and correct development of products that are
destructive is obvious, not only in the military domain and the like, but also, e.g., in case of
active test systems that should be able to send erroneous or unexpected signals to a Tut. An
Imp that passes tests w.r.t. a destructive Spec is correct (in being ''destructive enough'').
In the primary application area of the Scientific Method, the Tut is some physical system,
but the object of assessment is a Ref – a hypothesis that models, explains, and predicts facts
about Tut. It is not asked whether ”the world” is correct, but rather whether our hypothesis
about this world is correct (sufficiently and consistently predicts and explains the test
outcomes). ”Reversing” the direction of assessment is also possible, and is practiced, e.g., in
reverse engineering (Brzeziński et al., 2008). Tut is then considered as given, and a test verdict
is used to assess a Ref (e.g., a specification being reconstructed). Note that Tut and Ref
cannot be simply swapped, as experiments are still conducted on the same Tut.

Engineering the Computer Science and IT148

2.3 Active and passive testing
According to the prevailing intuition of testing as an active experiment, a Test System:
• generates stimuli that provoke phenomena to be investigated;
• observes phenomena as they appear under the influence of applied stimuli;
• analyzes the relation between applied stimuli and observed phenomena, in order to

decide if this relation is as predicted by a pre-defined reference.
However, as in the Scientific Method, a test can be simply considered as a synonym of a pre-
designed, purposeful, empirical experiment, where ”being active” is not a part of the essence of
the concept. Also in the official terminology of formal testing (ITU-T Z500, 1997), test cases
(i.e., single tests) are defined simply as ”the experiments that constitute a test suite. . . Each test
case specifies the behaviour of the tester in a separate experiment that tests an aspect of the IUT, and
that leads to an observation and a verdict” (no notion of active stimuli here). In this broader
understanding, one kind of experiments (let us call them passive tests) involves the
observation and assessment of phenomena that appear ”naturally”, i.e., are not invoked
(provoked, stimulated, influenced) by a passive tester. The absence of influence exerted
upon an investigated phenomenon may be needed, expected, or required due to the test
situation (no “input ports”), a phenomenon being ”intensive enough” so that any stimulus
is actually not needed, or the properties of a system in which investigated phenomena occur
– this may be an operational system whose integrity, safety, and performance critically
depends on non-interference with its internal parts and processes.
From the preceding discussion it might transpire that there is nothing unusual in treating
active and passive testing as conceptual peers. Yet, passive testing has not been identified as
a dimension of the discourse space of testing, nor even mentioned, in any of the following: a
recent extensive survey of formal testing (Hierons et al., 2008); the earlier annotated
bibliography (Brinksma & Tretmans, 2000); the proceedings of the prestigious Seminar on
testing (Brinksma et al., 2005); taxonomies developed to get insight into the notion of testing
(Utting et al., 2006; Ryser et al., 1998); standardized glossaries of terms pertaining to testing
(BS 7925-1, 1998; ISTQB, 2007) or broader software engineering activities (IEEE Std 610-12,
1990). The telecommunications-oriented standardized methodology of conformance testing
(ISO/IEC 9646) openly excludes passive testing from its scope. The standardized test
language TTCN-3 (ETSI ES 201 873, 2008) was meant to express active tests, and there have
been very few proposals to use it also for passive tests (Brzeziński, 2007a).
Within ICT there is also a body of publications that converge on the concept of passive
testing. Some of these publications use the term ”passive tester” outright , but most prefer to
use ”euphemisms” like: observer, trace checker, the oracle, passive monitor, arbiter,
supervisor. Tretmans (1999) and Alcalde (2006) refer to passive testing as monitoring.
Bochmann & Bellal (1989) treat passive testing as a sub-problem of active testing. Some
authors state that active and passive tests are complementary (Chen, Wu, & Chi, 2003), but,
save for examples, provide no deeper discussion of the sense of this claim.
According to Netravali et al. (2003), "the aim of passive testing is to detect faults in a system while
observing the system during normal operation, that is, without forcing the system to specialized
inputs explicitly for the purposes of testing". This is a stipulative definition – it intends to
convey a particular understanding of a concept. This illustrates the trouble with almost all
the definitions to be found in the works on passive testing – they are not the kind of
classical, Aristotelian definitions as a ”statement of the essence of things”. Hopefully, the
following discussion will help clarify the doubts.

3. Background

Two very general aspects of a system are: its internal structure (which may be hidden), and
its behaviour exhibited in contact with its environment, which is that part of the universe of
discourse that lies outside the system border. Note that a system’s border is conventional –
in principle it can be moved to contain only those internal components that are ”interesting”
from some point of view. There is a consensus on defining a behaviour of a system as a
”sequence of observable actions it performs when interacting with the environment”. (Lamport,
1989). Such behaviour is characteristic of Discrete-Event Systems (DES). This broad class of
systems includes all the systems that we discuss here.
There is a difference between a particular behaviour (a particular sequence, or a trace, of
actions) and the totality of all such behaviours a system can ever exhibit (execute). The
general role of a behavioural specification (a Spec) is to state the restrictions on system
behaviours so that they stay safe and useful. Throughout its life-cycle, a system (by
convention called an implementation – Imp) is meant to fulfil such obligations that come from
different sources. Checking whether these restrictions (in general – requirements) are
actually fulfilled is the essence of verification and validation (V&V). We understand
verification as checking (the behaviour of) a system against a design specification
(investigating whether a system has been correctly implemented), and validation as
checking a system against an arbitrary reference (also such that a system had no chance to
change in order to accomodate its requirements). V&V may proceed by formal manipulations
on mathematical models of systems, or by empirical investigation (experimentation). Testing
belongs to the latter class of V&V techniques.
Testing consists in empirically checking the ”correctness” of behaviour. It would be thus
useful to develop the understanding of incorrectness. The three crucial notions related to
incorrectness are: error, fault, and failure. We understand these notions as follows:
• an error is a human action, or lack of action, that (if not remedied) leads to ”planting” a

fault. It usually results from lack of experience or information, carelessness, neglect, etc.
• a fault is a defect (a flaw) in a system, which, when exercised, can lead to a failure. A

fault may result from a human error or environmental conditions. A system with a fault
is said to be faulty. Faultlessness is one of the generic attributes of correctness.

• a failure is a deviation from expected behaviour – any visible deviation, as we do not
consider the ”size” of a failure (this is also assumed in the standardized methodology
of conformance testing - ISO/IEC 9646).

The reader should be aware that the meanings of a ”fault” and a ”failure” are often
swapped, and an error may also be understood as an incorrect internal state. The resulting
chaos was noted and on occasion dicussed, e.g., by Randell (2003).
The generic function of testing is to detect failures. Faced with the very widespread use of the
term ”fault detection” (also in excerpts that we cite), we interpret it to mean ”failure
detection with the ensuing inference to the presence of a fault”.

4. Overview of research into passive testing

We now briefly survey the main concerns, approaches, and results of research conducted
specifically on passive testing. This research may be divided into ”epochs” (the list of
researchers’ names is given for orientation only, and is by far not exhaustive):

Towards the Methodological Harmonization of Passive Testing Across ICT Communities 149

2.3 Active and passive testing
According to the prevailing intuition of testing as an active experiment, a Test System:
• generates stimuli that provoke phenomena to be investigated;
• observes phenomena as they appear under the influence of applied stimuli;
• analyzes the relation between applied stimuli and observed phenomena, in order to

decide if this relation is as predicted by a pre-defined reference.
However, as in the Scientific Method, a test can be simply considered as a synonym of a pre-
designed, purposeful, empirical experiment, where ”being active” is not a part of the essence of
the concept. Also in the official terminology of formal testing (ITU-T Z500, 1997), test cases
(i.e., single tests) are defined simply as ”the experiments that constitute a test suite. . . Each test
case specifies the behaviour of the tester in a separate experiment that tests an aspect of the IUT, and
that leads to an observation and a verdict” (no notion of active stimuli here). In this broader
understanding, one kind of experiments (let us call them passive tests) involves the
observation and assessment of phenomena that appear ”naturally”, i.e., are not invoked
(provoked, stimulated, influenced) by a passive tester. The absence of influence exerted
upon an investigated phenomenon may be needed, expected, or required due to the test
situation (no “input ports”), a phenomenon being ”intensive enough” so that any stimulus
is actually not needed, or the properties of a system in which investigated phenomena occur
– this may be an operational system whose integrity, safety, and performance critically
depends on non-interference with its internal parts and processes.
From the preceding discussion it might transpire that there is nothing unusual in treating
active and passive testing as conceptual peers. Yet, passive testing has not been identified as
a dimension of the discourse space of testing, nor even mentioned, in any of the following: a
recent extensive survey of formal testing (Hierons et al., 2008); the earlier annotated
bibliography (Brinksma & Tretmans, 2000); the proceedings of the prestigious Seminar on
testing (Brinksma et al., 2005); taxonomies developed to get insight into the notion of testing
(Utting et al., 2006; Ryser et al., 1998); standardized glossaries of terms pertaining to testing
(BS 7925-1, 1998; ISTQB, 2007) or broader software engineering activities (IEEE Std 610-12,
1990). The telecommunications-oriented standardized methodology of conformance testing
(ISO/IEC 9646) openly excludes passive testing from its scope. The standardized test
language TTCN-3 (ETSI ES 201 873, 2008) was meant to express active tests, and there have
been very few proposals to use it also for passive tests (Brzeziński, 2007a).
Within ICT there is also a body of publications that converge on the concept of passive
testing. Some of these publications use the term ”passive tester” outright , but most prefer to
use ”euphemisms” like: observer, trace checker, the oracle, passive monitor, arbiter,
supervisor. Tretmans (1999) and Alcalde (2006) refer to passive testing as monitoring.
Bochmann & Bellal (1989) treat passive testing as a sub-problem of active testing. Some
authors state that active and passive tests are complementary (Chen, Wu, & Chi, 2003), but,
save for examples, provide no deeper discussion of the sense of this claim.
According to Netravali et al. (2003), "the aim of passive testing is to detect faults in a system while
observing the system during normal operation, that is, without forcing the system to specialized
inputs explicitly for the purposes of testing". This is a stipulative definition – it intends to
convey a particular understanding of a concept. This illustrates the trouble with almost all
the definitions to be found in the works on passive testing – they are not the kind of
classical, Aristotelian definitions as a ”statement of the essence of things”. Hopefully, the
following discussion will help clarify the doubts.

3. Background

Two very general aspects of a system are: its internal structure (which may be hidden), and
its behaviour exhibited in contact with its environment, which is that part of the universe of
discourse that lies outside the system border. Note that a system’s border is conventional –
in principle it can be moved to contain only those internal components that are ”interesting”
from some point of view. There is a consensus on defining a behaviour of a system as a
”sequence of observable actions it performs when interacting with the environment”. (Lamport,
1989). Such behaviour is characteristic of Discrete-Event Systems (DES). This broad class of
systems includes all the systems that we discuss here.
There is a difference between a particular behaviour (a particular sequence, or a trace, of
actions) and the totality of all such behaviours a system can ever exhibit (execute). The
general role of a behavioural specification (a Spec) is to state the restrictions on system
behaviours so that they stay safe and useful. Throughout its life-cycle, a system (by
convention called an implementation – Imp) is meant to fulfil such obligations that come from
different sources. Checking whether these restrictions (in general – requirements) are
actually fulfilled is the essence of verification and validation (V&V). We understand
verification as checking (the behaviour of) a system against a design specification
(investigating whether a system has been correctly implemented), and validation as
checking a system against an arbitrary reference (also such that a system had no chance to
change in order to accomodate its requirements). V&V may proceed by formal manipulations
on mathematical models of systems, or by empirical investigation (experimentation). Testing
belongs to the latter class of V&V techniques.
Testing consists in empirically checking the ”correctness” of behaviour. It would be thus
useful to develop the understanding of incorrectness. The three crucial notions related to
incorrectness are: error, fault, and failure. We understand these notions as follows:
• an error is a human action, or lack of action, that (if not remedied) leads to ”planting” a

fault. It usually results from lack of experience or information, carelessness, neglect, etc.
• a fault is a defect (a flaw) in a system, which, when exercised, can lead to a failure. A

fault may result from a human error or environmental conditions. A system with a fault
is said to be faulty. Faultlessness is one of the generic attributes of correctness.

• a failure is a deviation from expected behaviour – any visible deviation, as we do not
consider the ”size” of a failure (this is also assumed in the standardized methodology
of conformance testing - ISO/IEC 9646).

The reader should be aware that the meanings of a ”fault” and a ”failure” are often
swapped, and an error may also be understood as an incorrect internal state. The resulting
chaos was noted and on occasion dicussed, e.g., by Randell (2003).
The generic function of testing is to detect failures. Faced with the very widespread use of the
term ”fault detection” (also in excerpts that we cite), we interpret it to mean ”failure
detection with the ensuing inference to the presence of a fault”.

4. Overview of research into passive testing

We now briefly survey the main concerns, approaches, and results of research conducted
specifically on passive testing. This research may be divided into ”epochs” (the list of
researchers’ names is given for orientation only, and is by far not exhaustive):

Engineering the Computer Science and IT150

• initial (<1980): Ayache, Diaz, Jeron;
• early (ca. 1989): von Bochmann, Dssouli; Chanson et al.;
• early (ca. 1992): Wang, Schwartz, Bouloutas, et al.;
• regular (1997): Lee, Miller et. al.; Bhargavan;
• contemporary (>2000): Cavalli et al.; Petrenko, Hallal et al.; and others.
We strongly focus on the initial and early works, as they are generally more interesting from
the meta-linguistic and conceptual point of view. For an alternative view on the history and
current state of passive testing, see (Lee et al., 2006).

4.1 The initial epoch
Ayache et al. (1979), and, in a follow-up, Diaz et al. (1994) introduce an observer for online,
run-time failure detection in a system of concurrent processes. Its intended application is for
self-checking systems. The proposed architecture is a worker-observer system, where a worker is
a product (in testing – an Iut), and a separate observer contains a representation of a
”mission” – the intended behaviour, extracted from the worker’s specification. Two
different schemes for cooperation between a worker and an observer are considered:
• explicit cooperation (Ayache et al., 1979), in which a worker is modified, or

instrumented, to inform an observer of selected state changes, at selected checkpoints;
• a ”spying” relation (Diaz et al., 1994), in which an observer is able to observe a trace of

events execured by a worker, without a worker being aware of that fact.
In fig.2 these modes of cooperation within a self-checking environment are compared with
generic passive and active testing scenarios.

Fig. 2. Relations between an observer and an observed system: a self-checking observer-
worker system with explicit cooperation (a) and implicit „spying“ relation (b); an active
tester (c); a passive tester (d)

In the case of explicit cooperation, the level (granularity) of instrumentation is adjusted to
the needs of a particular observer. The calls to an observer serve no other operational
purpose, and all the remaining operations of a worker are by definition invisible to an
observer – these are two disjoint sets of events, related only by their ”closeness” in the local
execution sequence. A common-medium Local Area Network is envisaged as a natural
environment for the implementation of the ”spying” relation (a similar observation is made

by Bochmann et al. (1989), in the context of a trace analyzer used as an arbiter). It is said that
in such environment no instrumentation of a worker is necessary (which is a simplification).
The capability to detect failures results from detecting a mismatch between the behaviour of
two subsystems. As a model of intended behaviour, in both cited works Petri nets have been
chosen – this is comparatively rare, and was later almost universally abandoned in favour of
state-machine formalisms (FSM, EFSM). Here, the net transitions are fired acording to the
occurrence of received observable events, until an event is received that does not correspond
to any fireable transition. Only the control part of behaviour is handled (no data). This is
essentially a tracking scheme that is also employed, as a homing algorithm, in later state-
based passive testers.
The observer may act in three roles: to provide the audit-trail (i.e., a sequence of decoded and
possibly stamped or counted messages / signals; a function that we would attribute to a
generic protocol monitor); for run-time checking, which amounts to passive testing (i.e., issuing
a verdict as to the validity of a trace); and for performance analysis based on the existing Petri
net scheme, where simple ”performance commands” are ascribed to transitions.
Further research problems that have been identified are: observer recovery (re-initialization
after messages are lost by the observer), using multiple cooperating observers (which were
later proposed to jointly detect a failure, or to individually detect failures of different kinds),
and using non-broadcast communication between worker(s) and observer(s) – the non-ideal
properties of such communication (loss or reordering of messages) were later addressed
both with specialized algorithms and as a general problem of testing in context.
Another approach that identifies and proposes solutions to a surprising number of issues
related to passive testing is due to Jard & Bochmann (1983). They introduce a trace checker – a
”module which observes the execution of a system under test . . . and compares its behaviour with the
formal specifications given for that system”. The contributions have fully retained their appeal.
It is noted that testing may be applied equally well to hardware-software products and to
formal objects (implementations of more abstract specifications); this observation makes it
clear that testing is not confined to a particular, very late, phase of system development, and
may be used to support development activities at any stage.
The entirely modern EFSM formalism is used to express the intended behaviour. From the
outset it is accepted that a reference specification, or rather the tested behaviour, is
nondeterministic (some much later works still only assume deterministic behaviour), and that
behaviour may be exhibited simultaneously at various ports or interaction points. Input and
output events are distinguished, and handled in a different way. The basic trace-checking
algorithm over the EFSM specification is of the classical state-tracking type – ”the trace
checker ... maintains at all stages of the analysis a list of all states in which the reference specification
may possibly be after the interactions already analysed”. It is remarkable that the algorithm is
much more sophisticated than the later approaches. It takes care of partial ordering between
the input events (messages seen travelling towards the Iut) and output events (messages
that must have been already sent by the Iut, as they are seen travelling in the opposite
direction). Some aspects of the possible observation infidelity are thus handled.
A distinction is made between on-line and off-line operation of a trace checker. The
characteristics of on-line operation (e.g., the ability to stop the execution) are discussed, thus
establishing the basic conditions for what was later to be known as Execution Monitoring.

Towards the Methodological Harmonization of Passive Testing Across ICT Communities 151

• initial (<1980): Ayache, Diaz, Jeron;
• early (ca. 1989): von Bochmann, Dssouli; Chanson et al.;
• early (ca. 1992): Wang, Schwartz, Bouloutas, et al.;
• regular (1997): Lee, Miller et. al.; Bhargavan;
• contemporary (>2000): Cavalli et al.; Petrenko, Hallal et al.; and others.
We strongly focus on the initial and early works, as they are generally more interesting from
the meta-linguistic and conceptual point of view. For an alternative view on the history and
current state of passive testing, see (Lee et al., 2006).

4.1 The initial epoch
Ayache et al. (1979), and, in a follow-up, Diaz et al. (1994) introduce an observer for online,
run-time failure detection in a system of concurrent processes. Its intended application is for
self-checking systems. The proposed architecture is a worker-observer system, where a worker is
a product (in testing – an Iut), and a separate observer contains a representation of a
”mission” – the intended behaviour, extracted from the worker’s specification. Two
different schemes for cooperation between a worker and an observer are considered:
• explicit cooperation (Ayache et al., 1979), in which a worker is modified, or

instrumented, to inform an observer of selected state changes, at selected checkpoints;
• a ”spying” relation (Diaz et al., 1994), in which an observer is able to observe a trace of

events execured by a worker, without a worker being aware of that fact.
In fig.2 these modes of cooperation within a self-checking environment are compared with
generic passive and active testing scenarios.

Fig. 2. Relations between an observer and an observed system: a self-checking observer-
worker system with explicit cooperation (a) and implicit „spying“ relation (b); an active
tester (c); a passive tester (d)

In the case of explicit cooperation, the level (granularity) of instrumentation is adjusted to
the needs of a particular observer. The calls to an observer serve no other operational
purpose, and all the remaining operations of a worker are by definition invisible to an
observer – these are two disjoint sets of events, related only by their ”closeness” in the local
execution sequence. A common-medium Local Area Network is envisaged as a natural
environment for the implementation of the ”spying” relation (a similar observation is made

by Bochmann et al. (1989), in the context of a trace analyzer used as an arbiter). It is said that
in such environment no instrumentation of a worker is necessary (which is a simplification).
The capability to detect failures results from detecting a mismatch between the behaviour of
two subsystems. As a model of intended behaviour, in both cited works Petri nets have been
chosen – this is comparatively rare, and was later almost universally abandoned in favour of
state-machine formalisms (FSM, EFSM). Here, the net transitions are fired acording to the
occurrence of received observable events, until an event is received that does not correspond
to any fireable transition. Only the control part of behaviour is handled (no data). This is
essentially a tracking scheme that is also employed, as a homing algorithm, in later state-
based passive testers.
The observer may act in three roles: to provide the audit-trail (i.e., a sequence of decoded and
possibly stamped or counted messages / signals; a function that we would attribute to a
generic protocol monitor); for run-time checking, which amounts to passive testing (i.e., issuing
a verdict as to the validity of a trace); and for performance analysis based on the existing Petri
net scheme, where simple ”performance commands” are ascribed to transitions.
Further research problems that have been identified are: observer recovery (re-initialization
after messages are lost by the observer), using multiple cooperating observers (which were
later proposed to jointly detect a failure, or to individually detect failures of different kinds),
and using non-broadcast communication between worker(s) and observer(s) – the non-ideal
properties of such communication (loss or reordering of messages) were later addressed
both with specialized algorithms and as a general problem of testing in context.
Another approach that identifies and proposes solutions to a surprising number of issues
related to passive testing is due to Jard & Bochmann (1983). They introduce a trace checker – a
”module which observes the execution of a system under test . . . and compares its behaviour with the
formal specifications given for that system”. The contributions have fully retained their appeal.
It is noted that testing may be applied equally well to hardware-software products and to
formal objects (implementations of more abstract specifications); this observation makes it
clear that testing is not confined to a particular, very late, phase of system development, and
may be used to support development activities at any stage.
The entirely modern EFSM formalism is used to express the intended behaviour. From the
outset it is accepted that a reference specification, or rather the tested behaviour, is
nondeterministic (some much later works still only assume deterministic behaviour), and that
behaviour may be exhibited simultaneously at various ports or interaction points. Input and
output events are distinguished, and handled in a different way. The basic trace-checking
algorithm over the EFSM specification is of the classical state-tracking type – ”the trace
checker ... maintains at all stages of the analysis a list of all states in which the reference specification
may possibly be after the interactions already analysed”. It is remarkable that the algorithm is
much more sophisticated than the later approaches. It takes care of partial ordering between
the input events (messages seen travelling towards the Iut) and output events (messages
that must have been already sent by the Iut, as they are seen travelling in the opposite
direction). Some aspects of the possible observation infidelity are thus handled.
A distinction is made between on-line and off-line operation of a trace checker. The
characteristics of on-line operation (e.g., the ability to stop the execution) are discussed, thus
establishing the basic conditions for what was later to be known as Execution Monitoring.

Engineering the Computer Science and IT152

A trace checker is envisaged as consisting of two parts: reference specification in the form of
”loadable” data, and a universal mechanism that is able to traverse the specification. This
distinction resembles the division into oracle information and oracle procedure (see sec. 6.1).

4.2 Early works
Surprisingly, one of the contexts of early research on passive testing was actually active
testing, in particular – conformance testing of telecommunications protocol implementations
that was being developed at that time (ISO/IEC 9646). It was taken for granted that the
automatic verdict-assignment functionality (the “oracle”) was built into conformance test
cases, although it was also accepted that some non-standard, ad-hoc or “exploratory” tests
may not specify any verdicts, being just a specification of vectors of test stimuli (Bochmann
et al., 1991). In the TTCN test language (TTCN-2 at the time), test cases are generally
specified as trees of events, with leaves decorated with verdicts: Pass if the observed
behaviour – trace of events is valid (i.e., correct w.r.t. a reference specification) and
corresponds to a test purpose (i.e., it is as expected by a given test case); Fail if a trace is
invalid, and Inc if a trace is valid, but not expected.

Fig. 3. The trace analyzer approach: (a) for conformance testing; (b) for arbitration testing -
symmetric extension of conformance; (c) for arbitration testing - the original formulation

It was noted that the complexity of test cases is, to a large extent, due to the necessity to take
into account all the sequences that lead to verdicts other than Pass. The solution was sought
in separating some verdict-assignment functionality (but not all such functionality, as in the
general oracle problem). An active tester is thus decomposed into a ”lean” tester (this quite
adequate term has originally not been used), which only drives the Iut towards exhibiting
an intended correct behaviour up to a Pass, and a trace analyzer, which issues a Fail if an
invalid trace is detected (fig.3a). Bochmann & Bellal (1989) ”take the view that the selection
[and application] of test cases should be separated from the problem of deciding whether the IUT
behaves according to the specification for a particular test case”.
In (W vong, 1990; Ziegler & Miskolczi, 1996) two contexts of use of a trace analyzer are
identified: as a component of an active tester, and as a stand-alone passive tester. In later
works it is often held that ”one of the problems with passive testing is that it is impossible to issue
a Pass verdict” (Tabourier et al., 1999). If ”stand-alone” passive testing is considered as a
descendant of the trace analyzer approach, then it is easy to see that it was never meant to
issue such verdicts. Another view on Pass and Fail verdicts could be ”borrowed” from the
theories of synchronous active testing, where a verdict is issued at every step (after every
observation), and the result of testing is a sequence of Pass verdicts ending with a single
Fail. In this interpretation, there is nothing that would prohibit a passive tester from issuing
the Pass verdicts (meaning: ”passed so far”).
A trace that corresponds to a test purpose should be valid; if not, then a test case is defective.
The ”bonus” functionality of a trace analyzer coupled with the active test component is to

verify, at run-time, whether this is always the case. If, simultaneously, the active component
of a tester issues a Pass and a trace analyzer issues a Fail, then a defect (fault) in a test case is
flagged.
Technically, the original von Bochmann’s trace analyzer uses a reference specification
presented in the process-algebraic form (written in LOTOS), and the mechanism of the
analyzer uses the existing LOTOS interpreter. In case of a non-deterministic specification,
backtracking is necessary, which makes the approach generally unsuitable for on-line use. In
other works from roughly the same period (and also in later works by von Bochmann)
automata-based specifications are used, and on-line traversal of these specifications (even
nondeterministic ones) poses no unsolvable problems.
A variant of the trace analyzer approach was proposed for arbitration testing (fig.3 b and c)
– the simultaneous testing of two interoperating implementations, in order to decide which
of the two is faulty. In (Bochmann et al., 1989) arbitration testing was described as a
technique of interoperability testing, but interoperability testing has acquired, at least in
telecommunications (ETSI EG 202 237, 2007), a particular meaning, not entirely consistent
with arbitration testing as it is understood here. The arbiter is envisaged to be composed of
two quasi-independent trace analyzers, each equipped with a reference specification of the
opposite ”side”. It provides not only failure detection in a compound system, but also a
rudimentary form of fault localization, without involving any specialized localization
algorithms. A similar structure is also considered by Brzeziński (2005).
Another avenue of early research was taken by Chanson & Lo (1991), who proposed the
extension of a conventional monitor (a passive device for decoding, filtering, and presenting
messages exchanged at a certain physical interface) with ”the ability to detect protocol
violations as they occur (passive testing)”. The resulting passive monitor implements the
reference specification for the protocol entities of a hierarchical protocol stack, one FSM
machine per entity / layer. The passive testing mechanism is fairly rudimentary. It is
implemented directly, as a cascaded switch statement, and requires explicit synchronization
with the state of the tested entity (waiting for the period of inactivity or for the restart packet
- both methods are protocol-specific, and thus not generally applicable). The idea of a
flexible, modular signalling monitor that can be upgraded to a passive tester was pursued in
(Brzeziński et al., 1996; Brzeziński, 1997, 2005). Recently, the same team developed the idea
and a model of a modular tester based on the standardized TTCN-3 technology aimed at
active testing (ETSI ES 201 873, 2008), which can be ”downgraded” to the passive testing
functionality and changed into a universal signalling monitor. No traces of similar research
could be found elsewhere.
The origin of many early works on passive testing has been fault management in complex
systems in general, and communications systems in particular. The aim of Bouloutas et al.
(1992) has been to construct an observer (also called a supervisor) that would detect a change
of behaviour of a system modelled as a single FSM machine. Both the correct behaviour and
the anticipated incorrect behaviour is given, the a priori knowledge of a fault class is thus
assumed (which is not the case for von Bochmann’s trace analyzer). It was noticed that, in
order to detect any possible fault, the observer would need to be the ”duplicate of the
system”.
The specific, distinguishing idea has been to design a simple observer that is true (i.e., can
indeed detect a failure), but only observes traces restricted to the smallest possible subset of
events from the alphabet of Iut. A trace observed is thus a restriction, or projection, of the

Towards the Methodological Harmonization of Passive Testing Across ICT Communities 153

A trace checker is envisaged as consisting of two parts: reference specification in the form of
”loadable” data, and a universal mechanism that is able to traverse the specification. This
distinction resembles the division into oracle information and oracle procedure (see sec. 6.1).

4.2 Early works
Surprisingly, one of the contexts of early research on passive testing was actually active
testing, in particular – conformance testing of telecommunications protocol implementations
that was being developed at that time (ISO/IEC 9646). It was taken for granted that the
automatic verdict-assignment functionality (the “oracle”) was built into conformance test
cases, although it was also accepted that some non-standard, ad-hoc or “exploratory” tests
may not specify any verdicts, being just a specification of vectors of test stimuli (Bochmann
et al., 1991). In the TTCN test language (TTCN-2 at the time), test cases are generally
specified as trees of events, with leaves decorated with verdicts: Pass if the observed
behaviour – trace of events is valid (i.e., correct w.r.t. a reference specification) and
corresponds to a test purpose (i.e., it is as expected by a given test case); Fail if a trace is
invalid, and Inc if a trace is valid, but not expected.

Fig. 3. The trace analyzer approach: (a) for conformance testing; (b) for arbitration testing -
symmetric extension of conformance; (c) for arbitration testing - the original formulation

It was noted that the complexity of test cases is, to a large extent, due to the necessity to take
into account all the sequences that lead to verdicts other than Pass. The solution was sought
in separating some verdict-assignment functionality (but not all such functionality, as in the
general oracle problem). An active tester is thus decomposed into a ”lean” tester (this quite
adequate term has originally not been used), which only drives the Iut towards exhibiting
an intended correct behaviour up to a Pass, and a trace analyzer, which issues a Fail if an
invalid trace is detected (fig.3a). Bochmann & Bellal (1989) ”take the view that the selection
[and application] of test cases should be separated from the problem of deciding whether the IUT
behaves according to the specification for a particular test case”.
In (W vong, 1990; Ziegler & Miskolczi, 1996) two contexts of use of a trace analyzer are
identified: as a component of an active tester, and as a stand-alone passive tester. In later
works it is often held that ”one of the problems with passive testing is that it is impossible to issue
a Pass verdict” (Tabourier et al., 1999). If ”stand-alone” passive testing is considered as a
descendant of the trace analyzer approach, then it is easy to see that it was never meant to
issue such verdicts. Another view on Pass and Fail verdicts could be ”borrowed” from the
theories of synchronous active testing, where a verdict is issued at every step (after every
observation), and the result of testing is a sequence of Pass verdicts ending with a single
Fail. In this interpretation, there is nothing that would prohibit a passive tester from issuing
the Pass verdicts (meaning: ”passed so far”).
A trace that corresponds to a test purpose should be valid; if not, then a test case is defective.
The ”bonus” functionality of a trace analyzer coupled with the active test component is to

verify, at run-time, whether this is always the case. If, simultaneously, the active component
of a tester issues a Pass and a trace analyzer issues a Fail, then a defect (fault) in a test case is
flagged.
Technically, the original von Bochmann’s trace analyzer uses a reference specification
presented in the process-algebraic form (written in LOTOS), and the mechanism of the
analyzer uses the existing LOTOS interpreter. In case of a non-deterministic specification,
backtracking is necessary, which makes the approach generally unsuitable for on-line use. In
other works from roughly the same period (and also in later works by von Bochmann)
automata-based specifications are used, and on-line traversal of these specifications (even
nondeterministic ones) poses no unsolvable problems.
A variant of the trace analyzer approach was proposed for arbitration testing (fig.3 b and c)
– the simultaneous testing of two interoperating implementations, in order to decide which
of the two is faulty. In (Bochmann et al., 1989) arbitration testing was described as a
technique of interoperability testing, but interoperability testing has acquired, at least in
telecommunications (ETSI EG 202 237, 2007), a particular meaning, not entirely consistent
with arbitration testing as it is understood here. The arbiter is envisaged to be composed of
two quasi-independent trace analyzers, each equipped with a reference specification of the
opposite ”side”. It provides not only failure detection in a compound system, but also a
rudimentary form of fault localization, without involving any specialized localization
algorithms. A similar structure is also considered by Brzeziński (2005).
Another avenue of early research was taken by Chanson & Lo (1991), who proposed the
extension of a conventional monitor (a passive device for decoding, filtering, and presenting
messages exchanged at a certain physical interface) with ”the ability to detect protocol
violations as they occur (passive testing)”. The resulting passive monitor implements the
reference specification for the protocol entities of a hierarchical protocol stack, one FSM
machine per entity / layer. The passive testing mechanism is fairly rudimentary. It is
implemented directly, as a cascaded switch statement, and requires explicit synchronization
with the state of the tested entity (waiting for the period of inactivity or for the restart packet
- both methods are protocol-specific, and thus not generally applicable). The idea of a
flexible, modular signalling monitor that can be upgraded to a passive tester was pursued in
(Brzeziński et al., 1996; Brzeziński, 1997, 2005). Recently, the same team developed the idea
and a model of a modular tester based on the standardized TTCN-3 technology aimed at
active testing (ETSI ES 201 873, 2008), which can be ”downgraded” to the passive testing
functionality and changed into a universal signalling monitor. No traces of similar research
could be found elsewhere.
The origin of many early works on passive testing has been fault management in complex
systems in general, and communications systems in particular. The aim of Bouloutas et al.
(1992) has been to construct an observer (also called a supervisor) that would detect a change
of behaviour of a system modelled as a single FSM machine. Both the correct behaviour and
the anticipated incorrect behaviour is given, the a priori knowledge of a fault class is thus
assumed (which is not the case for von Bochmann’s trace analyzer). It was noticed that, in
order to detect any possible fault, the observer would need to be the ”duplicate of the
system”.
The specific, distinguishing idea has been to design a simple observer that is true (i.e., can
indeed detect a failure), but only observes traces restricted to the smallest possible subset of
events from the alphabet of Iut. A trace observed is thus a restriction, or projection, of the

Engineering the Computer Science and IT154

original trace of the Iut; the projection operation on traces is often used in modern
approaches to formal testing. The projection takes place in a filter placed between the
observer and the Iut. Both the observer and the filter are parts of a ”supervisor”, or a test
system. The rationale for filtering a trace is the minimization of cost and resources (e.g.,
bandwidth); it is implicitly assumed that the cost of executing the observer on-line is higher
than the cost of filtering, and for an efficient and workable observer a most restrictive filter
is calculated.
Typically for the FSM model, behaviour is defined as a machine (trace) language: a set of
words generated by the Iut, and accepted by the observer. Correctness is then defined as
language (trace) inclusion.
The proposed test architecture can be translated to testing in context (fig.5), but, unlike the
standard exposition of the testing-in-context problem (Heerink & Brinksma, 1995), here the
context component is not given or assumed – it is intentionally computed. Normally, the
testing context models or reflects the impairment of the level of control and observability of
a Iut. A filter is a simple kind of context, which only drops messages according to a
predicate, and never re-orders them. No consideration is given to genuine observational
infidelity that hits messages before they reach the filter.
The observer executes a state tracking algorithm: the state of the observer FSM is updated
with each event (symbol), and a failure is reported when a symbol is not acceptable in the
current state. Apparently, the algorithm requires the setting of an initial state and requires a
deterministic observer FSM; both restrictions were later lifted in the generic homing
algorithm – one of the core algorithms of the current passive testing toolbox.
In (Wang & Schwartz, 1993), the FSM observer, of general rationale and features as in
(Bouloutas et al., 1992), is decomposed into a number of very small, two-state FSM observers
that operate jointly and synchronously. Combinations of states of all the decomposed
observers unambiguously correspond to particular states in the original observer. Normally,
the mini-observers obtain the copies of all the consecutive events of a trace, e.g., by a
broadcast mechanism. However, it is also conceivable to feed the individual observers with
differing projections of a trace (different sets of events). A mini-observer issues a Fail if it
does not accept an event in its current state. A joint verdict is issued by a central decision
element, basing on the vector of individual verdicts of all the observers. A word is accepted
if it is accepted (i.e., not rejected) by all the mini-observers.

Fig. 4. Generic passive tester - expanded architecture

A set of mini-observers works in parallel, performing sub-tasks that may not be
independently meaningful, and their verdicts are composed according to a simple boolean
condition, to get a stream of Accept / Reject verdicts, synchronously with the incoming
events. This architecture may be expanded to a building block, or ”slice”, of a generic
passive tester, as proposed in fig.4. In this architecture, each observer may perform a
separately meaningful observation (e.g., pertaining to a particular property of behaviour);

alternatively, each observer may result from a technical decomposition, as in (Wang &
Schwartz, 1993). Each observer is fed via a separate projection or context component, and
these components may ”read” the same or altogether different traces; in the approach of
Wang and Schwartz, the context components are empty and read the same trace (effectively,
they implement a broadcast mechanism). The individual verdicts of observers are handled
by a decision component. This handling may amount to executing a logical operation upon
the verdicts to obtain a single final verdict. However, it may also consist in ”packing” or
”serializing” the individual verdicts. In both cases, the result of the operation of the ”slice”
of a passive tester is a sequence of verdicts – a verdict trace. This trace may be input to the
next ”slice” of a hierarchical passive tester, which will issue meta-verdicts: verdicts on
verdicts, etc.

5. Sub-problems and their techniques

5.1 Core and additional functionality of testing
The core functionality of both active and passive testing is failure detection. The root cause of
a failure is a fault (a defect). It resides somewhere within a system – the area (a component)
in which it resides can in principle be located (fault localization), and the fault itself can be
pointed to (fault identification). What can be located and pointed to ultimately depends on
the means of expression – on the available description of the system. For fault localization, a
system must be perceived as a collection of separate components / modules that are the
domain of a fault localization function: . For a system at the
coding stage, a fault may consist in the changed order of operations within a particular line
of code. For a system at the requirements stage, this would be meaningless, as the
requirements language does not ”know” anything about lines of code.
What fault localization and identification belong with, is known under different names, e.g.,
debugging, or diagnosis, where shallow diagnosis corresponds to fault localization, and deep
diagnosis – to fault identification (Lamperti & Zanella, 2003). Diagnosis is the example of
abductive reasoning, which seeks inferences to the best explanation, given different
hypotheses. A localized and identified fault is thus a possible explanation.
Diagnosis is different from testing itself – it has different aims and dynamics. This view is
corroborated by many authors, e.g., ”the main objective (of testing) is to detect errors. . .
Activities like pinpointing and correcting faults are out of scope of testing and are called debugging”
(Machado, 2000); ”The aim of a testing activity is to detect some faults in a program. The use of the
verb detect is important here, since locating and correcting the faults are generally regarded as out of
the scope of testing: they require different data and techniques” (Gaudel, 1995). However, the
additional functionality of fault localization and identification often gets conflated with
testing, because the distinction is immaterial from the point of view of a loop of activities of
which testing is a part. As Sunshine (1979) says: ”When an error is found by some verification
technique, the cause must still be determined”.
The tests designed particularly with fault localization / identification are called diagnostic
tests (Belhassine-Cherif & Ghedamsi, 2000). The alternative is to conduct additional
abductive reasoning basing on the results of ”standard” tests. It is also possible to pre-
encode the diagnostic information in a test; a test verdict is then extended to reveal this
information.

Towards the Methodological Harmonization of Passive Testing Across ICT Communities 155

original trace of the Iut; the projection operation on traces is often used in modern
approaches to formal testing. The projection takes place in a filter placed between the
observer and the Iut. Both the observer and the filter are parts of a ”supervisor”, or a test
system. The rationale for filtering a trace is the minimization of cost and resources (e.g.,
bandwidth); it is implicitly assumed that the cost of executing the observer on-line is higher
than the cost of filtering, and for an efficient and workable observer a most restrictive filter
is calculated.
Typically for the FSM model, behaviour is defined as a machine (trace) language: a set of
words generated by the Iut, and accepted by the observer. Correctness is then defined as
language (trace) inclusion.
The proposed test architecture can be translated to testing in context (fig.5), but, unlike the
standard exposition of the testing-in-context problem (Heerink & Brinksma, 1995), here the
context component is not given or assumed – it is intentionally computed. Normally, the
testing context models or reflects the impairment of the level of control and observability of
a Iut. A filter is a simple kind of context, which only drops messages according to a
predicate, and never re-orders them. No consideration is given to genuine observational
infidelity that hits messages before they reach the filter.
The observer executes a state tracking algorithm: the state of the observer FSM is updated
with each event (symbol), and a failure is reported when a symbol is not acceptable in the
current state. Apparently, the algorithm requires the setting of an initial state and requires a
deterministic observer FSM; both restrictions were later lifted in the generic homing
algorithm – one of the core algorithms of the current passive testing toolbox.
In (Wang & Schwartz, 1993), the FSM observer, of general rationale and features as in
(Bouloutas et al., 1992), is decomposed into a number of very small, two-state FSM observers
that operate jointly and synchronously. Combinations of states of all the decomposed
observers unambiguously correspond to particular states in the original observer. Normally,
the mini-observers obtain the copies of all the consecutive events of a trace, e.g., by a
broadcast mechanism. However, it is also conceivable to feed the individual observers with
differing projections of a trace (different sets of events). A mini-observer issues a Fail if it
does not accept an event in its current state. A joint verdict is issued by a central decision
element, basing on the vector of individual verdicts of all the observers. A word is accepted
if it is accepted (i.e., not rejected) by all the mini-observers.

Fig. 4. Generic passive tester - expanded architecture

A set of mini-observers works in parallel, performing sub-tasks that may not be
independently meaningful, and their verdicts are composed according to a simple boolean
condition, to get a stream of Accept / Reject verdicts, synchronously with the incoming
events. This architecture may be expanded to a building block, or ”slice”, of a generic
passive tester, as proposed in fig.4. In this architecture, each observer may perform a
separately meaningful observation (e.g., pertaining to a particular property of behaviour);

alternatively, each observer may result from a technical decomposition, as in (Wang &
Schwartz, 1993). Each observer is fed via a separate projection or context component, and
these components may ”read” the same or altogether different traces; in the approach of
Wang and Schwartz, the context components are empty and read the same trace (effectively,
they implement a broadcast mechanism). The individual verdicts of observers are handled
by a decision component. This handling may amount to executing a logical operation upon
the verdicts to obtain a single final verdict. However, it may also consist in ”packing” or
”serializing” the individual verdicts. In both cases, the result of the operation of the ”slice”
of a passive tester is a sequence of verdicts – a verdict trace. This trace may be input to the
next ”slice” of a hierarchical passive tester, which will issue meta-verdicts: verdicts on
verdicts, etc.

5. Sub-problems and their techniques

5.1 Core and additional functionality of testing
The core functionality of both active and passive testing is failure detection. The root cause of
a failure is a fault (a defect). It resides somewhere within a system – the area (a component)
in which it resides can in principle be located (fault localization), and the fault itself can be
pointed to (fault identification). What can be located and pointed to ultimately depends on
the means of expression – on the available description of the system. For fault localization, a
system must be perceived as a collection of separate components / modules that are the
domain of a fault localization function: . For a system at the
coding stage, a fault may consist in the changed order of operations within a particular line
of code. For a system at the requirements stage, this would be meaningless, as the
requirements language does not ”know” anything about lines of code.
What fault localization and identification belong with, is known under different names, e.g.,
debugging, or diagnosis, where shallow diagnosis corresponds to fault localization, and deep
diagnosis – to fault identification (Lamperti & Zanella, 2003). Diagnosis is the example of
abductive reasoning, which seeks inferences to the best explanation, given different
hypotheses. A localized and identified fault is thus a possible explanation.
Diagnosis is different from testing itself – it has different aims and dynamics. This view is
corroborated by many authors, e.g., ”the main objective (of testing) is to detect errors. . .
Activities like pinpointing and correcting faults are out of scope of testing and are called debugging”
(Machado, 2000); ”The aim of a testing activity is to detect some faults in a program. The use of the
verb detect is important here, since locating and correcting the faults are generally regarded as out of
the scope of testing: they require different data and techniques” (Gaudel, 1995). However, the
additional functionality of fault localization and identification often gets conflated with
testing, because the distinction is immaterial from the point of view of a loop of activities of
which testing is a part. As Sunshine (1979) says: ”When an error is found by some verification
technique, the cause must still be determined”.
The tests designed particularly with fault localization / identification are called diagnostic
tests (Belhassine-Cherif & Ghedamsi, 2000). The alternative is to conduct additional
abductive reasoning basing on the results of ”standard” tests. It is also possible to pre-
encode the diagnostic information in a test; a test verdict is then extended to reveal this
information.

Engineering the Computer Science and IT156

In line with the common conflation of testing and diagnosis, localization and identification
of faults is also researched using passive testing techniques, eg., using backward tracing -
usually the off-line procedure of going backwards with the events of a recorded trace (Miller
& Arisha, 2001a).

5.2 Continuous vs campaign-oriented testing
Testing (any kind of testing), as a particular technique of verification/validation, is
necessarily an element of a loop of activities undertaken basing on test results. These
activities are generally aimed at achieving or preserving agreed properties. The dynamics of
this loop may vary, from an open loop (testing ”out of curiosity” or solely for
documentation purposes), through a long-term development strategy, redesign or ”bug
fixes” after failed conformance or interoperability tests, up to real-time on-line control
(”reactive monitoring”). The requirements of a particular feedback loop dictate how often one
should test, and how fast should the test results be available, relative to the observation of a
particular behaviour. The need for continuous testing throughout the operational life-time of
a product was one of the driving forces of research into passive testing. Continuous testing,
as a concept, is in opposition to a finite test campaign, which consists in executing a test suite
– a finite set of test cases.
The implicit, and usually neglected assumption of campaign-oriented testing is that the
”objective” correctness of the Iut does not change during the test campaign, which also means
that any development activities that could introduce or remove a fault are suspended. This
alone (and not any particular model of a system life-cycle) justifies associating a test
campaign with a phase of a system life-cycle. After the campaign-oriented testing is finished,
the verdict is assumed to hold. This is inconsistent with real-life experience, which proves
that a product in use, and in particular – a complex component of a larger system, does not
preserve its correctness indefinitely. In operation, it may become faulty because of hardware
defects, changes in the environment, and accumulated small modifications.
In continuous testing the assumption is that the correctness status of the Iut may change at
any time. If the assumption is that the Iut is initially correct (having passed the test
campaign), then the ensuing continuous testing is aimed primarily at detecting when the Iut
becomes faulty.

5.3 On-line vs off-line testing
The idea of on-line testing is that any execution of a test pertains to behaviour that the Iut
genuinely exhibits during the test experiment, and the verdicts are issued during that test
experiment. In off-line testing (also referred to as post-mortem testing), the behaviour of an Iut
is captured and represented by some structure, which can then be assessed by a tester at
will, as if this behaviour were exhibited ”now”.
An entirely different understanding of these terms is also possible, where ”on-line” refers to
Iut being ”on-line” (i.e., serving its operational mission) during the testing, and ”off-line” –
to Iut being taken out-of-service for the tests. This latter understanding is sometimes used to
characterize the distinction between passive and active testing; however, in this role it is
misleading - we have shown that passive testing can serve as an element of active tests (with
Iut in a fully controlled and “off-line” environment), and some active tests actually require

the Iut to remain ”on-line” (e.g., to ”prime” it with some background traffic that would be
cumbersome to generate artificially).
Yet another alternative understanding pertains to on-line (or, synonymously, on-the-fly) vs
off-line active testing (Vries & Tretmans, 2000). Off-line refers here to pre-computing
(generating) the tests before they are executed, while on-line means that the tests are being
generated from a reference specification, event by event, while they are being executed.
Such active tests may be performed indefinitely (continuously), which also shows that
continuous testing is not the ”essence” of passive testing.
Having identified the possible sources of misunderstanding, we stay with the first
interpretation. Technically, a ”trace may be immediately analyzed by an observer or stocked in
memory for later treatment” (Dssouli & Fournier, 1991). This corresponds to on-line vs off-line
use of a passive tester. To consider the particular aspects of this distinction, we assume a
sequential passive tester, which reads each event of a trace exactly once, in a strict order of
their appearance in a trace, with no look-ahead and no look-back; this seemingly obvious
general mode of operation is not the only one – another possibility will also be considered.
Operating on-line, a sequential passive tester must be prepared to handle the observed
events as they appear, indefinitely. If each event is handled separately, then its processing
should end before the next event arrives – a tester should be fast enough. “Technical”
buffering of events is conceivable, but it should be borne in mind that, in certain extreme
cases, a verdict must be issued quasi-immediately, i.e., before the next event occurs. Some
testing algorithms, e.g., those dealing with observational infidelity, process an event in
relation to other events occurring within a time window or event window (containing a
given number of events). In this case, a verdict may be delayed until this (sliding, and
bounded) window expires. However, in any case, the on-line tester is not allowed to
accumulate any unprocessed tasks. The effectiveness of on-line testing is an important
research topic. The general advice, due to Kim (2007), is ”to apply any complex semantic
analysis of the specification before testing and minimizing on-line processing work during the passive
testing”. Similar observations are made by Brzeziński & Maliński (2006), who explore the
possibility of transforming a reference specification to a form that is more efficient at run-
time, while preserving the basic testing algorithm.
It is often said that an on-line passive tester is naturally able, without any modifications, to
operate off-line. This statement is true for purely logical passive testing, in which the only
necessary information is a sequence of events. For those approaches to passive testing that
use time-dependent algorithms, e.g., to deal with observational infidelity, it is necessary ”to
record, within the trace file, the real time of each interaction in the form of a time stamp” (Bochmann
et al., 1989). To use the on-line tester in the off-line mode, it is then necessary to ”replay” a
recorded trace. The re-play mechanism would use the timing information to reconstruct the
relative moments of presenting events at the interface of a passive tester. However, for a
day’s or week’s trace, its repeated analysis would obviously be impractical (it would take a
day, or a week). To overcome this obstacle, the tester should be modified to read the timing
information along with the events, and to explicitly use this information in the testing
algorithm. The advantage is two-fold: a trace could be analyzed much faster, or a tester
could take as long as necessary if a computationally expensive algorithm does not keep up
with the dynamics of the original trace.
An entirely different approach to off-line analysis of behaviour is based on modelling the
collected (observed) traces as automata, expressing the required properties of an Iut as

Towards the Methodological Harmonization of Passive Testing Across ICT Communities 157

In line with the common conflation of testing and diagnosis, localization and identification
of faults is also researched using passive testing techniques, eg., using backward tracing -
usually the off-line procedure of going backwards with the events of a recorded trace (Miller
& Arisha, 2001a).

5.2 Continuous vs campaign-oriented testing
Testing (any kind of testing), as a particular technique of verification/validation, is
necessarily an element of a loop of activities undertaken basing on test results. These
activities are generally aimed at achieving or preserving agreed properties. The dynamics of
this loop may vary, from an open loop (testing ”out of curiosity” or solely for
documentation purposes), through a long-term development strategy, redesign or ”bug
fixes” after failed conformance or interoperability tests, up to real-time on-line control
(”reactive monitoring”). The requirements of a particular feedback loop dictate how often one
should test, and how fast should the test results be available, relative to the observation of a
particular behaviour. The need for continuous testing throughout the operational life-time of
a product was one of the driving forces of research into passive testing. Continuous testing,
as a concept, is in opposition to a finite test campaign, which consists in executing a test suite
– a finite set of test cases.
The implicit, and usually neglected assumption of campaign-oriented testing is that the
”objective” correctness of the Iut does not change during the test campaign, which also means
that any development activities that could introduce or remove a fault are suspended. This
alone (and not any particular model of a system life-cycle) justifies associating a test
campaign with a phase of a system life-cycle. After the campaign-oriented testing is finished,
the verdict is assumed to hold. This is inconsistent with real-life experience, which proves
that a product in use, and in particular – a complex component of a larger system, does not
preserve its correctness indefinitely. In operation, it may become faulty because of hardware
defects, changes in the environment, and accumulated small modifications.
In continuous testing the assumption is that the correctness status of the Iut may change at
any time. If the assumption is that the Iut is initially correct (having passed the test
campaign), then the ensuing continuous testing is aimed primarily at detecting when the Iut
becomes faulty.

5.3 On-line vs off-line testing
The idea of on-line testing is that any execution of a test pertains to behaviour that the Iut
genuinely exhibits during the test experiment, and the verdicts are issued during that test
experiment. In off-line testing (also referred to as post-mortem testing), the behaviour of an Iut
is captured and represented by some structure, which can then be assessed by a tester at
will, as if this behaviour were exhibited ”now”.
An entirely different understanding of these terms is also possible, where ”on-line” refers to
Iut being ”on-line” (i.e., serving its operational mission) during the testing, and ”off-line” –
to Iut being taken out-of-service for the tests. This latter understanding is sometimes used to
characterize the distinction between passive and active testing; however, in this role it is
misleading - we have shown that passive testing can serve as an element of active tests (with
Iut in a fully controlled and “off-line” environment), and some active tests actually require

the Iut to remain ”on-line” (e.g., to ”prime” it with some background traffic that would be
cumbersome to generate artificially).
Yet another alternative understanding pertains to on-line (or, synonymously, on-the-fly) vs
off-line active testing (Vries & Tretmans, 2000). Off-line refers here to pre-computing
(generating) the tests before they are executed, while on-line means that the tests are being
generated from a reference specification, event by event, while they are being executed.
Such active tests may be performed indefinitely (continuously), which also shows that
continuous testing is not the ”essence” of passive testing.
Having identified the possible sources of misunderstanding, we stay with the first
interpretation. Technically, a ”trace may be immediately analyzed by an observer or stocked in
memory for later treatment” (Dssouli & Fournier, 1991). This corresponds to on-line vs off-line
use of a passive tester. To consider the particular aspects of this distinction, we assume a
sequential passive tester, which reads each event of a trace exactly once, in a strict order of
their appearance in a trace, with no look-ahead and no look-back; this seemingly obvious
general mode of operation is not the only one – another possibility will also be considered.
Operating on-line, a sequential passive tester must be prepared to handle the observed
events as they appear, indefinitely. If each event is handled separately, then its processing
should end before the next event arrives – a tester should be fast enough. “Technical”
buffering of events is conceivable, but it should be borne in mind that, in certain extreme
cases, a verdict must be issued quasi-immediately, i.e., before the next event occurs. Some
testing algorithms, e.g., those dealing with observational infidelity, process an event in
relation to other events occurring within a time window or event window (containing a
given number of events). In this case, a verdict may be delayed until this (sliding, and
bounded) window expires. However, in any case, the on-line tester is not allowed to
accumulate any unprocessed tasks. The effectiveness of on-line testing is an important
research topic. The general advice, due to Kim (2007), is ”to apply any complex semantic
analysis of the specification before testing and minimizing on-line processing work during the passive
testing”. Similar observations are made by Brzeziński & Maliński (2006), who explore the
possibility of transforming a reference specification to a form that is more efficient at run-
time, while preserving the basic testing algorithm.
It is often said that an on-line passive tester is naturally able, without any modifications, to
operate off-line. This statement is true for purely logical passive testing, in which the only
necessary information is a sequence of events. For those approaches to passive testing that
use time-dependent algorithms, e.g., to deal with observational infidelity, it is necessary ”to
record, within the trace file, the real time of each interaction in the form of a time stamp” (Bochmann
et al., 1989). To use the on-line tester in the off-line mode, it is then necessary to ”replay” a
recorded trace. The re-play mechanism would use the timing information to reconstruct the
relative moments of presenting events at the interface of a passive tester. However, for a
day’s or week’s trace, its repeated analysis would obviously be impractical (it would take a
day, or a week). To overcome this obstacle, the tester should be modified to read the timing
information along with the events, and to explicitly use this information in the testing
algorithm. The advantage is two-fold: a trace could be analyzed much faster, or a tester
could take as long as necessary if a computationally expensive algorithm does not keep up
with the dynamics of the original trace.
An entirely different approach to off-line analysis of behaviour is based on modelling the
collected (observed) traces as automata, expressing the required properties of an Iut as

Engineering the Computer Science and IT158

formulae (akin to test purposes), and using traditional model-checking tools to check if
properties are satisfied in the model of a system. Obviously, the results are meaningful only
if the model is faithful to the behaviour of a system.
One line of research on model-checking for off-line passive testing was initiated by Hallal et
al. (2001). In their approach, a model is constructed using the SDL language, and properties
to be checked are represented by an observer expressed in the SDL-like GOAL language.
Note that further testing without any stated properties / test purposes is not possible, as the
model is constructed with no external reference specification, and does not in itself bear any
correctness-related connotations. To ease the formulation of test purposes, pre-defined
parameterizable patterns are used. A repository of such patterns, to be used for the general
development tasks, has been developed by Dwyer et al. (1999).
A similar, but apparently independent approach was taken by Griffeth et al. (2006). This
shows that passive testing and model checking, although entirely different in dynamics and
context of use, conceptually have much in common.

5.4 Reference data
A reference specification used by a passive tester may assume different forms. The following
variants are most characteristic of research on passive testing to date:
• scope of representation:

o only control flow (behaviour defined exclusively in terms of atomic, named
events), as in Finite State Machines (FSM);

o control and data (events may carry data values; to define behaviour, predicates
on internal data may be used), as in Extended Finite State Machines (EFSM);

• formalism:
o automata / state machines (FSM, EFSM, CFSM – Communicating FSM);
o transition system representations, e.g., serving as the underlying semantic

model of LOTOS (Bochmann & Bellal, 1989; Bochmann et al., 1989);
o Petri nets (Ayache et al., 1979; Diaz et al., 1994);
o logical formulae (where a trace is modelled as an automaton);

• the kind of atomic specification events:
o pairs of input/output events, in the style of Mealy machines (Lee et al., 1997;

Miller, 1998; Miller & Arisha, 2000, 2001; Miller et al., 2005; Alcalde et al., 2004;
Tabourier et al., 1999;)

o individual events of distinguishable kinds: an input, an output, and possibly
”silent” transitions τ; in such event-driven machines each kind of event may be
handled differently (Bochmann & Bellal, 1989; Bochmann et al., 1989, 1991; Lee
et al., 2002, 2006; Wvong, 1990; Brzeziński & Maliński, 2006; Brzeziński, 2005);

o symbols, to which different interpretations may be ascribed outside the model
(Wang & Schwartz, 1993; Netravali et al., 2003);

o ”transactions” that consist of autonomous sequences of outputs, sequences of
outputs in response to an input, and ”silent” transitions (Jard & Bochmann,
1983).

Much effort has been devoted to the handling of both control flow and data (Lee et al., 2002).
The EFSM formalism is, arguably, the most popular. The common understanding is that
EFSM-based passive testing is closer to reality (and less of an academic exercise), as the
behaviour of real systems, described by communication protocols, does involve data (e.g.,

numerical, and not only enumerated, fields in protocol messages). However, dealing with
data enormously complicates all the algorithms. Reservations against the preoccupation
with data have also been voiced, e.g., Fecko et al. (2001) argue that the FSM model (derived
from the underlying EFSM model of a specification language such Estelle) is useful and viable
even for quite serious tasks.

5.5 Infidelity of observations
In practice, the Iut is always embedded in a context – the intervening circumstances that
make the access to Iut more or less indirect. This is also the rationale for a common
distinction between a Sut and an Iut.
As shown in fig.5(a), in the general test architecture (which was devised for conformance
testing, but is also applicable to other types of testing as well), a tester accesses a Sut at
Points of Control and Observation (PCO) for active testing, and Points of Observation (PO) for
passive testing. The behaviour of Iut that is the object of tests is exhibited at Implementation
Access Points (IAP) between a test context and an Iut. A test context is that part of a Sut that
is not to be assessed in the course of testing, and yet is relevant to the relation between
behaviours exhibited at PCO/PO and IAP. The issues of active testing in context (including
the generation of suitable tests) have been thoroughly researched, e.g., by Heerink &
Brinksma (1995). One view on the context as applied to passive testing is presented below.

Fig. 5. Testing in context: (a) general architecture, after (ITU-T Z500, 1997); (b) lumped
context component; (c) observation and translation contexts; (d) observation infidelity
factors

A test context may be envisaged (modelled) as a lumped ”context component” (fig.5b),
which may be further decomposed into a context component C1 responsible for the
translation of alphabets of events and behaviours themselves (it might be envisaged as an
interworking protocol entity), and a context component C2 that only represents the
degradation of observation fidelity. We now assume that the C1 component is ”empty”,
which means that a passive tester observes what is essentially the behaviour of Iut (and not
the entirely different behaviour of another component – C1). A trace perceived by a passive
tester at a Point of Observation may be ideal, i.e., corresponding exactly to what Iut
perceives (in which case also the context component C2 is empty), or may be degraded by
various factors that, together, contribute to the phenomenon of observational infidelity or
uncertainty. Fidelity refers to ”closeness with which the sequence of input and output events seen
by the device under test matches the sequence of events observed by the monitor [passive tester]”

Towards the Methodological Harmonization of Passive Testing Across ICT Communities 159

formulae (akin to test purposes), and using traditional model-checking tools to check if
properties are satisfied in the model of a system. Obviously, the results are meaningful only
if the model is faithful to the behaviour of a system.
One line of research on model-checking for off-line passive testing was initiated by Hallal et
al. (2001). In their approach, a model is constructed using the SDL language, and properties
to be checked are represented by an observer expressed in the SDL-like GOAL language.
Note that further testing without any stated properties / test purposes is not possible, as the
model is constructed with no external reference specification, and does not in itself bear any
correctness-related connotations. To ease the formulation of test purposes, pre-defined
parameterizable patterns are used. A repository of such patterns, to be used for the general
development tasks, has been developed by Dwyer et al. (1999).
A similar, but apparently independent approach was taken by Griffeth et al. (2006). This
shows that passive testing and model checking, although entirely different in dynamics and
context of use, conceptually have much in common.

5.4 Reference data
A reference specification used by a passive tester may assume different forms. The following
variants are most characteristic of research on passive testing to date:
• scope of representation:

o only control flow (behaviour defined exclusively in terms of atomic, named
events), as in Finite State Machines (FSM);

o control and data (events may carry data values; to define behaviour, predicates
on internal data may be used), as in Extended Finite State Machines (EFSM);

• formalism:
o automata / state machines (FSM, EFSM, CFSM – Communicating FSM);
o transition system representations, e.g., serving as the underlying semantic

model of LOTOS (Bochmann & Bellal, 1989; Bochmann et al., 1989);
o Petri nets (Ayache et al., 1979; Diaz et al., 1994);
o logical formulae (where a trace is modelled as an automaton);

• the kind of atomic specification events:
o pairs of input/output events, in the style of Mealy machines (Lee et al., 1997;

Miller, 1998; Miller & Arisha, 2000, 2001; Miller et al., 2005; Alcalde et al., 2004;
Tabourier et al., 1999;)

o individual events of distinguishable kinds: an input, an output, and possibly
”silent” transitions τ; in such event-driven machines each kind of event may be
handled differently (Bochmann & Bellal, 1989; Bochmann et al., 1989, 1991; Lee
et al., 2002, 2006; Wvong, 1990; Brzeziński & Maliński, 2006; Brzeziński, 2005);

o symbols, to which different interpretations may be ascribed outside the model
(Wang & Schwartz, 1993; Netravali et al., 2003);

o ”transactions” that consist of autonomous sequences of outputs, sequences of
outputs in response to an input, and ”silent” transitions (Jard & Bochmann,
1983).

Much effort has been devoted to the handling of both control flow and data (Lee et al., 2002).
The EFSM formalism is, arguably, the most popular. The common understanding is that
EFSM-based passive testing is closer to reality (and less of an academic exercise), as the
behaviour of real systems, described by communication protocols, does involve data (e.g.,

numerical, and not only enumerated, fields in protocol messages). However, dealing with
data enormously complicates all the algorithms. Reservations against the preoccupation
with data have also been voiced, e.g., Fecko et al. (2001) argue that the FSM model (derived
from the underlying EFSM model of a specification language such Estelle) is useful and viable
even for quite serious tasks.

5.5 Infidelity of observations
In practice, the Iut is always embedded in a context – the intervening circumstances that
make the access to Iut more or less indirect. This is also the rationale for a common
distinction between a Sut and an Iut.
As shown in fig.5(a), in the general test architecture (which was devised for conformance
testing, but is also applicable to other types of testing as well), a tester accesses a Sut at
Points of Control and Observation (PCO) for active testing, and Points of Observation (PO) for
passive testing. The behaviour of Iut that is the object of tests is exhibited at Implementation
Access Points (IAP) between a test context and an Iut. A test context is that part of a Sut that
is not to be assessed in the course of testing, and yet is relevant to the relation between
behaviours exhibited at PCO/PO and IAP. The issues of active testing in context (including
the generation of suitable tests) have been thoroughly researched, e.g., by Heerink &
Brinksma (1995). One view on the context as applied to passive testing is presented below.

Fig. 5. Testing in context: (a) general architecture, after (ITU-T Z500, 1997); (b) lumped
context component; (c) observation and translation contexts; (d) observation infidelity
factors

A test context may be envisaged (modelled) as a lumped ”context component” (fig.5b),
which may be further decomposed into a context component C1 responsible for the
translation of alphabets of events and behaviours themselves (it might be envisaged as an
interworking protocol entity), and a context component C2 that only represents the
degradation of observation fidelity. We now assume that the C1 component is ”empty”,
which means that a passive tester observes what is essentially the behaviour of Iut (and not
the entirely different behaviour of another component – C1). A trace perceived by a passive
tester at a Point of Observation may be ideal, i.e., corresponding exactly to what Iut
perceives (in which case also the context component C2 is empty), or may be degraded by
various factors that, together, contribute to the phenomenon of observational infidelity or
uncertainty. Fidelity refers to ”closeness with which the sequence of input and output events seen
by the device under test matches the sequence of events observed by the monitor [passive tester]”

Engineering the Computer Science and IT160

(Bhargavan et al., 2001). The most researched factors of observational infidelity are (fig.5d):
losing (dropping), adding, reordering, changing, and delaying the events of a trace.
Research on passive testing has taken various positions on observational infidelity. Ignoring
this phenomenon readily leads to the simplistic view on passive testing. As noticed by
Alcalde & Cavalli (2006), some authors assume that ”an observation point records the event
traces respecting their causal order” and claim that ”finding the order of these events is a well
studied and resolved problem”. Far from that, this is one of the most intricate, troublesome, and
”surprisingly difficult” (Bhargavan et al., 2001) sub-problems of passive testing. To dispense
altogether with infidelity (which is, of course, not the same as ignoring it), a passive tester
might be co-located with an Iut, virtually ”sitting on it”, synchronously observing the events
of its behaviour as they happen, or might rely on instrumenting the Iut. Co-location can also
be considered as a kind of instrumentation. Co-location and instrumentation have been
identified in the common taxonomy of testing and intrusion detection (Brzeziński, 2007b) as
communicated observability.
For the testing community, in particular that of telecommunications descent, a co-located
tester is an architectural abstraction which is not seriously considered in practice, and
instrumenting the Iut for testing is ”banned for political reasons”. Two approaches to
dealing with infidelity may be identified:
• to design a trace-checking algorithm so that it expects a non-ideal trace and internally

deals with its infidelity (or rather – with particular classes of infidelity; deciding on these
classes is a kind of a test hypothesis);

• to add a functional module that pre-processes a trace, using hypotheses as to its
possible classes of infidelity, and presents a trace analysis module with a reconstructed
ideal trace, as in a self-tuned passive tester of Brzeziński & Maliński (2007). A passive
tester that expects an ideal trace is thus not useless – it may be used as a component of a
larger test system, in which a non-ideal trace is conditioned and reconstructed
separately.

A number of trace-checking algorithms that explicitly deal with particular classes of
infidelity have been proposed. Practically all of them assume that the delaying buffers are
FIFO, i.e., that in each direction of communication the partial order of events is retained
(there is no reordering of events). The characteristic combinations of infidelity factors are:
only loss of messages, only the transmission delay between a passive tester and an Iut, both
delay and loss. The FIFO buffers may be internal to the physical Iut equipment, and may be
relatively ”short”. As noticed by Bhargavan et al. (2001), under various conditions (i.e.,
heavy traffic load towards a Iut, only part of which may be projected upon events visible to
a passive tester) such buffers may overflow, leading to what is perceived as loss. Indeed, it is
now well known that in modern high-speed packet networks the predominant cause of
message loss is input buffer overflow.
We now briefly present the approaches to dealing with combinations of infidelity factors.
Admitting delaying FIFO buffers (with no other infidelity factors) brings about the
possibility of message cross-over (fig.6a) – the reversal of the order in which events travelling
in the opposite directions are observed by a passive tester, in relation to the order in which
they are executed by the Iut. In the example, message x, travelling towards the Iut, is
perceived by the passive tester to occur before message y, travelling from the Iut. If, basing
on this observation, the specification (fig.6b) is consulted with a sequence: <?x,!y>, the
verdict is Fail (trace not accepted – the right branch). Message y was in fact sent before the

reception of x, which corresponds to the acceptable sequence <!y,?x> (left branch of the
specification), thus a false fail was issued. If the passive tester, instead of message y at time 2,
observed message y’ at time 3 (”a little later”), the fail verdict would have been correct. The
difference t between time 3 and time 1 exceeds the maximum round-trip delay (t1 + t2), while
the difference between time 2 and 1 does not.

Fig. 6. Message cross-over due to communication delay

Dealing with the possible message cross-over generally involves modifying the basic state-
tracking, or homing, algorithm designed for ideal observation – as shown above, this
algorithm is incorrect in the presence of communication delays.
In their early work, Jard & Bochmann (1983) treat differently the inputs in a specification
(handled when an event corresponding to a message travelling towards a Iut is observed)
and its outputs (for messages travelling in the opposite direction). The sets of possible states
of the Iut are decorated with the sequences of outputs that could have been sent, but have
not been seen by the passive tester yet. These hypothetical past outputs are matched and
”consumed” first, when the passive tester sees the output event. It seems that this original
algorithm would, correctly, accept y, but it would fail to reject y’ (an ”optimistic” strategy,
with false Pass verdicts). The explanation is that the algorithm is purely logical, with no
notion of time, so the round-trip delay is assumed to be infinite (it cannot be zero, as this
would mean no cross-over effects, and it cannot take any other definite value, as this would
require making quantitative decisions on the extra-logical level).
Wvong (1990) extends the FSM-based state tracking (homing) algorithm by keeping not a
single set of possible states, but a set of such sets. The sets are calculated in different ways,
depending on whether an input or an output message is seen by the tester, and whether
within the round-trip delay time other previously observed messages await in internal
queues of the algorithm. The algorithm is thus not fully logical – it uses timers.
Bhargavan et al. (2001) consider passive testing (referred to as passive monitoring) as a
language recognition problem. A co-networked monitor (as opposed to a co-located one) is a
passive tester separated from the Iut by FIFO queues of a priori known lengths. Two variants
are discussed – with, and without possible buffer overflow (loss). The proposed universal
algorithm is based on the existence of a function that, for a given sequence of events, checks
if this sequence belongs to a language of the reference specification. Now, passive testing
consists in constructing, for a sequence β observed by a tester at PO, all the sequences α that
are consistent with β but occur at the IAP, and checking whether at least one of these
sequences is accepted by the specification. The brute-force algorithm is then optimized for
various particular properties of the reference specification, which makes these optimized
variants non-universal.
Missing observations (possibly after a loss) may be handled as in (Lee et al., 1997). The
general idea is to calculate a transitive closure (or ”completion”) of possible states over the
events that could have been lost. This operation is tractable if the exact number, or a bound
on the lost events is known. A similar procedure is also given in Wvong (1990).

Towards the Methodological Harmonization of Passive Testing Across ICT Communities 161

(Bhargavan et al., 2001). The most researched factors of observational infidelity are (fig.5d):
losing (dropping), adding, reordering, changing, and delaying the events of a trace.
Research on passive testing has taken various positions on observational infidelity. Ignoring
this phenomenon readily leads to the simplistic view on passive testing. As noticed by
Alcalde & Cavalli (2006), some authors assume that ”an observation point records the event
traces respecting their causal order” and claim that ”finding the order of these events is a well
studied and resolved problem”. Far from that, this is one of the most intricate, troublesome, and
”surprisingly difficult” (Bhargavan et al., 2001) sub-problems of passive testing. To dispense
altogether with infidelity (which is, of course, not the same as ignoring it), a passive tester
might be co-located with an Iut, virtually ”sitting on it”, synchronously observing the events
of its behaviour as they happen, or might rely on instrumenting the Iut. Co-location can also
be considered as a kind of instrumentation. Co-location and instrumentation have been
identified in the common taxonomy of testing and intrusion detection (Brzeziński, 2007b) as
communicated observability.
For the testing community, in particular that of telecommunications descent, a co-located
tester is an architectural abstraction which is not seriously considered in practice, and
instrumenting the Iut for testing is ”banned for political reasons”. Two approaches to
dealing with infidelity may be identified:
• to design a trace-checking algorithm so that it expects a non-ideal trace and internally

deals with its infidelity (or rather – with particular classes of infidelity; deciding on these
classes is a kind of a test hypothesis);

• to add a functional module that pre-processes a trace, using hypotheses as to its
possible classes of infidelity, and presents a trace analysis module with a reconstructed
ideal trace, as in a self-tuned passive tester of Brzeziński & Maliński (2007). A passive
tester that expects an ideal trace is thus not useless – it may be used as a component of a
larger test system, in which a non-ideal trace is conditioned and reconstructed
separately.

A number of trace-checking algorithms that explicitly deal with particular classes of
infidelity have been proposed. Practically all of them assume that the delaying buffers are
FIFO, i.e., that in each direction of communication the partial order of events is retained
(there is no reordering of events). The characteristic combinations of infidelity factors are:
only loss of messages, only the transmission delay between a passive tester and an Iut, both
delay and loss. The FIFO buffers may be internal to the physical Iut equipment, and may be
relatively ”short”. As noticed by Bhargavan et al. (2001), under various conditions (i.e.,
heavy traffic load towards a Iut, only part of which may be projected upon events visible to
a passive tester) such buffers may overflow, leading to what is perceived as loss. Indeed, it is
now well known that in modern high-speed packet networks the predominant cause of
message loss is input buffer overflow.
We now briefly present the approaches to dealing with combinations of infidelity factors.
Admitting delaying FIFO buffers (with no other infidelity factors) brings about the
possibility of message cross-over (fig.6a) – the reversal of the order in which events travelling
in the opposite directions are observed by a passive tester, in relation to the order in which
they are executed by the Iut. In the example, message x, travelling towards the Iut, is
perceived by the passive tester to occur before message y, travelling from the Iut. If, basing
on this observation, the specification (fig.6b) is consulted with a sequence: <?x,!y>, the
verdict is Fail (trace not accepted – the right branch). Message y was in fact sent before the

reception of x, which corresponds to the acceptable sequence <!y,?x> (left branch of the
specification), thus a false fail was issued. If the passive tester, instead of message y at time 2,
observed message y’ at time 3 (”a little later”), the fail verdict would have been correct. The
difference t between time 3 and time 1 exceeds the maximum round-trip delay (t1 + t2), while
the difference between time 2 and 1 does not.

Fig. 6. Message cross-over due to communication delay

Dealing with the possible message cross-over generally involves modifying the basic state-
tracking, or homing, algorithm designed for ideal observation – as shown above, this
algorithm is incorrect in the presence of communication delays.
In their early work, Jard & Bochmann (1983) treat differently the inputs in a specification
(handled when an event corresponding to a message travelling towards a Iut is observed)
and its outputs (for messages travelling in the opposite direction). The sets of possible states
of the Iut are decorated with the sequences of outputs that could have been sent, but have
not been seen by the passive tester yet. These hypothetical past outputs are matched and
”consumed” first, when the passive tester sees the output event. It seems that this original
algorithm would, correctly, accept y, but it would fail to reject y’ (an ”optimistic” strategy,
with false Pass verdicts). The explanation is that the algorithm is purely logical, with no
notion of time, so the round-trip delay is assumed to be infinite (it cannot be zero, as this
would mean no cross-over effects, and it cannot take any other definite value, as this would
require making quantitative decisions on the extra-logical level).
Wvong (1990) extends the FSM-based state tracking (homing) algorithm by keeping not a
single set of possible states, but a set of such sets. The sets are calculated in different ways,
depending on whether an input or an output message is seen by the tester, and whether
within the round-trip delay time other previously observed messages await in internal
queues of the algorithm. The algorithm is thus not fully logical – it uses timers.
Bhargavan et al. (2001) consider passive testing (referred to as passive monitoring) as a
language recognition problem. A co-networked monitor (as opposed to a co-located one) is a
passive tester separated from the Iut by FIFO queues of a priori known lengths. Two variants
are discussed – with, and without possible buffer overflow (loss). The proposed universal
algorithm is based on the existence of a function that, for a given sequence of events, checks
if this sequence belongs to a language of the reference specification. Now, passive testing
consists in constructing, for a sequence β observed by a tester at PO, all the sequences α that
are consistent with β but occur at the IAP, and checking whether at least one of these
sequences is accepted by the specification. The brute-force algorithm is then optimized for
various particular properties of the reference specification, which makes these optimized
variants non-universal.
Missing observations (possibly after a loss) may be handled as in (Lee et al., 1997). The
general idea is to calculate a transitive closure (or ”completion”) of possible states over the
events that could have been lost. This operation is tractable if the exact number, or a bound
on the lost events is known. A similar procedure is also given in Wvong (1990).

Engineering the Computer Science and IT162

5.6 Quality of verdicts
A suite of active tests may (and, ideally, should) be:
• unbiased (G. Bernot et al., 1991; Gaudel, 1995), sound (Hierons et al., 2008; Tretmans,

1996), or correct (Jéron, 2006), if it does not reject correct systems; there remains the
possibility of ”false positives” or ”false Pass”, i.e., passing also some faulty systems;

• valid (G. Bernot et al., 1991; Gaudel, 1995), exhaustive (Jéron, 2006; Tretmans, 1996), or
complete (Hierons et al., 2008), if it does not accept faulty systems (or if it detects /
rejects any faulty system); there remains the possibility of ”false negatives”, or ”false
Fail”, i.e., failing also some correct systems.

A test suite that is both unbiased and valid is said to be complete (Tretmans, 1996) or
exhaustive (Machado, 2000).
For passive testing, the notion of a finite test suite, and also of a single test case, is rather
intangible. In active testing, it is an active tester that decides when a particular experiment
starts and ends. However, even for active testing, the first event executed by a tester is not
necessarily a stimulus. A tester may wait for a particular event (message, signal) from an Iut
before it starts to send stimuli. Similarly, a passive tester may be thought of as executing a
passive test case, by deciding when to start listening, how (against what particular reference
and with what purpose) to assess a trace, and when to stop listening. Continuous testing
might then be envisaged as a process, in which a passive tester executes:
• a single test case that does not normally end;
• a sequence of consecutive test cases: the end of one test case marks the start of another;
• sets of test cases, so that at any time at least one test case is being executed; this

interpretation is probably closest to the idea of updating sets of possible states, inherent
in the homing algorithm.

Taking into account the peculiarity of passive testing, Netravali et al. (2003) investigate the
properties of passive testing algorithms being sound and adequate (and – jointly – complete). It
was shown that the standard homing algorithm is complete with respect to any
conformance notion that is not weaker than trace-containment. Specifically, every rejected
implementation is indeed faulty, but an accepted implementation may still be faulty – the
adequacy condition holds because no other sound algorithm could possibly reject such
implementation. These fundamental results delimit the ”power” of passive testing;
however, they have been obtained for the ideal observation conditions (no infidelity effects).

6 Alternative conceptual settings

We now discuss other conceptual settings in which the particular combinations of passive
testing technology are clearly present, but are not identified and named as such.

6.1 Test oracles
It is widely accepted (Richardson et al., 1992) that active testing can be decomposed into the
following conceptual sub-problems:
• test data selection, usually understood as the selection of vectors of input data;
• test oracle creation;
• test execution;

• test execution monitoring, i.e., capturing the events that constitute the behaviour of Iut,
and transforming them (by mapping, projections, translations) to the level of
abstraction of the oracle; here belong various aspects of test architecture and interfaces;

• test result verification – elaboration of a test verdict by an oracle.
A test oracle is a mechanism that ”determines whether a system behaves correctly during test
execution” (Richardson et al., 1992). A test outcome (the behaviour of an Iut exhibited during
a test experiment) is compared with an expected outcome, and a verdict is issued basing on
this comparison. The comparison may be a complex operation, but it is passive by nature,
and thus it is tempting to consider the oracle as a passive tester in its own right. Indeed, the
”oracle” was used in a number of works as a synonym of a passive tester.
In software engineering there has been a tendency to emphasize the role of test data
selection in testing, and to underestimate, or to consider as ”straightforward”, the problems
of checking whether, for selected test data, the system behaves as required. This issue,
which is crucial to the assignment of test verdicts, has even been left for human experts to
resolve during the testing. For formal testing, the need to ”manually” assign a verdict is
unacceptable.
In (Richardson et al., 1992), in the tradition of software engineering, a test oracle is
envisaged as a distinct functionality. This functionality is further sub-divided into the oracle
information and the oracle procedure. The oracle information corresponds to a reference Ref,
and the oracle procedure determines how this reference is used (searched, executed) in
order to compare the actual outcome with the expected one. Using the general concept of an
oracle, the idea and design of active and passive testers can be reconciled as shown in fig.7.

Fig. 7. „Derivation“ of a passive tester from the structure of an active tester

In fig.7(a), the mechanisms of sending stimuli and receiving / recognizing responses are not
separated at all, and test execution is driven by a tree-like structure (as in TTCN-based
testing). In case (b), the oracle is distinguished conceptually. In case (c), this distinction is
carried over to the implementation domain, where the oracle is a separate module that,
according to the well known ”separation of concerns” principle, is related to the
construction of a test driver as weekly as possible. Depending on the structure and scope of

Towards the Methodological Harmonization of Passive Testing Across ICT Communities 163

5.6 Quality of verdicts
A suite of active tests may (and, ideally, should) be:
• unbiased (G. Bernot et al., 1991; Gaudel, 1995), sound (Hierons et al., 2008; Tretmans,

1996), or correct (Jéron, 2006), if it does not reject correct systems; there remains the
possibility of ”false positives” or ”false Pass”, i.e., passing also some faulty systems;

• valid (G. Bernot et al., 1991; Gaudel, 1995), exhaustive (Jéron, 2006; Tretmans, 1996), or
complete (Hierons et al., 2008), if it does not accept faulty systems (or if it detects /
rejects any faulty system); there remains the possibility of ”false negatives”, or ”false
Fail”, i.e., failing also some correct systems.

A test suite that is both unbiased and valid is said to be complete (Tretmans, 1996) or
exhaustive (Machado, 2000).
For passive testing, the notion of a finite test suite, and also of a single test case, is rather
intangible. In active testing, it is an active tester that decides when a particular experiment
starts and ends. However, even for active testing, the first event executed by a tester is not
necessarily a stimulus. A tester may wait for a particular event (message, signal) from an Iut
before it starts to send stimuli. Similarly, a passive tester may be thought of as executing a
passive test case, by deciding when to start listening, how (against what particular reference
and with what purpose) to assess a trace, and when to stop listening. Continuous testing
might then be envisaged as a process, in which a passive tester executes:
• a single test case that does not normally end;
• a sequence of consecutive test cases: the end of one test case marks the start of another;
• sets of test cases, so that at any time at least one test case is being executed; this

interpretation is probably closest to the idea of updating sets of possible states, inherent
in the homing algorithm.

Taking into account the peculiarity of passive testing, Netravali et al. (2003) investigate the
properties of passive testing algorithms being sound and adequate (and – jointly – complete). It
was shown that the standard homing algorithm is complete with respect to any
conformance notion that is not weaker than trace-containment. Specifically, every rejected
implementation is indeed faulty, but an accepted implementation may still be faulty – the
adequacy condition holds because no other sound algorithm could possibly reject such
implementation. These fundamental results delimit the ”power” of passive testing;
however, they have been obtained for the ideal observation conditions (no infidelity effects).

6 Alternative conceptual settings

We now discuss other conceptual settings in which the particular combinations of passive
testing technology are clearly present, but are not identified and named as such.

6.1 Test oracles
It is widely accepted (Richardson et al., 1992) that active testing can be decomposed into the
following conceptual sub-problems:
• test data selection, usually understood as the selection of vectors of input data;
• test oracle creation;
• test execution;

• test execution monitoring, i.e., capturing the events that constitute the behaviour of Iut,
and transforming them (by mapping, projections, translations) to the level of
abstraction of the oracle; here belong various aspects of test architecture and interfaces;

• test result verification – elaboration of a test verdict by an oracle.
A test oracle is a mechanism that ”determines whether a system behaves correctly during test
execution” (Richardson et al., 1992). A test outcome (the behaviour of an Iut exhibited during
a test experiment) is compared with an expected outcome, and a verdict is issued basing on
this comparison. The comparison may be a complex operation, but it is passive by nature,
and thus it is tempting to consider the oracle as a passive tester in its own right. Indeed, the
”oracle” was used in a number of works as a synonym of a passive tester.
In software engineering there has been a tendency to emphasize the role of test data
selection in testing, and to underestimate, or to consider as ”straightforward”, the problems
of checking whether, for selected test data, the system behaves as required. This issue,
which is crucial to the assignment of test verdicts, has even been left for human experts to
resolve during the testing. For formal testing, the need to ”manually” assign a verdict is
unacceptable.
In (Richardson et al., 1992), in the tradition of software engineering, a test oracle is
envisaged as a distinct functionality. This functionality is further sub-divided into the oracle
information and the oracle procedure. The oracle information corresponds to a reference Ref,
and the oracle procedure determines how this reference is used (searched, executed) in
order to compare the actual outcome with the expected one. Using the general concept of an
oracle, the idea and design of active and passive testers can be reconciled as shown in fig.7.

Fig. 7. „Derivation“ of a passive tester from the structure of an active tester

In fig.7(a), the mechanisms of sending stimuli and receiving / recognizing responses are not
separated at all, and test execution is driven by a tree-like structure (as in TTCN-based
testing). In case (b), the oracle is distinguished conceptually. In case (c), this distinction is
carried over to the implementation domain, where the oracle is a separate module that,
according to the well known ”separation of concerns” principle, is related to the
construction of a test driver as weekly as possible. Depending on the structure and scope of

Engineering the Computer Science and IT164

oracle information, it may be necessary to provide the oracle module with the identification
of the test case being executed (so that the oracle may choose the right reference data), and
the synchronization information (that a test case was started, that stimulus x has just been
sent, that the Iut has been reset to the known initial state, etc.). In case (d), the oracle is
transformed into a fully independent passive tester.

6.2 Intrusion detection
Intrusions – undesired, hostile, malicious, destructive behaviours of an information system
can be regarded as a particular class of behavioural failures. These failures can be, in
principle, detected. The cause of such failure – a fault, or defect, may be attributed to the
“mutation” caused by an intruder. Such ”fault” can be, in principle, located and identified.
This interpretation, or translation to the language of passive testing, was presented by
Brzeziński (2007b). It is not universally accepted, but its technical implications are obvious
in the works by the Intrusion Detection (ID) research community, in particular those
concerned with specification-based ID techniques. Otherwise, the explicit mutual references
between the two communities are rare. Among the few exceptions, we cite an observation
from the passive testing community: ”Many network problems that occur due to intrusions and
security violations can be addressed by the passive testing approach as well” (Lee et al., 1997), and
the observation from the ID community: ”An alternative is to look at network event recognition
as a testing problem” (Bhargavan & Gunter, 2002).

6.3 Metrology
Establishing the relation between metrology and (passive) testing is a challenging task. It
deserves a thorough treatment that is beyond the scope of this chapter. One possible way to
proceed is to retrack the approach of Mari (2003), who considers the ways in which
measurement differs from general evaluation. For completeness, we will only offer a few
observations on the subject.
To be a measurement, determining / assigning a value must be based on observation –
similarly for testing. It was postulated (Mari, 1997) that the necessary conditions for calling
an evaluation a measurement be: a standard (a reference) adopted for measurement must be
well defined and external to any specific measurer, and the operation of comparing a thing
to a standard must be well-defined and carried out independently of any specific measurer.
These two postulates have always been the cornerstones of formal testing.
Stanley S. Stevens, a prominent psychologist and metrologist, among different types of
measurements (or scale types) lists nominal measurements, where a ”quantity” under
measurement (a measurand) is dichotomy (present / absent) or membership in a category
(such as colour), and ordinal (as for S, M, L, XL). This is very close to admitting test verdicts
as the results of a particular kind of measurement.
One particular class of metrological problems concerns measurement errors, or, more
generally, uncertainty of measurement. These errors are attributed to the measurement
model (in testing – the inadequacy or non-fulfilment of test hypotheses, e.g., as to the number
of states of an Iut), the measurement method (in testing – e.g., the limited number of tests),
and the measurement interface (in testing – dropping or reordering of events in an observed
trace). The problems are thus very similar.

7. Concluding remarks

We have surveyed some, but certainly not all, conceptual and technological links of passive
testing with other research areas. Among those areas that had to be left out, potentially the
most useful and effective in clarifying the essence of passive testing are: diagnosis (Sampath,
Lamperti, Zanella) and supervisory control (Ramadge, Wonham, Arora, Kulkarni, Jeron) of
Discrete-Event Systems, and Execution Monitoring of safety-critical systems (Ko, Schneider).
Surprisingly, also the full and formal treatment of passive testing, e.g., using process calculi,
is conspicuously absent; to this end it seems promising to look into Prasad’s Calculus of
Broadcasting Systems. Progress has been achieved in developing a testing theory for
broadcasting processes (Ene & Muntean, 2002), while what we need is a passive testing
theory that could possibly use the mechanisms of CBS.
Passive testing is a live research subject, with a potential for further theoretical results and
practical applications. A large part of its former development went ”undercover”, with
important results hidden rather than shared. It is a fact that after 30 years of development, it
still fights its way into becoming a recognized verification / validation methodology and
technology – a branch of a wider discipline of testing. The reader will have noticed the
similarities of problems related to passive testing, and the differences in languages used to
discuss these problems. By making these similarities and differences explicit, and offering
their conceptual and technological ”translations”, or mappings, we hope to have
contributed to the better understanding of passive testing.
This work was supported by the Polish Government Research Grant No. N51700831/1429.

8. References

Alcalde, B. (2006). Advanced techniques for passive testing of communication protocols. Ph.D.
Thesis, INT / Université Pierre et Marie Curie.

Alcalde, B., & Cavalli, A. R. (2006). Parallel passive testing of system protocols - towards a
real-time exhaustive approach. In ICN/ICONS/MCL (p. 42).

Alcalde, B., Cavalli, A. R., Chen, D., Khuu, D., & Lee, D. (2004). Network protocol system
passive testing for fault management: A backward checking approach, FORTE, pp.
150-166.

Ayache, J., Azema, P., & Diaz, M. (1979). Observer: a concept for on-line detection of control
errors in concurrent systems, FTCS-9, pp. 79–86.

Belhassine-Cherif, R., & Ghedamsi, A. (2000). Diagnostic tests for communicating
nondeterministic finite state machines, ISCC, pp. 424-429.

Bernot, G., Gaudel, M.-C., & Marre, B. (1991). Software testing based on formal
specifications: a theory and a tool. Software Engineering Journal, 6 (6), pp. 387-405.

Bhargavan, K., Chandra, S., McCann, P., & Gunter, C. (2001). What Packets May Come:
Automata for Network Monitoring, Proc. 28th Symp. Principles of Programming
Languages, pp. 206–219.

Bhargavan, K., & Gunter, C. A. (2002). Requirements for a practical network event
recognition language. Electronic Notes in Theoretical Computer Science, 70 (4).

Bochmann, G. von, & Bellal, O. B. (1989). Test result analysis with respect to formal
specifications. In: Protocol Test Systems II, pp. 272-294, Berlin.

Towards the Methodological Harmonization of Passive Testing Across ICT Communities 165

oracle information, it may be necessary to provide the oracle module with the identification
of the test case being executed (so that the oracle may choose the right reference data), and
the synchronization information (that a test case was started, that stimulus x has just been
sent, that the Iut has been reset to the known initial state, etc.). In case (d), the oracle is
transformed into a fully independent passive tester.

6.2 Intrusion detection
Intrusions – undesired, hostile, malicious, destructive behaviours of an information system
can be regarded as a particular class of behavioural failures. These failures can be, in
principle, detected. The cause of such failure – a fault, or defect, may be attributed to the
“mutation” caused by an intruder. Such ”fault” can be, in principle, located and identified.
This interpretation, or translation to the language of passive testing, was presented by
Brzeziński (2007b). It is not universally accepted, but its technical implications are obvious
in the works by the Intrusion Detection (ID) research community, in particular those
concerned with specification-based ID techniques. Otherwise, the explicit mutual references
between the two communities are rare. Among the few exceptions, we cite an observation
from the passive testing community: ”Many network problems that occur due to intrusions and
security violations can be addressed by the passive testing approach as well” (Lee et al., 1997), and
the observation from the ID community: ”An alternative is to look at network event recognition
as a testing problem” (Bhargavan & Gunter, 2002).

6.3 Metrology
Establishing the relation between metrology and (passive) testing is a challenging task. It
deserves a thorough treatment that is beyond the scope of this chapter. One possible way to
proceed is to retrack the approach of Mari (2003), who considers the ways in which
measurement differs from general evaluation. For completeness, we will only offer a few
observations on the subject.
To be a measurement, determining / assigning a value must be based on observation –
similarly for testing. It was postulated (Mari, 1997) that the necessary conditions for calling
an evaluation a measurement be: a standard (a reference) adopted for measurement must be
well defined and external to any specific measurer, and the operation of comparing a thing
to a standard must be well-defined and carried out independently of any specific measurer.
These two postulates have always been the cornerstones of formal testing.
Stanley S. Stevens, a prominent psychologist and metrologist, among different types of
measurements (or scale types) lists nominal measurements, where a ”quantity” under
measurement (a measurand) is dichotomy (present / absent) or membership in a category
(such as colour), and ordinal (as for S, M, L, XL). This is very close to admitting test verdicts
as the results of a particular kind of measurement.
One particular class of metrological problems concerns measurement errors, or, more
generally, uncertainty of measurement. These errors are attributed to the measurement
model (in testing – the inadequacy or non-fulfilment of test hypotheses, e.g., as to the number
of states of an Iut), the measurement method (in testing – e.g., the limited number of tests),
and the measurement interface (in testing – dropping or reordering of events in an observed
trace). The problems are thus very similar.

7. Concluding remarks

We have surveyed some, but certainly not all, conceptual and technological links of passive
testing with other research areas. Among those areas that had to be left out, potentially the
most useful and effective in clarifying the essence of passive testing are: diagnosis (Sampath,
Lamperti, Zanella) and supervisory control (Ramadge, Wonham, Arora, Kulkarni, Jeron) of
Discrete-Event Systems, and Execution Monitoring of safety-critical systems (Ko, Schneider).
Surprisingly, also the full and formal treatment of passive testing, e.g., using process calculi,
is conspicuously absent; to this end it seems promising to look into Prasad’s Calculus of
Broadcasting Systems. Progress has been achieved in developing a testing theory for
broadcasting processes (Ene & Muntean, 2002), while what we need is a passive testing
theory that could possibly use the mechanisms of CBS.
Passive testing is a live research subject, with a potential for further theoretical results and
practical applications. A large part of its former development went ”undercover”, with
important results hidden rather than shared. It is a fact that after 30 years of development, it
still fights its way into becoming a recognized verification / validation methodology and
technology – a branch of a wider discipline of testing. The reader will have noticed the
similarities of problems related to passive testing, and the differences in languages used to
discuss these problems. By making these similarities and differences explicit, and offering
their conceptual and technological ”translations”, or mappings, we hope to have
contributed to the better understanding of passive testing.
This work was supported by the Polish Government Research Grant No. N51700831/1429.

8. References

Alcalde, B. (2006). Advanced techniques for passive testing of communication protocols. Ph.D.
Thesis, INT / Université Pierre et Marie Curie.

Alcalde, B., & Cavalli, A. R. (2006). Parallel passive testing of system protocols - towards a
real-time exhaustive approach. In ICN/ICONS/MCL (p. 42).

Alcalde, B., Cavalli, A. R., Chen, D., Khuu, D., & Lee, D. (2004). Network protocol system
passive testing for fault management: A backward checking approach, FORTE, pp.
150-166.

Ayache, J., Azema, P., & Diaz, M. (1979). Observer: a concept for on-line detection of control
errors in concurrent systems, FTCS-9, pp. 79–86.

Belhassine-Cherif, R., & Ghedamsi, A. (2000). Diagnostic tests for communicating
nondeterministic finite state machines, ISCC, pp. 424-429.

Bernot, G., Gaudel, M.-C., & Marre, B. (1991). Software testing based on formal
specifications: a theory and a tool. Software Engineering Journal, 6 (6), pp. 387-405.

Bhargavan, K., Chandra, S., McCann, P., & Gunter, C. (2001). What Packets May Come:
Automata for Network Monitoring, Proc. 28th Symp. Principles of Programming
Languages, pp. 206–219.

Bhargavan, K., & Gunter, C. A. (2002). Requirements for a practical network event
recognition language. Electronic Notes in Theoretical Computer Science, 70 (4).

Bochmann, G. von, & Bellal, O. B. (1989). Test result analysis with respect to formal
specifications. In: Protocol Test Systems II, pp. 272-294, Berlin.

Engineering the Computer Science and IT166

Bochmann, G. von, Desbiens, D., Dubuc, M., Ouimet, D., & Saba, F. (1991). Test result
analysis and validation of test verdicts. In: Protocol Test Systems III, pp. 263-274,
North-Holland.

Bochmann, G. von, Dssouli, R., & Zhao, J. R. (1989). Trace analysis for conformance and
arbitration testing. IEEE Trans. Software Eng., 15 (11), pp. 1347-1356.

Bouloutas, A., Hart, G. W., & Schwartz, M. (1992). Simple finite-state fault detectors for
communication networks. IEEE Trans. Communications., 40 (3), pp. 477–479.

Brinksma, E., Grieskamp, W., & Tretmans, J. (2005). Summary – perspectives of model-based
testing. In E. Brinksma, W. Grieskamp, & J. Tretmans (Eds.), In: Perspectives of
model-based testing, E. Brinksma, W. Grieskamp, & J. Tretmans (Eds), IBFI, Schloss
Dagstuhl.

Brinksma, E., & Tretmans, J. (2000). Testing transition systems: An annotated bibliography,
MOVEP, pp. 187-195.

Brzeziński, K. M. (1997). Testing at LTiV: Research and Application Projects. Presented at
COST247 WG3 MC Meeting and Seminar.

Brzeziński, K. M. (2005). Towards practical passive testing, Parallel and Distributed Computing
and Networks (PDCN ’05), pp. 177-183.

Brzeziński, K. M. (2007a). Intrusion detection as passive testing: Linguistic support with
TTCN-3 (extended abstract). In: DIMVA (LNCS 4579), pp. 79-88, Springer.

Brzeziński, K. M. (2007b). On common meta-linguistic aspects of intrusion detection and
testing. Int. J. Information Assurance and Security (JIAS), 2 (3), pp. 167–178.

Brzeziński, K. M., Gumieniak, A., & Jankowski, P. (2008). Passive testing for reverse
engineering: Specification recovery, Parallel and Distributed Computing and Networks
(PDCN’08) pp. 27–32.

Brzeziński, K. M., & Maliński, N. (2006). Reference specification issues in on-line verification
by passive testing, Parallel and Distributed Computing and Networks (PDCN’06) pp.
186-191.

Brzeziński, K. M., & Maliński, N. (2007). Self-tuned passive testers for grey-box distributed
systems with indefinite communication delays, Parallel and Distributed Computing
and Networks (PDCN’07) pp. 126-131.

Brzeziński, K. M., Mastalerz, D., & Artych, R. (1996). Practical support of testing activities: the
PMM family (COST 247 WG3 Report) (Tech. Rep. No. 965). LTiV IT P.W.

BS 7925-1. (1998). Software testing. Vocabulary. British Standards Institution.
Chanson, S. T., & Lo, J. K. H. (1991). Open systems interconnection passive monitor OSI-PM,

In: Protocol Test Systems III, pp. 423-442, North-Holland.
Chen, D., Wu, J., & Chi, H. (2003). Passive Testing on TCP, ICCT, pp. 182-186.
Diaz, M., Juanole, G., & Courtiat, J.-P. (1994). Observer - a concept for formal on-line

validation of distributed systems. IEEE Trans. Softw. Eng., 20 (12), pp. 900–913.
Dssouli, R., & Fournier, R. (1991). Communication software testability, In: Protocol Test

Systems III, pp.45-55, North-Holland.
Dwyer, M. B., Avrunin, G. S., & Corbett, J. C. (1999). Patterns in property specifications for

finite-state verification, ICSE, pp. 411-420.
Ene, C., & Muntean, T. (2002). Testing theories for broadcasting processes. Sci. Ann. Cuza

Univ., 11 , pp. 214-230.
ETSI EG 202 237. (2007). MTS; Internet Protocol Testing (IPT); Generic approach to

interoperability testing (V1.1.2 ed.).

ETSI ES 201 873. (2008). MTS; The Testing and Test Control Notation version 3.
Fecko, M., Uyar, M., Duale, A., Amer, P., & Sethi, A. (2001). A formal approach to

development of network protocols: Theory and application to a wireless standard,
CPWCSE-2001.

Gaudel, M.-C. (1995). Testing can be formal, too, TAPSOFT pp. 82-96.
Griffeth, N. D., Cantor, Y., & Djouvas, C. (2006). Testing a network by inferring

representative state machines from network traces, ICSEA p. 31.
Hallal, H., Petrenko, A., Ulrich, A., & Boroday, S. (2001). Using SDL tools to test properties

of distributed systems, FATES (CONCUR) pp. 125–140.
Heerink, L., & Brinksma, E. (1995). Validation in context, PSTV pp. 221-236.
Hierons, R. M., Bogdanov, K., Bowen, J. P., Cleaveland, R., Derrick, J., Dick, J., et al. (2008).

Using formal specifications to support testing. ACM Computing Surveys.
IEEE Std 610-12. (1990). IEEE Standard Glossary of Software Engineering Terminology. IEEE.
ISO/IEC. (2004). ISO/IEC Guide 2. Standardization and related activities – General vocabulary

(8th ed.). ISO/IEC.
ISO/IEC 9646. (n.d.). Conformance testing methodology and framework (Vols. 1–7). ISO/IEC.
ISTQB. (2007). Standard glossary of terms used in software testing, version 2.0 (December 2007).

ISTQB (Glossary Working Party).
ITU-T Z500. (1997). Framework on formal methods in conformance testing. ITU-T.
Jaiswal, S., Iannaccone, G., Kurose, J. F., & Towsley, D. F. (2006). Formal analysis of passive

measurement inference techniques, INFOCOM.
Jard, C., & Bochmann, G. von. (1983). An approach to testing specifications. Journal of

Systems and Software, 3 (4), pp. 315-323.
Jéron, T. (2006). Model-based test selection for infinite state reactive systems, DIPES, pp. 35-

44.
Kim, T.-H. (2007). A passive testing technique with minimized on-line processing for fault

management of network protocols. Int. J. Computer Science and Network Security, 7
(3), pp. 7–14.

Lamperti, G., & Zanella, M. (2003). Continuous diagnosis of discrete-event systems. In Int.
Workshop on Principles of Diagnosis (DX’03), pp. 105–111.

Lamport, L. (1989). A Simple Approach to Specifying Concurrent Systems. Communications
of the ACM, 32 (1), pp. 32–45.

Lamport, L. (2008). Computation and State Machines. Available from http://
research.microsoft.com/en-us/um/people/lamport/pubs/

Lee, D., Chen, D., Hao, R., Miller, R. E., Wu, J., & Yin, X. (2002). A formal approach for
passive testing of protocol data portions, ICNP, pp. 122-131.

Lee, D., Chen, D., Hao, R., Miller, R. E., Wu, J., & Yin, X. (2006, April). Network protocol
system monitoring - a formal approach with passive testing. IEEE/ACM
Transactions on Networking, 14 (2), pp. 424–437.

Lee, D., Netravali, A. N., Sabnani, K. K., Sugla, B., & John, A. (1997). Passive testing and
applications to network management, ICNP, pp. 113-122.

Machado, P. D. L. (2000). Testing from structured algebraic specifications: The oracle problem.
Ph.d. thesis, Univ. of Edinburgh.

Mari, L. (1997). The role of determination and assignment in measurement. Measurement, 21
(3), pp. 79–90.

Mari, L. (2003). Epistemology of measurement. Measurement, 34 , pp. 17-30.

Towards the Methodological Harmonization of Passive Testing Across ICT Communities 167

Bochmann, G. von, Desbiens, D., Dubuc, M., Ouimet, D., & Saba, F. (1991). Test result
analysis and validation of test verdicts. In: Protocol Test Systems III, pp. 263-274,
North-Holland.

Bochmann, G. von, Dssouli, R., & Zhao, J. R. (1989). Trace analysis for conformance and
arbitration testing. IEEE Trans. Software Eng., 15 (11), pp. 1347-1356.

Bouloutas, A., Hart, G. W., & Schwartz, M. (1992). Simple finite-state fault detectors for
communication networks. IEEE Trans. Communications., 40 (3), pp. 477–479.

Brinksma, E., Grieskamp, W., & Tretmans, J. (2005). Summary – perspectives of model-based
testing. In E. Brinksma, W. Grieskamp, & J. Tretmans (Eds.), In: Perspectives of
model-based testing, E. Brinksma, W. Grieskamp, & J. Tretmans (Eds), IBFI, Schloss
Dagstuhl.

Brinksma, E., & Tretmans, J. (2000). Testing transition systems: An annotated bibliography,
MOVEP, pp. 187-195.

Brzeziński, K. M. (1997). Testing at LTiV: Research and Application Projects. Presented at
COST247 WG3 MC Meeting and Seminar.

Brzeziński, K. M. (2005). Towards practical passive testing, Parallel and Distributed Computing
and Networks (PDCN ’05), pp. 177-183.

Brzeziński, K. M. (2007a). Intrusion detection as passive testing: Linguistic support with
TTCN-3 (extended abstract). In: DIMVA (LNCS 4579), pp. 79-88, Springer.

Brzeziński, K. M. (2007b). On common meta-linguistic aspects of intrusion detection and
testing. Int. J. Information Assurance and Security (JIAS), 2 (3), pp. 167–178.

Brzeziński, K. M., Gumieniak, A., & Jankowski, P. (2008). Passive testing for reverse
engineering: Specification recovery, Parallel and Distributed Computing and Networks
(PDCN’08) pp. 27–32.

Brzeziński, K. M., & Maliński, N. (2006). Reference specification issues in on-line verification
by passive testing, Parallel and Distributed Computing and Networks (PDCN’06) pp.
186-191.

Brzeziński, K. M., & Maliński, N. (2007). Self-tuned passive testers for grey-box distributed
systems with indefinite communication delays, Parallel and Distributed Computing
and Networks (PDCN’07) pp. 126-131.

Brzeziński, K. M., Mastalerz, D., & Artych, R. (1996). Practical support of testing activities: the
PMM family (COST 247 WG3 Report) (Tech. Rep. No. 965). LTiV IT P.W.

BS 7925-1. (1998). Software testing. Vocabulary. British Standards Institution.
Chanson, S. T., & Lo, J. K. H. (1991). Open systems interconnection passive monitor OSI-PM,

In: Protocol Test Systems III, pp. 423-442, North-Holland.
Chen, D., Wu, J., & Chi, H. (2003). Passive Testing on TCP, ICCT, pp. 182-186.
Diaz, M., Juanole, G., & Courtiat, J.-P. (1994). Observer - a concept for formal on-line

validation of distributed systems. IEEE Trans. Softw. Eng., 20 (12), pp. 900–913.
Dssouli, R., & Fournier, R. (1991). Communication software testability, In: Protocol Test

Systems III, pp.45-55, North-Holland.
Dwyer, M. B., Avrunin, G. S., & Corbett, J. C. (1999). Patterns in property specifications for

finite-state verification, ICSE, pp. 411-420.
Ene, C., & Muntean, T. (2002). Testing theories for broadcasting processes. Sci. Ann. Cuza

Univ., 11 , pp. 214-230.
ETSI EG 202 237. (2007). MTS; Internet Protocol Testing (IPT); Generic approach to

interoperability testing (V1.1.2 ed.).

ETSI ES 201 873. (2008). MTS; The Testing and Test Control Notation version 3.
Fecko, M., Uyar, M., Duale, A., Amer, P., & Sethi, A. (2001). A formal approach to

development of network protocols: Theory and application to a wireless standard,
CPWCSE-2001.

Gaudel, M.-C. (1995). Testing can be formal, too, TAPSOFT pp. 82-96.
Griffeth, N. D., Cantor, Y., & Djouvas, C. (2006). Testing a network by inferring

representative state machines from network traces, ICSEA p. 31.
Hallal, H., Petrenko, A., Ulrich, A., & Boroday, S. (2001). Using SDL tools to test properties

of distributed systems, FATES (CONCUR) pp. 125–140.
Heerink, L., & Brinksma, E. (1995). Validation in context, PSTV pp. 221-236.
Hierons, R. M., Bogdanov, K., Bowen, J. P., Cleaveland, R., Derrick, J., Dick, J., et al. (2008).

Using formal specifications to support testing. ACM Computing Surveys.
IEEE Std 610-12. (1990). IEEE Standard Glossary of Software Engineering Terminology. IEEE.
ISO/IEC. (2004). ISO/IEC Guide 2. Standardization and related activities – General vocabulary

(8th ed.). ISO/IEC.
ISO/IEC 9646. (n.d.). Conformance testing methodology and framework (Vols. 1–7). ISO/IEC.
ISTQB. (2007). Standard glossary of terms used in software testing, version 2.0 (December 2007).

ISTQB (Glossary Working Party).
ITU-T Z500. (1997). Framework on formal methods in conformance testing. ITU-T.
Jaiswal, S., Iannaccone, G., Kurose, J. F., & Towsley, D. F. (2006). Formal analysis of passive

measurement inference techniques, INFOCOM.
Jard, C., & Bochmann, G. von. (1983). An approach to testing specifications. Journal of

Systems and Software, 3 (4), pp. 315-323.
Jéron, T. (2006). Model-based test selection for infinite state reactive systems, DIPES, pp. 35-

44.
Kim, T.-H. (2007). A passive testing technique with minimized on-line processing for fault

management of network protocols. Int. J. Computer Science and Network Security, 7
(3), pp. 7–14.

Lamperti, G., & Zanella, M. (2003). Continuous diagnosis of discrete-event systems. In Int.
Workshop on Principles of Diagnosis (DX’03), pp. 105–111.

Lamport, L. (1989). A Simple Approach to Specifying Concurrent Systems. Communications
of the ACM, 32 (1), pp. 32–45.

Lamport, L. (2008). Computation and State Machines. Available from http://
research.microsoft.com/en-us/um/people/lamport/pubs/

Lee, D., Chen, D., Hao, R., Miller, R. E., Wu, J., & Yin, X. (2002). A formal approach for
passive testing of protocol data portions, ICNP, pp. 122-131.

Lee, D., Chen, D., Hao, R., Miller, R. E., Wu, J., & Yin, X. (2006, April). Network protocol
system monitoring - a formal approach with passive testing. IEEE/ACM
Transactions on Networking, 14 (2), pp. 424–437.

Lee, D., Netravali, A. N., Sabnani, K. K., Sugla, B., & John, A. (1997). Passive testing and
applications to network management, ICNP, pp. 113-122.

Machado, P. D. L. (2000). Testing from structured algebraic specifications: The oracle problem.
Ph.d. thesis, Univ. of Edinburgh.

Mari, L. (1997). The role of determination and assignment in measurement. Measurement, 21
(3), pp. 79–90.

Mari, L. (2003). Epistemology of measurement. Measurement, 34 , pp. 17-30.

Engineering the Computer Science and IT168

Mill, J. S. (1974). Of Observation and Experiment. In: J. M. Robson (Ed.), The collected works of
John Stuart Mill, volume VII – A System of Logic Ratiocinative and Inductive [1843]
(chap. VII). Routledge and Kegan Paul.

Miller, R. E. (1998). Passive testing of networks using a CFSM specification, IPCCC, pp. 111–
116.

Miller, R. E., & Arisha, K. A. (2000). On fault location in networks by passive testing, IPCCC,
pp. 281-287.

Miller, R. E., & Arisha, K. A. (2001). Fault identification in networks by passive testing. In
Annual Simulation Symposium, pp. 277-284.

Miller, R. E., Chen, D., Lee, D., & Hao, R. (2005). Coping with nondeterminism in network
protocol testing, TestCom, pp. 129-145.

Netravali, A. N., Sabnani, K. K., & Viswanathan, R. (2003). Correct passive testing
algorithms and complete fault coverage, FORTE, pp. 303-318.

Randell, B. (2003). On failures and faults, FME pp. 18-39.
Richardson, D. J., Aha, S. L., & O’Malley, T. O. (1992). Specification-based test oracles for

reactive systems, ICSE, pp. 105-118.
Rushby, J. (2000, November). Disappearing Formal Methods, HASE, pp. 95–96 (invited

paper).
Ryser, J., Berner, S., & Glinz, M. (1998). On the state of the art in requirements-based validation

and test of software (Tech. Rep. No. ifi-98.12). Univ. of Zurich.
Sunshine, C. (1979). Formal Techniques for Protocol Specification and Verification. IEEE

Computer, 12 (9), pp. 20–27.
Tabourier, M., Cavalli, A. R., & Ionescu, M. (1999). A GSM-MAP protocol experiment using

passive testing, World Congress on Formal Methods, pp. 915-934.
Tretmans, J. (1996). Test generation with inputs, outputs, and quiescence, TACAS, pp. 127-

146.
Tretmans, J. (1999). Testing concurrent systems: A formal approach, CONCUR, pp. 46-65.
Utting, M., Pretschner, A., & Legeard, B. (2006). A taxonomy of model-based testing (Working

Paper No. 04/2006). Hamilton, New Zealand: Univ. of Waikato.
Vries, R. G. de, & Tretmans, J. (2000). On-the-fly conformance testing using spin. STTT, 2 (4),

pp. 382-393.
Wang, C., & Schwartz, M. (1993). Fault detection with multiple observers. IEEE/ACM Trans.

Netw., 1 (1), pp. 48-55.
Wing, J. M. (1990). A Specifier’s Introduction to Formal Methods. IEEE Computer, 23 (9), pp.

8–24.
Wvong, R. (1990). A New Methodology for OSI Conformance Testing Based on Trace Analysis.

Master’s thesis, University of British Columbia.
Ziegler, G., & Miskolczi, J. (1996). Trace analysis method (COST 247 WG3 Special Seminar

No.KFKI-1996-07/M). Hungarian Academy of Sciences.

Application of Automata Based Approach for Specification of Model Transformation Strategies 169

Application of Automata Based Approach for Specification of Model
Transformation Strategies

Anna Derezińska and Jacek Zawłocki

X

Application of Automata Based Approach for
Specification of Model

Transformation Strategies

Anna Derezińska and Jacek Zawłocki
Institute of Computer Science, Warsaw University of Technology

Poland

1. Introduction

Model transformation gains the increasing attention in software development and finds
application in different areas. Model-to-model transformation can be specified in many
different ways, see surveys in (Czarnecki & Halsen, 2006; Ehring at. al., 2005; Mens & van
Gorp, 2006). Model transformation languages are developed within the MDA (Model
Driven Architecture) initiatives, like QVT languages (MOF QVT Specification, 2008). Other
solutions adopt often different, known methods for specification of transformation rules;
like graph transformations, term rewriting, algebraic approaches. However, practical
application of various types of model transformation, both corresponding to MDA and
using other methodologies, is still not fully justified by the experiences gathered in practical
projects.
We dealt with manipulation of models describing object-oriented projects. We were
interested in the separation of different levels of transformation logic and in the support by
a simple transformation engine. Therefore, we combined concepts of meta-modeling graph
with extended automata and used for specification of a transformation strategy. The
automaton-like graphical models are well understandable by engineers and computer
programmers (Hopkroft at al,. 2000).
The main part of a transformation strategy consists of rules. Any rule will be specified by an
extended automaton. Transitions between nodes are annotated with enabling conditions
and actions. The set of rules is organized in a hierarchical structure. The structure is defined
by a graph, conceptually similar to a meta-model graph. Association of the rules to vertices
of the graph introduces priorities of the rules. A rule can be executed when its pre-condition
is satisfied. We provide the basic definitions of the concepts of a strategy.
An automata-based transformation strategy was applied in the generic framework for
traceability in object-oriented designs (Derezinska & Zawlocki, 2007). The framework is
aimed at discovering relationships in a given object-oriented model according to a given
traceability strategy. Requirements of the framework focus on the generic and highly
flexible solutions. It accepts different modeling notations (including UML or its subsets) and

10

Engineering the Computer Science and IT170

supports adaptation to different strategies according to user needs. The goals of the
framework are realized by a chain of three transformations:
1) input transformation - from an object-oriented model to a model in the internal notation
(so called Project notation),
2) traceability transformation - from a Project model with a given initial element to the
resulting model (in this case so-called Dependency Area),
3) output transformation - from a Dependency Area to a resulting model in a desired
notation.
The input and output transformations were realized using QVT approach and presented in
(Derezinska & Zawlocki, 2008). This paper is devoted to the second transformation of the
framework.
The general idea of Dependency Areas is based on exploration of possible direct and
indirect relations among elements of a model. It can be viewed as a kind of traceability
when impact relations between model elements are concerned. Identification of a
dependency area can be realized as a transformation of an input model into another model.
The design of an executor of rules, used in the framework, is described with its meta-model
and a draft of its algorithm. Exemplary strategies were specified for the subsets of UML
meta-models. Few examples of the automata defining selected transformation rules will be
presented. We show basic implementation of the strategy specification used in the
framework and its application. We discuss also the advantages and disadvantages of the
approach, its background and related work.

2. Related work

2.1 Model transformation and rule specifications
A model transformation is a mapping of a set of models onto another set of models or onto
themselves, where a mapping defines correspondences between elements in the source and
target models (Sendall at al., 2004). The description of a transformation is usually
concentrated on a set of rules - basic units of the transformation. There can be static and
dynamic rules, organized in different structural patterns and scheduled according to
different schemata, as summarized in (Czarnecki & Halsen, 2006).
Within the OMG initiative, Query View Transformation (QVT) specification is developed
that provides a set of formalisms to transform one object-oriented model into another one
(MOF QVT Specification, 2008). QVT supports a relational as well as operational mappings
language. The standardization effort triggered development of tools supporting the
transformation process, but application of the standard is not yet common in industrial
solutions. The QVT operational notation was applied for the input and output
transformations of the framework considered in this paper (Derezinska, 2008).
There are many different approaches proposed for the specification of transformations;
some of these include: relational/logic, functional, graph rewriting, generator/template-
based, and imperative (Czarnecki & Halsen, 2006; Ehring at. al., 2005; Mens & van Gorp,
2006). Transformation rules were also described in specification languages like Object
Constraint Language (OCL), Object-Z, B, Maude, etc. Transformations can be also
implemented using general-purpose languages such as Java. A developer can access a
model directly using any API and is not limited, but also not supported, by any rules.
Decomposition of a transformation into a chain of basic units is discussed in (Vanhoof at al.,

2007a). The distinction between specification, implementation and execution of a
transformation process is logical and similar to our approach.
Similarly to QVT some other approaches combine also different formalisms, like
operational, declarative and hybrid transformation rules in ATL (Jouault & Kurtev, 2005). A
transformation mechanism can be general, dealing with different kinds of models, or
specialized to a given notation, often a subset of UML. In the USE environment (Buttner, &
Bauerdic, 2006) transformations objects are added to the meta-level representations of UML
models. The operational semantics is given in transformation meta-classes. Epsilon Wizard
Language (EWL) supports update transformation for diverse modeling languages (Kolovos
at al., 2007).
One category of transformations is based on graph transformations (Ehring at. al., 2005). A
graph transformation rule is specified by two graph patterns - Left Hand Side and Right
Hand Side. Graph transformation rules that can be scheduled according to a given state
machine specification are, for example, supported in Viatra2 tool (Balogh & Varro, 2006).
More examples of graph transformations can be found in (Ehring & Giese 2007).
In our solution we do not propose a new transformation language, but combine different
notations on various abstraction levels. Information from a meta-model is stored in a
hierarchy and used for prioritization of rules - therefore influences their scheduling. A rule
is given in a graph notation, but it is not a rewrite rule. The details of the logic are specified
in conditions and actions that can be expressed in a commonly known language, as for
example Java in our implementation.
In different domains, rule specifications are also needed, like in knowledge management or
business process description. Similarly, as in the case of model transformations, such rules
can be specified by any known formalism, e.g. Prolog, Process Algebras, automata, decision
tables or graphs, but also model-based notations. Proposal of Production Rules Representation
dealing with business rules modeling as a part of modeling process is currently under
development (W3C Recommendations, 2008). The UML notation, or its variants, like e.g.
URML (Wagner at al., 2006), supported by constraints in OCL can be also used for
specification of business rules. However, in this paper we do not discuss the problem of
usage of the UML notation for rule description, but of automata-based rules used in object-
oriented models and these models are illustrated by UML model examples.

2.2 Applications of extended automata
An automaton (Hopkroft at al,. 2000) is a mathematical model of a finite state machine,
which definies traversals through a series of states accorging to a transition function. A
name of extended automata is applied in many various contexts. It can describe different
kinds of extensions of simple automata. These extensions refer usually to data labeling of
transitions and mappings of these data. Extended automata can model finite state machines
which are enriched with the ability to apply a string operation on a part of the input that has
not been consumed yet (Bensh at. al., 2008).
In the context of the UML language, UML statecharts can be described using different kinds
of extended automata approaches. For example, in MDA approache presented in (Dayan et
al., 2008) standard UML statecharts are transformed into corresponding extended automata
called Hierarchical Statechart Automaton (HSA). In this case the main extension refers to the
substitution of the hierarchical composite states of statecharts by a combination of simple
automata, and parallel execution of orthogonal states using so-called Parallel HSA. The idea

Application of Automata Based Approach for Specification of Model Transformation Strategies 171

supports adaptation to different strategies according to user needs. The goals of the
framework are realized by a chain of three transformations:
1) input transformation - from an object-oriented model to a model in the internal notation
(so called Project notation),
2) traceability transformation - from a Project model with a given initial element to the
resulting model (in this case so-called Dependency Area),
3) output transformation - from a Dependency Area to a resulting model in a desired
notation.
The input and output transformations were realized using QVT approach and presented in
(Derezinska & Zawlocki, 2008). This paper is devoted to the second transformation of the
framework.
The general idea of Dependency Areas is based on exploration of possible direct and
indirect relations among elements of a model. It can be viewed as a kind of traceability
when impact relations between model elements are concerned. Identification of a
dependency area can be realized as a transformation of an input model into another model.
The design of an executor of rules, used in the framework, is described with its meta-model
and a draft of its algorithm. Exemplary strategies were specified for the subsets of UML
meta-models. Few examples of the automata defining selected transformation rules will be
presented. We show basic implementation of the strategy specification used in the
framework and its application. We discuss also the advantages and disadvantages of the
approach, its background and related work.

2. Related work

2.1 Model transformation and rule specifications
A model transformation is a mapping of a set of models onto another set of models or onto
themselves, where a mapping defines correspondences between elements in the source and
target models (Sendall at al., 2004). The description of a transformation is usually
concentrated on a set of rules - basic units of the transformation. There can be static and
dynamic rules, organized in different structural patterns and scheduled according to
different schemata, as summarized in (Czarnecki & Halsen, 2006).
Within the OMG initiative, Query View Transformation (QVT) specification is developed
that provides a set of formalisms to transform one object-oriented model into another one
(MOF QVT Specification, 2008). QVT supports a relational as well as operational mappings
language. The standardization effort triggered development of tools supporting the
transformation process, but application of the standard is not yet common in industrial
solutions. The QVT operational notation was applied for the input and output
transformations of the framework considered in this paper (Derezinska, 2008).
There are many different approaches proposed for the specification of transformations;
some of these include: relational/logic, functional, graph rewriting, generator/template-
based, and imperative (Czarnecki & Halsen, 2006; Ehring at. al., 2005; Mens & van Gorp,
2006). Transformation rules were also described in specification languages like Object
Constraint Language (OCL), Object-Z, B, Maude, etc. Transformations can be also
implemented using general-purpose languages such as Java. A developer can access a
model directly using any API and is not limited, but also not supported, by any rules.
Decomposition of a transformation into a chain of basic units is discussed in (Vanhoof at al.,

2007a). The distinction between specification, implementation and execution of a
transformation process is logical and similar to our approach.
Similarly to QVT some other approaches combine also different formalisms, like
operational, declarative and hybrid transformation rules in ATL (Jouault & Kurtev, 2005). A
transformation mechanism can be general, dealing with different kinds of models, or
specialized to a given notation, often a subset of UML. In the USE environment (Buttner, &
Bauerdic, 2006) transformations objects are added to the meta-level representations of UML
models. The operational semantics is given in transformation meta-classes. Epsilon Wizard
Language (EWL) supports update transformation for diverse modeling languages (Kolovos
at al., 2007).
One category of transformations is based on graph transformations (Ehring at. al., 2005). A
graph transformation rule is specified by two graph patterns - Left Hand Side and Right
Hand Side. Graph transformation rules that can be scheduled according to a given state
machine specification are, for example, supported in Viatra2 tool (Balogh & Varro, 2006).
More examples of graph transformations can be found in (Ehring & Giese 2007).
In our solution we do not propose a new transformation language, but combine different
notations on various abstraction levels. Information from a meta-model is stored in a
hierarchy and used for prioritization of rules - therefore influences their scheduling. A rule
is given in a graph notation, but it is not a rewrite rule. The details of the logic are specified
in conditions and actions that can be expressed in a commonly known language, as for
example Java in our implementation.
In different domains, rule specifications are also needed, like in knowledge management or
business process description. Similarly, as in the case of model transformations, such rules
can be specified by any known formalism, e.g. Prolog, Process Algebras, automata, decision
tables or graphs, but also model-based notations. Proposal of Production Rules Representation
dealing with business rules modeling as a part of modeling process is currently under
development (W3C Recommendations, 2008). The UML notation, or its variants, like e.g.
URML (Wagner at al., 2006), supported by constraints in OCL can be also used for
specification of business rules. However, in this paper we do not discuss the problem of
usage of the UML notation for rule description, but of automata-based rules used in object-
oriented models and these models are illustrated by UML model examples.

2.2 Applications of extended automata
An automaton (Hopkroft at al,. 2000) is a mathematical model of a finite state machine,
which definies traversals through a series of states accorging to a transition function. A
name of extended automata is applied in many various contexts. It can describe different
kinds of extensions of simple automata. These extensions refer usually to data labeling of
transitions and mappings of these data. Extended automata can model finite state machines
which are enriched with the ability to apply a string operation on a part of the input that has
not been consumed yet (Bensh at. al., 2008).
In the context of the UML language, UML statecharts can be described using different kinds
of extended automata approaches. For example, in MDA approache presented in (Dayan et
al., 2008) standard UML statecharts are transformed into corresponding extended automata
called Hierarchical Statechart Automaton (HSA). In this case the main extension refers to the
substitution of the hierarchical composite states of statecharts by a combination of simple
automata, and parallel execution of orthogonal states using so-called Parallel HSA. The idea

Engineering the Computer Science and IT172

of transformation of UML statecharts into an equivalent format is widely used for the
verification methods based on model checking. The models can be, for example,
transformed into Extended Hierarchical Automata (Lakhnech, 1997). Further a model is
translated into a language accepted by one of model checkers - CadenceSMV (McMillan,
2008).
It should be stressed that transformations of statechart and/or usage of different automata
to description of statechart semantics are other application areas than discussed in this
paper.

2.3 Traceability strategies
One of the challenges of complex software development is maintaining traceability links
among model elements to support model evolution and roundtrip engineering (France &
Rumpe, 2007). Automatic recognition of different relations among project elements can be
especially important for industrial projects that are usual incomplete and/or inconsistent at
different stages of software development. Those relations can be interpreted as a special
kind of traceability concepts.
Traceability deals in general with different impact relations between various artifacts
created in the process of software development. Traceability can assist in improving the
quality of a project and in the project maintenance (Maeder, 2006). It can be used for tracing
the requirements and the changes in a design (Spanoudakis, 2004). Traceability links are
examined for the UML models at different levels of model abstraction (Letelier, 2002) and in
the model refinement process (Egyed, 2004). Different relations are specified directly within
the development and evolution process or are automatic (or quasi-automatic) derived
basing on the interpretation of information hidden in the software artifacts. In (Walderhaug
et al., 2006) the set of services: trace model management, trace creation, trace use and trace
monitoring are discussed. The services could support any kinds of artifacts and relations in
a heterogeneous MDD (Model Driven Development) environment.
Several other papers described also solutions about traceability within MDD, like in
(Vanhooff et. al., 2007b) were generated traces provided information that could be further
used in a transformation between models. This problem is therefore opposite to the one
presented in this paper and also in (Derezinska, 2008) because we shown an application of
MDD in a framework for traceability.

3. Automata-based description of transformation strategy

In this section the general ideas of the model transformation strategy will be presented. The
application of these concepts for the traceability strategy in object-oriented designs is shown
in the next section.

3.1 Basic concepts of strategy
The core of a strategy is defined by a set of rules. Any rule will be specified as an extended
automaton. The rules have their pre-conditions and priorities. The set of rules is organized
in a hierarchical structure. The rules are associated to vertices of the hierarchy. An algorithm
of a rule execution takes into account a position in the hierarchy. Now, a transformation
strategy will be described in more details.

Definition 1. An extended automaton is a tuple EA = <S, Σ, DC, C, DO, Γ, δ, iN >, where
S is a finite set of states (nodes of the automaton graph),
iN S is the initial state (initial node),
Σ is a set of input symbols,
DC is an n-dimensional linear space,
C is a set of enabling functions called conditions Ci: DC→{False, True},
DO is an m-dimensional linear space,
Γ is a set of update functions called actions, γi : DO→DO ,
δ : S x Σ x DC x DO → S x DO is a transition relation.

We will consider as a set of input symbols Σ a subset of non-negative integer numbers {0, 1,
2, ... k}. Input symbols will be interpreted as priorities of the transitions. The extended
automaton can be also viewed as a kind of a labeled transitions system with a finite number
of states and a finite number of transitions, or as an extended finite state machine.

Definition 2. A rule is a tuple r = <EA, DC, Cr, p>, where
EA is an extended automaton,
DC is an n-dimentional linear space,
Cr: DC→{False, True} is an enabling function called precondition of the rule,
p is a non-negative integer number, a priority of the rule.

Precondition of a rule and conditions of transitions are predicates given in any notation.
They evaluates to the Boolean values. Domains DC and DO can be arbitrary chosen for
different applications of extended automata. An action can be performed during a given
transition only if the appropriate condition is satisfied.
Below, we describe a structure that help organizing the set of rules and identify their
priorities.

Definition 3. A simple, finite graph is a tuple G = <V, E, α>, where
V is a finite set of vertices,
E is a finite set of edges,
α : V x V → E is a function assigning an edge to a pair of verticies

Definition 4. A model is a tuple Χ = <G, Ψ, φ>, where
G = <VG, EG, αG> is a simple graph,
Ψ is itself a model (so-called reference model of Χ) with its graph <VΨ, EΨ, αΨ >,
φ : VG EG → VΨ is a function assigning elements (vertices and edges) of G to vertices of Ψ
(meta-elements).

Model Ψ is a meta-model of the model Χ. The above definitions are general, as the concepts
of meta-modeling. In fact, we would be interpreting the meta-modeling in the similar way
as in the specifications of OMG, like UML (Unified Modeling Language, 2008). We assume
that dependency graphs between conceptual classes are formed by unidirectional
generalisation relationships. Therefore, for example, vertices V of graph G can be
interpreted as classes and edges E between nodes represent relations between classes.
Any meta-model is also a model and can have its own meta-model. In special cases, graphs
of a model and a meta-model can have the same sets of nodes, like in the MOF (Meta Object
Facility, 2006).

Application of Automata Based Approach for Specification of Model Transformation Strategies 173

of transformation of UML statecharts into an equivalent format is widely used for the
verification methods based on model checking. The models can be, for example,
transformed into Extended Hierarchical Automata (Lakhnech, 1997). Further a model is
translated into a language accepted by one of model checkers - CadenceSMV (McMillan,
2008).
It should be stressed that transformations of statechart and/or usage of different automata
to description of statechart semantics are other application areas than discussed in this
paper.

2.3 Traceability strategies
One of the challenges of complex software development is maintaining traceability links
among model elements to support model evolution and roundtrip engineering (France &
Rumpe, 2007). Automatic recognition of different relations among project elements can be
especially important for industrial projects that are usual incomplete and/or inconsistent at
different stages of software development. Those relations can be interpreted as a special
kind of traceability concepts.
Traceability deals in general with different impact relations between various artifacts
created in the process of software development. Traceability can assist in improving the
quality of a project and in the project maintenance (Maeder, 2006). It can be used for tracing
the requirements and the changes in a design (Spanoudakis, 2004). Traceability links are
examined for the UML models at different levels of model abstraction (Letelier, 2002) and in
the model refinement process (Egyed, 2004). Different relations are specified directly within
the development and evolution process or are automatic (or quasi-automatic) derived
basing on the interpretation of information hidden in the software artifacts. In (Walderhaug
et al., 2006) the set of services: trace model management, trace creation, trace use and trace
monitoring are discussed. The services could support any kinds of artifacts and relations in
a heterogeneous MDD (Model Driven Development) environment.
Several other papers described also solutions about traceability within MDD, like in
(Vanhooff et. al., 2007b) were generated traces provided information that could be further
used in a transformation between models. This problem is therefore opposite to the one
presented in this paper and also in (Derezinska, 2008) because we shown an application of
MDD in a framework for traceability.

3. Automata-based description of transformation strategy

In this section the general ideas of the model transformation strategy will be presented. The
application of these concepts for the traceability strategy in object-oriented designs is shown
in the next section.

3.1 Basic concepts of strategy
The core of a strategy is defined by a set of rules. Any rule will be specified as an extended
automaton. The rules have their pre-conditions and priorities. The set of rules is organized
in a hierarchical structure. The rules are associated to vertices of the hierarchy. An algorithm
of a rule execution takes into account a position in the hierarchy. Now, a transformation
strategy will be described in more details.

Definition 1. An extended automaton is a tuple EA = <S, Σ, DC, C, DO, Γ, δ, iN >, where
S is a finite set of states (nodes of the automaton graph),
iN S is the initial state (initial node),
Σ is a set of input symbols,
DC is an n-dimensional linear space,
C is a set of enabling functions called conditions Ci: DC→{False, True},
DO is an m-dimensional linear space,
Γ is a set of update functions called actions, γi : DO→DO ,
δ : S x Σ x DC x DO → S x DO is a transition relation.

We will consider as a set of input symbols Σ a subset of non-negative integer numbers {0, 1,
2, ... k}. Input symbols will be interpreted as priorities of the transitions. The extended
automaton can be also viewed as a kind of a labeled transitions system with a finite number
of states and a finite number of transitions, or as an extended finite state machine.

Definition 2. A rule is a tuple r = <EA, DC, Cr, p>, where
EA is an extended automaton,
DC is an n-dimentional linear space,
Cr: DC→{False, True} is an enabling function called precondition of the rule,
p is a non-negative integer number, a priority of the rule.

Precondition of a rule and conditions of transitions are predicates given in any notation.
They evaluates to the Boolean values. Domains DC and DO can be arbitrary chosen for
different applications of extended automata. An action can be performed during a given
transition only if the appropriate condition is satisfied.
Below, we describe a structure that help organizing the set of rules and identify their
priorities.

Definition 3. A simple, finite graph is a tuple G = <V, E, α>, where
V is a finite set of vertices,
E is a finite set of edges,
α : V x V → E is a function assigning an edge to a pair of verticies

Definition 4. A model is a tuple Χ = <G, Ψ, φ>, where
G = <VG, EG, αG> is a simple graph,
Ψ is itself a model (so-called reference model of Χ) with its graph <VΨ, EΨ, αΨ >,
φ : VG EG → VΨ is a function assigning elements (vertices and edges) of G to vertices of Ψ
(meta-elements).

Model Ψ is a meta-model of the model Χ. The above definitions are general, as the concepts
of meta-modeling. In fact, we would be interpreting the meta-modeling in the similar way
as in the specifications of OMG, like UML (Unified Modeling Language, 2008). We assume
that dependency graphs between conceptual classes are formed by unidirectional
generalisation relationships. Therefore, for example, vertices V of graph G can be
interpreted as classes and edges E between nodes represent relations between classes.
Any meta-model is also a model and can have its own meta-model. In special cases, graphs
of a model and a meta-model can have the same sets of nodes, like in the MOF (Meta Object
Facility, 2006).

Engineering the Computer Science and IT174

Further in the strategy, we will take into account a model, which is a meta-model consisting
of classes as graph vertices and a generalization relation as only relation between vertices. In
general, we can specify such a model extending its definition with the statement that a
graph G is a directed acyclic graph (Deo, 1974). Such a model will be called a hierarchical model.
In strategies, a hierarchical model has usually a tree structure, but it is not limited to such
structures.

Definition 5. A hierarchical model is a tuple Χ = <G, Ψ, φ>, where
G = <VG, EG, αG> is a directed acyclic graph,
Ψ is itself a model (so-called reference model of Χ) with its graph <VΨ, EΨ, αΨ >,
φ : VG EG → VΨ is a function assigning elements (vertices and edges) of G to vertices of Ψ
(meta-elements).

Combining a set of rules (Def. 2) with a hierarchical model we can define a strategy.

Definition 6. A strategy is a tuple Ξ = <Χ, R, >, where
Χ = <<VG, EG, αG>, Ψ, φ>, is a hierarchical model - representing a meta-model
R is a finite, nonempty set of rules,
 : VG → R is a surjective function, assigning a rule to a vertex of the meta-model.

If a meta-model vertex has assigned a priority, it is also a priority of the corresponding rule.
Different vertices may have priorities of the same value.

3.2 Interpretation of rules in transformation process
A transformation process can be understood as the realization of appropriate subsets of
rules from a strategy in a desired order. A transformation can be realized by a simple rule
executor, because the entire logic is stored in the rules.
Main concepts of a rule executor are shown in Figure 1. The rule executor operates on a
collection of rules. Each rule is defined by an automaton. It has a priority specified
according to a mapping to the hierarchical model. Any rule has also its precondition. An
automaton consists of a set of nodes. For any node a set of outgoing transitions can be
specified. A transition has its priority. There is a condition and an action associated with a
transition.
The rule executor is responsible for execution of rules. Appropriate operations in the
conceptual model represent the execution of rules, the execution of its nodes, evaluation of
conditions, and performing of actions. All rules are ordered according to their priorities and
executed in the defined order. If two or more rules have the same priority the order of their
execution is random.
Before executing a single rule, its precondition is checked. If it is satisfied, the initial node of
the rule is considered. In case a node has more than one outgoing transitions, they are
ordered according to their priorities. If a condition of a selected transition is satisfied, the
transition is followed and its action performed. All nodes of the rule accessible from its
initial node can be visited during the rule execution.
The application of the rule executor to the model transformation and its algorithms used in
the framework are presented in the next Section.

Fig. 1. Main concepts of the rule executor

4. Model transformation in the generic framework for traceability in object
oriented projects

4.1 Background
Dependency areas (formerly named dependency regions) were introduced to deal with
dependency relationships between subsets of related elements in UML models (Derezinska,
2004). The idea was aimed at the imperfect UML models; because real-world UML projects
are often incomplete or inconsistent on different stages of software development. Therefore
dependency relationships can be identified on the basis of different explicit relations present
in a UML model, as well as reasoning based on supposed developer intentions derived from
the model.
The idea of dependency areas was applied in a preliminary system supporting traceability
in object-oriented designs (Derezinska, 2004). The system integrated CASE tools for
requirements analysis (Rational Requisite Pro), and UML modeling (Rational Rose).
Requirements could be associated with corresponding use cases. Dependency areas of a use
case could be identified. Elements belonging to a considered dependency area were marked
with stereotypes and could be further instrumented during code generation, if necessary.
Rules used for identification of dependency areas were specified using structures similar to
decision tables. In the tables, possible combinations of UML elements and their relations
were taken into account. This solution was precise, but not very flexible, because it was
strictly dependent on a given version of the UML specification.
The prototype system was implemented supporting a subset of UML - elements of use case
models, class models, components and packages. The subset was limited, but it covered all
elements, which were further used in the model to code transformation. The system was
used in experiments tracing changes of requirements or model elements to the code of a

AbstractScriptRuleExecutor

execute()
sortRulesByPriority()

RulesCollection

Node
id
name

execNode()

Rule
id
name
priority

execRule(context)

1..n1..n

1..n1..n

Condition
script

evaluate()

Edge
id
name
priority

execEdge(context)

+source

+target
1..n1..n

+initalNode

Action
script

exec()+precondition

+precondition +action

Transition

Application of Automata Based Approach for Specification of Model Transformation Strategies 175

Further in the strategy, we will take into account a model, which is a meta-model consisting
of classes as graph vertices and a generalization relation as only relation between vertices. In
general, we can specify such a model extending its definition with the statement that a
graph G is a directed acyclic graph (Deo, 1974). Such a model will be called a hierarchical model.
In strategies, a hierarchical model has usually a tree structure, but it is not limited to such
structures.

Definition 5. A hierarchical model is a tuple Χ = <G, Ψ, φ>, where
G = <VG, EG, αG> is a directed acyclic graph,
Ψ is itself a model (so-called reference model of Χ) with its graph <VΨ, EΨ, αΨ >,
φ : VG EG → VΨ is a function assigning elements (vertices and edges) of G to vertices of Ψ
(meta-elements).

Combining a set of rules (Def. 2) with a hierarchical model we can define a strategy.

Definition 6. A strategy is a tuple Ξ = <Χ, R, >, where
Χ = <<VG, EG, αG>, Ψ, φ>, is a hierarchical model - representing a meta-model
R is a finite, nonempty set of rules,
 : VG → R is a surjective function, assigning a rule to a vertex of the meta-model.

If a meta-model vertex has assigned a priority, it is also a priority of the corresponding rule.
Different vertices may have priorities of the same value.

3.2 Interpretation of rules in transformation process
A transformation process can be understood as the realization of appropriate subsets of
rules from a strategy in a desired order. A transformation can be realized by a simple rule
executor, because the entire logic is stored in the rules.
Main concepts of a rule executor are shown in Figure 1. The rule executor operates on a
collection of rules. Each rule is defined by an automaton. It has a priority specified
according to a mapping to the hierarchical model. Any rule has also its precondition. An
automaton consists of a set of nodes. For any node a set of outgoing transitions can be
specified. A transition has its priority. There is a condition and an action associated with a
transition.
The rule executor is responsible for execution of rules. Appropriate operations in the
conceptual model represent the execution of rules, the execution of its nodes, evaluation of
conditions, and performing of actions. All rules are ordered according to their priorities and
executed in the defined order. If two or more rules have the same priority the order of their
execution is random.
Before executing a single rule, its precondition is checked. If it is satisfied, the initial node of
the rule is considered. In case a node has more than one outgoing transitions, they are
ordered according to their priorities. If a condition of a selected transition is satisfied, the
transition is followed and its action performed. All nodes of the rule accessible from its
initial node can be visited during the rule execution.
The application of the rule executor to the model transformation and its algorithms used in
the framework are presented in the next Section.

Fig. 1. Main concepts of the rule executor

4. Model transformation in the generic framework for traceability in object
oriented projects

4.1 Background
Dependency areas (formerly named dependency regions) were introduced to deal with
dependency relationships between subsets of related elements in UML models (Derezinska,
2004). The idea was aimed at the imperfect UML models; because real-world UML projects
are often incomplete or inconsistent on different stages of software development. Therefore
dependency relationships can be identified on the basis of different explicit relations present
in a UML model, as well as reasoning based on supposed developer intentions derived from
the model.
The idea of dependency areas was applied in a preliminary system supporting traceability
in object-oriented designs (Derezinska, 2004). The system integrated CASE tools for
requirements analysis (Rational Requisite Pro), and UML modeling (Rational Rose).
Requirements could be associated with corresponding use cases. Dependency areas of a use
case could be identified. Elements belonging to a considered dependency area were marked
with stereotypes and could be further instrumented during code generation, if necessary.
Rules used for identification of dependency areas were specified using structures similar to
decision tables. In the tables, possible combinations of UML elements and their relations
were taken into account. This solution was precise, but not very flexible, because it was
strictly dependent on a given version of the UML specification.
The prototype system was implemented supporting a subset of UML - elements of use case
models, class models, components and packages. The subset was limited, but it covered all
elements, which were further used in the model to code transformation. The system was
used in experiments tracing changes of requirements or model elements to the code of a

AbstractScriptRuleExecutor

execute()
sortRulesByPriority()

RulesCollection

Node
id
name

execNode()

Rule
id
name
priority

execRule(context)

1..n1..n

1..n1..n

Condition
script

evaluate()

Edge
id
name
priority

execEdge(context)

+source

+target
1..n1..n

+initalNode

Action
script

exec()+precondition

+precondition +action

Transition

Engineering the Computer Science and IT176

target application. Such impact analysis was, for example, used for the selection of related
code extracts. Next, fault injection experiments were performed only on these selected parts
of the code. The impact of changes on fault susceptibility of the application was therefore
effectively measured.
The concepts of dependency areas were further generalized (Derezinska & Bluemke, 2005;
Derezinska, 2006). Dependency areas were identified using the sets of propagation rules and
strategies. Selection strategies controlled application of many, possible rules. Bounding
strategies limited the number of elements assigned to the areas. The framework for
dependency area identification was specified as a meta-model that extended the UML meta-
model (Unified Modeling Language, 2008). Propagation rules were specified using the
Object Constraint Language (OCL) (Kleppe & Warmer, 2003).
Based on the framework a new system for traceability in object-oriented projects was
developed (Derezinska & Zawlocki, 2008). The system was intended to be a generic one,
dealing with different project input and output notations, as well as different strategies for
identification of dependency areas among project elements. The high level of flexibility was
achieved using different model transformations. The general process realized within the
framework consists of three main steps performed as the following model transformations:

1. input transformation,
2. traceability transformation,
3. output transformation.

The transformation engines were not limited to the UML approaches. Input and output
transformations were realized using standard QVT (Query/View/Transformation) (MOF
QVT, OMG Spec., 2008) developed as a part of MDA approach (Frankel, 2003). The details
of input and output transformations were presented in (Derezinska & Zawlocki, 2008). The
main model transformation of the system was based on an automata-based approach and its
principles are presented in this paper.

4.2 Subjects of transformation
The general idea of Dependency Areas is based on exploration of possible direct and
indirect relations among elements of a model. Dependency Area is a subset of all possible
elements accessible from an initial element through relations available in the design and
selected according to a given strategy. It can be viewed as a kind of traceability when impact
relations between model elements are concerned.
Traceability analysis is defined as a transformation that maps a project P with a given initial
element IE and traceability strategy Ξ into a resulting dependency area DA

{P, IE, Ξ }→{DA} (1)
where: P Project

IE InitialElement, IE P
Ξ TraceabilityStrategy is a strategy Ξ = <Χ, R, > (see Def. 6),
DA DependencyArea

A project is any object-oriented model. It reflects a general model in order to make the idea
independent of any specific version of a modeling notation. Any model in other notation can
be easily transformed into Project notation. Therefore this assumption does not limit the
generality of the concepts.

An initial element is an element of the project that is a starting point of the traceability analysis.
A traceability strategy is a strategy comprising a set of transformation rules associated with a
given graph of hierarchy. The set of rules can be ordered according to the hierarchy of their
priorities.
Dependency area is an output model consisting of elements assigned to a given dependency
area. A dependency area can be easily transformed to any notation, which is convenient to a
user.

4.3 Meta-model of Project
Any model analyzed in a framework is converted to the internal Project notation. This
process is realized by the input transformation (Derezinska & Zawlocki, 2008). Project
notation is a general notation covering a wide range of possible modeling concepts. The
basic ideas of the Project notation are shown in its meta-model (Figure 2).

LinkAnnotation
targetType
targetName
targetId

ProjectElement
type
name
id

0..n1 0..n1
Project

0..n0..n

+initialElement

+currentElement

Fig. 2. The core of the Project meta-model

Any project is an aggregation of many elements (class ProjectElement). An element has its
name, identifier and a type. Using different values of the type attribute a variety of different
elements can be introduced in Project notation. One of the elements is distinguished as an
initial element. An element of a Project can have any number of annotations (class
LinkAnnotation) referring to a transformation process. Annotations define a set of other
elements related in the project, specifying their identifiers, types or names. In a Project
model, typical UML relations or properties, like generalization or association between
classes, a class attribute or operation, will be converted to objects of class ProjectElement with
appropriate types.
Transformation strategies are designed to operate on any model consistent with the Project
meta-model. Such project can be understood by the executor of traceability rules.

4.4 Dependency Area meta-model
Transformation realized in the traceability framework is a kind of a model-to-model
rephrasing. In the traceabilty process a dependency area is created for a model given in
Project notation and an initial ProjectElement. According to Model Driven Engineering
paradigma, a transformation is specified by rules dealing with meta-models of a source and
target model. Any instance of meta-model Project should be transformed to a dependency
model. The model is a resulting model of the traceability process and it is an instance of the
meta-model of Dependency Area (Figure 3).

Application of Automata Based Approach for Specification of Model Transformation Strategies 177

target application. Such impact analysis was, for example, used for the selection of related
code extracts. Next, fault injection experiments were performed only on these selected parts
of the code. The impact of changes on fault susceptibility of the application was therefore
effectively measured.
The concepts of dependency areas were further generalized (Derezinska & Bluemke, 2005;
Derezinska, 2006). Dependency areas were identified using the sets of propagation rules and
strategies. Selection strategies controlled application of many, possible rules. Bounding
strategies limited the number of elements assigned to the areas. The framework for
dependency area identification was specified as a meta-model that extended the UML meta-
model (Unified Modeling Language, 2008). Propagation rules were specified using the
Object Constraint Language (OCL) (Kleppe & Warmer, 2003).
Based on the framework a new system for traceability in object-oriented projects was
developed (Derezinska & Zawlocki, 2008). The system was intended to be a generic one,
dealing with different project input and output notations, as well as different strategies for
identification of dependency areas among project elements. The high level of flexibility was
achieved using different model transformations. The general process realized within the
framework consists of three main steps performed as the following model transformations:

1. input transformation,
2. traceability transformation,
3. output transformation.

The transformation engines were not limited to the UML approaches. Input and output
transformations were realized using standard QVT (Query/View/Transformation) (MOF
QVT, OMG Spec., 2008) developed as a part of MDA approach (Frankel, 2003). The details
of input and output transformations were presented in (Derezinska & Zawlocki, 2008). The
main model transformation of the system was based on an automata-based approach and its
principles are presented in this paper.

4.2 Subjects of transformation
The general idea of Dependency Areas is based on exploration of possible direct and
indirect relations among elements of a model. Dependency Area is a subset of all possible
elements accessible from an initial element through relations available in the design and
selected according to a given strategy. It can be viewed as a kind of traceability when impact
relations between model elements are concerned.
Traceability analysis is defined as a transformation that maps a project P with a given initial
element IE and traceability strategy Ξ into a resulting dependency area DA

{P, IE, Ξ }→{DA} (1)
where: P Project

IE InitialElement, IE P
Ξ TraceabilityStrategy is a strategy Ξ = <Χ, R, > (see Def. 6),
DA DependencyArea

A project is any object-oriented model. It reflects a general model in order to make the idea
independent of any specific version of a modeling notation. Any model in other notation can
be easily transformed into Project notation. Therefore this assumption does not limit the
generality of the concepts.

An initial element is an element of the project that is a starting point of the traceability analysis.
A traceability strategy is a strategy comprising a set of transformation rules associated with a
given graph of hierarchy. The set of rules can be ordered according to the hierarchy of their
priorities.
Dependency area is an output model consisting of elements assigned to a given dependency
area. A dependency area can be easily transformed to any notation, which is convenient to a
user.

4.3 Meta-model of Project
Any model analyzed in a framework is converted to the internal Project notation. This
process is realized by the input transformation (Derezinska & Zawlocki, 2008). Project
notation is a general notation covering a wide range of possible modeling concepts. The
basic ideas of the Project notation are shown in its meta-model (Figure 2).

LinkAnnotation
targetType
targetName
targetId

ProjectElement
type
name
id

0..n1 0..n1
Project

0..n0..n

+initialElement

+currentElement

Fig. 2. The core of the Project meta-model

Any project is an aggregation of many elements (class ProjectElement). An element has its
name, identifier and a type. Using different values of the type attribute a variety of different
elements can be introduced in Project notation. One of the elements is distinguished as an
initial element. An element of a Project can have any number of annotations (class
LinkAnnotation) referring to a transformation process. Annotations define a set of other
elements related in the project, specifying their identifiers, types or names. In a Project
model, typical UML relations or properties, like generalization or association between
classes, a class attribute or operation, will be converted to objects of class ProjectElement with
appropriate types.
Transformation strategies are designed to operate on any model consistent with the Project
meta-model. Such project can be understood by the executor of traceability rules.

4.4 Dependency Area meta-model
Transformation realized in the traceability framework is a kind of a model-to-model
rephrasing. In the traceabilty process a dependency area is created for a model given in
Project notation and an initial ProjectElement. According to Model Driven Engineering
paradigma, a transformation is specified by rules dealing with meta-models of a source and
target model. Any instance of meta-model Project should be transformed to a dependency
model. The model is a resulting model of the traceability process and it is an instance of the
meta-model of Dependency Area (Figure 3).

Engineering the Computer Science and IT178

ProjectElement

DependencyArea
Link
priority
type

AreaMember
1..n1..n 0..n0..n

+target

Fig. 3. The core of the Dependency Area meta-model

A dependency area consists of a set of area members. Each area member is a specialization
of a ProjectElement of the Project meta-model. An area member can have a number of links
(class Link) to other elements of the dependency area. Links can have their priorities and
types.

Definition 7. Two dependency areas DA1 and DA2 are equivalent if:
1) their initial elements are identical,
2) they consists of the same elements,

x DA1 x DA2

3) any pair of elements associated with a Link in one area is also associated with a Link in the
second area

x DA1 y DA1 L (L=Link(x,y) or L= Link(y,x))
x DA2 y DA2 K (K=Link(x,y) or K= Link(y,x))

In identical dependency areas linking elements are of the same direction in both areas (i.e.
L=Link(x,y) and K=Link(x,y)) and have the same types and priorities.

4.5 Execution of transformation rules
A strategy specified with an automata-based approach can describe a variety of processes.
The general idea of the rule executor was adapted for the traceability process. The goal of
the process is identification of a dependency area. An algorithm of the rule execution is
shown below in a pseudo-code notation. At the beginning of the model transformation, we
should have an input project P with its initial element IE P and a strategy Ξ = <Χ, R, >.
Using mapping , any rule is assigned to a vertex of model Χ and has its priority. Therefore,
the nonempty set of rules R can be ordered according to their priorities. Any rule r from set
R is described by its automaton. A rule can be performed in the context of the current Project
element, it means its conditions and actions of the automaton are evaluated in this context.

1 Map (P, IE , R) {
2 create empty DA
3 add IE to DA
4 WHILE (exist x in DA and x was not considered) {
5 get_first x not considered element from DA
6 FOR (from first r from R, to last r from R) {
7 execRule (r, x)}
8 mark x as considered
9 }
10 }

Where:
DA - a created dependency area,
x - an element (AreaMember) of a given dependency area, and also an element of
Project (see generalization in the meta-model Figure 3),
r - a rule from the set of rules R
get_first from DA - returns the first element from a dependency area according to
the order of adding elements to the area,
loop FOR in 6th line - visits the set of rules R according to the priority order,
execRule(r, x) - calls execution of rule r in the context of element x.

11 execRule(r, x) {
12 IF (precondition of rule r is TRUE)
13 executeNode(r, iN, x)
14 }
15
16 execNode(r, N, x) {
17 sortTransitions (r, N)
18 FOR (from first transition y outgoing node N
19 to last transition y of N) {
20 IF (precondition of transition y is TRUE) {
21 perform_action_of_transition y
22 select node M targeted by transition y
23 execNode(r, M, x)
24 }
25 }
Where:

iN - the initial node of the automaton of rule r,
execNode(r, N, x) - calls execution of the automaton of rule r at node N in the context
of element x,
sortTransitions (r, N) - sorts transitions outgoing node N in the automaton of rule r
according to their priorities,
loop FOR in 18th line - visits the set of transitions outgoing the node N in the
automaton of rule r according to the priority order,
y - a transition outgoing the node N in the automaton of rule r,
M - the node targeted by transition y

While performing an action of a transition, a Project element can be added to the
dependency area. The properties of the identified traceability relation are specified in a Link
object. The type and priority attributes of the link are defined by the target node and a
priority of the transition, accordingly.
Elements assigned to a dependency area are considered by the executor in the order of their
addition. The first one is the initial element indicated in the input project. In result of the
algorithm, the whole set of rules is executed for any project element assigned to the
dependency area. Any element is added only once to the resulting dependency area. If an
action specifies assignment of an already existing element, only additional references
between elements are added to the output dependency model.

Application of Automata Based Approach for Specification of Model Transformation Strategies 179

ProjectElement

DependencyArea
Link
priority
type

AreaMember
1..n1..n 0..n0..n

+target

Fig. 3. The core of the Dependency Area meta-model

A dependency area consists of a set of area members. Each area member is a specialization
of a ProjectElement of the Project meta-model. An area member can have a number of links
(class Link) to other elements of the dependency area. Links can have their priorities and
types.

Definition 7. Two dependency areas DA1 and DA2 are equivalent if:
1) their initial elements are identical,
2) they consists of the same elements,

x DA1 x DA2

3) any pair of elements associated with a Link in one area is also associated with a Link in the
second area

x DA1 y DA1 L (L=Link(x,y) or L= Link(y,x))
x DA2 y DA2 K (K=Link(x,y) or K= Link(y,x))

In identical dependency areas linking elements are of the same direction in both areas (i.e.
L=Link(x,y) and K=Link(x,y)) and have the same types and priorities.

4.5 Execution of transformation rules
A strategy specified with an automata-based approach can describe a variety of processes.
The general idea of the rule executor was adapted for the traceability process. The goal of
the process is identification of a dependency area. An algorithm of the rule execution is
shown below in a pseudo-code notation. At the beginning of the model transformation, we
should have an input project P with its initial element IE P and a strategy Ξ = <Χ, R, >.
Using mapping , any rule is assigned to a vertex of model Χ and has its priority. Therefore,
the nonempty set of rules R can be ordered according to their priorities. Any rule r from set
R is described by its automaton. A rule can be performed in the context of the current Project
element, it means its conditions and actions of the automaton are evaluated in this context.

1 Map (P, IE , R) {
2 create empty DA
3 add IE to DA
4 WHILE (exist x in DA and x was not considered) {
5 get_first x not considered element from DA
6 FOR (from first r from R, to last r from R) {
7 execRule (r, x)}
8 mark x as considered
9 }
10 }

Where:
DA - a created dependency area,
x - an element (AreaMember) of a given dependency area, and also an element of
Project (see generalization in the meta-model Figure 3),
r - a rule from the set of rules R
get_first from DA - returns the first element from a dependency area according to
the order of adding elements to the area,
loop FOR in 6th line - visits the set of rules R according to the priority order,
execRule(r, x) - calls execution of rule r in the context of element x.

11 execRule(r, x) {
12 IF (precondition of rule r is TRUE)
13 executeNode(r, iN, x)
14 }
15
16 execNode(r, N, x) {
17 sortTransitions (r, N)
18 FOR (from first transition y outgoing node N
19 to last transition y of N) {
20 IF (precondition of transition y is TRUE) {
21 perform_action_of_transition y
22 select node M targeted by transition y
23 execNode(r, M, x)
24 }
25 }
Where:

iN - the initial node of the automaton of rule r,
execNode(r, N, x) - calls execution of the automaton of rule r at node N in the context
of element x,
sortTransitions (r, N) - sorts transitions outgoing node N in the automaton of rule r
according to their priorities,
loop FOR in 18th line - visits the set of transitions outgoing the node N in the
automaton of rule r according to the priority order,
y - a transition outgoing the node N in the automaton of rule r,
M - the node targeted by transition y

While performing an action of a transition, a Project element can be added to the
dependency area. The properties of the identified traceability relation are specified in a Link
object. The type and priority attributes of the link are defined by the target node and a
priority of the transition, accordingly.
Elements assigned to a dependency area are considered by the executor in the order of their
addition. The first one is the initial element indicated in the input project. In result of the
algorithm, the whole set of rules is executed for any project element assigned to the
dependency area. Any element is added only once to the resulting dependency area. If an
action specifies assignment of an already existing element, only additional references
between elements are added to the output dependency model.

Engineering the Computer Science and IT180

In this solution, the transformation logic is divided between a hierarchy of rules, a structure
of automata, predicates of conditions, and actions of transitions. The strategy defines in this
way the criteria when and which project elements should be added to the output
dependency area. The element added to the area is not removed from it, unless another area
is created (e.g. for a different initial element or a different set of rules).
Another way of a strategy definition could be also considered - when some elements once
added to the area would be excluded from it in the next step. Such approach was presented
in (Derezinska & Bluemke, 2005), where different strategies were discussed. Rules of
selection strategies were responsible for selecting and adding elements to a dependency
area, whereas rules from bounding strategies decided about removing some, already added
elements from the area. This approach was used in our previous framework for traceability.
According to our experiences, we decided to use only selection strategies which decide
about adding only those elements to an area that should be certainly placed in it. Therefore
the algorithm of rule execution can be quite simple. There is a tradeoff between the
simplicity of the rule executor realization and a homogenous set of rules on the one hand,
and a potential complexity of conditions and actions comprised in the rules on the other
hand.
It should be noted, that there are different sources of nondeterminism in the transformation
process. Many rules with satisfied preconditions can have the same priorities; different
transitions outgoing the same node can be labeled with the same priorities. In such cases the
order of rules and operations is random. It means that there could be different
transformation processes for the same strategy. In general, we are interested in obtaining
unique results. Good strategies should give identical or at least equivalent resulting
dependency areas obtained in any transformation processes.
A strategy is well defined in respect to the transformation process if for any input project P
with an initial element IEP any pair of dependency areas DA obtained as a result of two
transformation processes are always equivalent (Def. 7).

4.6 Example of rule execution
A model transformation will be illustrated on a simple example. It explains the rule
execution process. There is a set of rules defined in an exemplary traceability strategy that
are applied for any element of a project. Let assume, that according to these rules two
elements alphabetically consecutive to a considered element are assigned to the current
Dependency Area.
There are four rules defined in the current strategy alphabeticRules (Figure 4), named from
rule1 to rule4. The priorities have been already assigned to the rules; therefore no additional
hierarchical model is necessary. The rules can be ordered according to their priorities. If two
or more rules have the same priority the order of rule execution is not determined.
Therefore two orders of the rules are possible {rule1, rule2, rule3, rule4} and {rule1, rule3,
rule2, rule4}.

Fig. 4. Exemplary collection of rules.

An input project P1 is shown in an object diagram (Figure 5). The project consists of five
elements {a, b, c, d, e}. Element a is the initial element and is assigned as a first element to
the resulting Dependency Area DA(a).

DA(a) : DependencyArea

a : AreaMember a : ProjectElement

b : ProjectElement

c : ProjectElement

d : ProjectElement

e : ProjectElement

alphabet : Project

Fig. 5. A model of an input project - example P1

Next, after considering all rules for element a, two elements b and c will be assigned to the
created dependency area DA(a) and link to element a (Figure 6). For the simplicity, the
objects of the corresponding AreaMembers are directly connected on the diagram and the
objects of Links between those elements are omitted. Then, element b is considered, because
it was assigned first to DA(a). Its two consecutive elements are c and d. Element c is already
assigned, therefore only Link between b and c is created. Element d and a Link between b and
d are added to DA(a). For element c, element e and Links to d and e are assigned. Finally, a
Link between elements d and e is added to DA(a).
In this case, the given set of rules in respect to the transformation is well defined. An
identical dependency area would be obtained if, for example, element c were considered
before element b.

alphabeticRules :
RulesCollection

rule1 : Rule
- priority= 1 rule2 : Rule

- priority= 2

rule3 : Rule
- priority = 2

rule4 : Rule
- priority = 5

Application of Automata Based Approach for Specification of Model Transformation Strategies 181

In this solution, the transformation logic is divided between a hierarchy of rules, a structure
of automata, predicates of conditions, and actions of transitions. The strategy defines in this
way the criteria when and which project elements should be added to the output
dependency area. The element added to the area is not removed from it, unless another area
is created (e.g. for a different initial element or a different set of rules).
Another way of a strategy definition could be also considered - when some elements once
added to the area would be excluded from it in the next step. Such approach was presented
in (Derezinska & Bluemke, 2005), where different strategies were discussed. Rules of
selection strategies were responsible for selecting and adding elements to a dependency
area, whereas rules from bounding strategies decided about removing some, already added
elements from the area. This approach was used in our previous framework for traceability.
According to our experiences, we decided to use only selection strategies which decide
about adding only those elements to an area that should be certainly placed in it. Therefore
the algorithm of rule execution can be quite simple. There is a tradeoff between the
simplicity of the rule executor realization and a homogenous set of rules on the one hand,
and a potential complexity of conditions and actions comprised in the rules on the other
hand.
It should be noted, that there are different sources of nondeterminism in the transformation
process. Many rules with satisfied preconditions can have the same priorities; different
transitions outgoing the same node can be labeled with the same priorities. In such cases the
order of rules and operations is random. It means that there could be different
transformation processes for the same strategy. In general, we are interested in obtaining
unique results. Good strategies should give identical or at least equivalent resulting
dependency areas obtained in any transformation processes.
A strategy is well defined in respect to the transformation process if for any input project P
with an initial element IEP any pair of dependency areas DA obtained as a result of two
transformation processes are always equivalent (Def. 7).

4.6 Example of rule execution
A model transformation will be illustrated on a simple example. It explains the rule
execution process. There is a set of rules defined in an exemplary traceability strategy that
are applied for any element of a project. Let assume, that according to these rules two
elements alphabetically consecutive to a considered element are assigned to the current
Dependency Area.
There are four rules defined in the current strategy alphabeticRules (Figure 4), named from
rule1 to rule4. The priorities have been already assigned to the rules; therefore no additional
hierarchical model is necessary. The rules can be ordered according to their priorities. If two
or more rules have the same priority the order of rule execution is not determined.
Therefore two orders of the rules are possible {rule1, rule2, rule3, rule4} and {rule1, rule3,
rule2, rule4}.

Fig. 4. Exemplary collection of rules.

An input project P1 is shown in an object diagram (Figure 5). The project consists of five
elements {a, b, c, d, e}. Element a is the initial element and is assigned as a first element to
the resulting Dependency Area DA(a).

DA(a) : DependencyArea

a : AreaMember a : ProjectElement

b : ProjectElement

c : ProjectElement

d : ProjectElement

e : ProjectElement

alphabet : Project

Fig. 5. A model of an input project - example P1

Next, after considering all rules for element a, two elements b and c will be assigned to the
created dependency area DA(a) and link to element a (Figure 6). For the simplicity, the
objects of the corresponding AreaMembers are directly connected on the diagram and the
objects of Links between those elements are omitted. Then, element b is considered, because
it was assigned first to DA(a). Its two consecutive elements are c and d. Element c is already
assigned, therefore only Link between b and c is created. Element d and a Link between b and
d are added to DA(a). For element c, element e and Links to d and e are assigned. Finally, a
Link between elements d and e is added to DA(a).
In this case, the given set of rules in respect to the transformation is well defined. An
identical dependency area would be obtained if, for example, element c were considered
before element b.

alphabeticRules :
RulesCollection

rule1 : Rule
- priority= 1 rule2 : Rule

- priority= 2

rule3 : Rule
- priority = 2

rule4 : Rule
- priority = 5

Engineering the Computer Science and IT182

Fig. 6. A simplified model of dependency area obtained for input project P1.

5. Application of strategy specification to traceability of object-oriented
projects

The concepts of transformation strategy were applied in the realization of the framework for
traceability in object-oriented projects. The principles will be illustrated by examples
concerning a subset of UML. The general architecture of the framework was presented in
(Derezinska & Zawlocki, 2007). Input and output transformations were realized using QVT
approach and existing, supporting it tools (West Team, MDA - Transf User Guide).

5.1 Traceability strategy for a subset of UML
The set of rules can be in general organized in different ways. The main goal of organizing a
set of rules in a hierarchical form is identification of rule priorities and specification of their
preconditions.
Considering a subset of UML, the basic concepts are described using class models
comprising meta-models elements. The rule hierarchy corresponds to a hierarchy of meta-
models. It should be noted, that we do not operate directly on a UML meta-model (Unified
Modeling Language, 2008) but on a Project meta-model. However the necessary elements
from the UML meta-model have the corresponding ProjectElements. Therefore the nodes
contain similar elements as in the UML meta-model. In the UML meta-model one element
can be related via generalization to many base elements. Therefore generalizations in the
UML meta-model do not create tree-like structures.
A small extract of the hierarchy used in experiments illustrates the idea (Figure 7). A root of
the hierarchy is a ModelElement with 0 priority (precisely - any rule which is associated with
this vertex has priority equal to 0). Two other elements of the graph are Classifier and Package
with rule priorities equal to one. A ModelElement can be a Package or a Classifier, and
therefore they constitute the children of this vertex in the graph. A Classifier can be, for
example, an Actor, a Use Case or a Class. Therefore they are the children of the vertex that
corresponds to the Classifier rule. The elements lower in the hierarchy have higher priorities.
It reflects the idea that any class at the meta level is interpreted at the first place as an actor,
a class or a use case. It is less important, that this class is also a classifier. Finally, any class
can be also interpreted as an element of a model.
In general, creating such a hierarchy we assign rule priorities, starting from 0 in the root,
and incrementing the priority for each hierarchy level. The rules are executed in the order of
their priorities. Therefore, for an Actor element in a model, firstly its specialized rule will be

DA(a) : DependencyArea

a : AreaMember

b : AreaMember c : AreaMember

d : AreaMember e : AreaMember

performed, than a rule characteristic to a Classifier, and finally a rule specified for any model
element. The similar situation states for a Class element and UseCase element. A rule
associated with a ModelElement can be applied to any element of a Project model. It has zero
priority i.e. the lowest priority in the strategy. Therefore according to rule executor this rule
will be performed as the last rule for any element of a model.

Fig. 7. Hierarchy of rules

The hierarchies of rules used in the traceability framework were created by hand, basing on
the meta-model hierarchies given in the UML specification. It seems to be possible to
support the construction of a strategy by a tool that analyses a given input meta-model. A
graph with ordering of the rules, and description of selected rules could be derived from the
meta-model in an automatic way, and further possibly modified by a user.
A traceability rule will be explained on two simple examples. Diagram in Figure 8 shows an
automaton specifying a rule of the Class - the rule associated with the Class vertex from the
hierarchy of rules (Figure 7). The rule has a priority equal to 2 and its precondition. The rule
precondition is associated with the initial node of the rule, i.e., the Class node in this
automaton. According to the precondition the rule is performed only if a current element is
an ProjectElement of type Class.

Fig. 8. An example of a traceability rule for metaclass Class

Priority = 2

uml.isClass(current)

Generalization

Priority = 1
PreCondition: uml.hasOwnedElements(current)
Action: var attrs = uml.getAttributes (current, project);

util.addToArea(attrs , area, “ownedAttributes”);

Priority = 2
PreCondition: uml.hasOwnedElements(current)

Action: var ops = uml.getOperations (current, project);

util.addToArea(ops , area, “ownedOperations”);

Priority = 3
PreCondition: uml.hasGeneralizations(current)

Action:
var gen = uml.geGeneralizedElements (current, project);
util.addToArea(gen , area, “generalization”);

Attribute

PreCondition:

Operation

Class

ModelElement
priority = 0

Classifier
priority = 1

Class
priority = 2

Actor
priority = 2

UseCase
priority = 2

Package
priority = 1

Application of Automata Based Approach for Specification of Model Transformation Strategies 183

Fig. 6. A simplified model of dependency area obtained for input project P1.

5. Application of strategy specification to traceability of object-oriented
projects

The concepts of transformation strategy were applied in the realization of the framework for
traceability in object-oriented projects. The principles will be illustrated by examples
concerning a subset of UML. The general architecture of the framework was presented in
(Derezinska & Zawlocki, 2007). Input and output transformations were realized using QVT
approach and existing, supporting it tools (West Team, MDA - Transf User Guide).

5.1 Traceability strategy for a subset of UML
The set of rules can be in general organized in different ways. The main goal of organizing a
set of rules in a hierarchical form is identification of rule priorities and specification of their
preconditions.
Considering a subset of UML, the basic concepts are described using class models
comprising meta-models elements. The rule hierarchy corresponds to a hierarchy of meta-
models. It should be noted, that we do not operate directly on a UML meta-model (Unified
Modeling Language, 2008) but on a Project meta-model. However the necessary elements
from the UML meta-model have the corresponding ProjectElements. Therefore the nodes
contain similar elements as in the UML meta-model. In the UML meta-model one element
can be related via generalization to many base elements. Therefore generalizations in the
UML meta-model do not create tree-like structures.
A small extract of the hierarchy used in experiments illustrates the idea (Figure 7). A root of
the hierarchy is a ModelElement with 0 priority (precisely - any rule which is associated with
this vertex has priority equal to 0). Two other elements of the graph are Classifier and Package
with rule priorities equal to one. A ModelElement can be a Package or a Classifier, and
therefore they constitute the children of this vertex in the graph. A Classifier can be, for
example, an Actor, a Use Case or a Class. Therefore they are the children of the vertex that
corresponds to the Classifier rule. The elements lower in the hierarchy have higher priorities.
It reflects the idea that any class at the meta level is interpreted at the first place as an actor,
a class or a use case. It is less important, that this class is also a classifier. Finally, any class
can be also interpreted as an element of a model.
In general, creating such a hierarchy we assign rule priorities, starting from 0 in the root,
and incrementing the priority for each hierarchy level. The rules are executed in the order of
their priorities. Therefore, for an Actor element in a model, firstly its specialized rule will be

DA(a) : DependencyArea

a : AreaMember

b : AreaMember c : AreaMember

d : AreaMember e : AreaMember

performed, than a rule characteristic to a Classifier, and finally a rule specified for any model
element. The similar situation states for a Class element and UseCase element. A rule
associated with a ModelElement can be applied to any element of a Project model. It has zero
priority i.e. the lowest priority in the strategy. Therefore according to rule executor this rule
will be performed as the last rule for any element of a model.

Fig. 7. Hierarchy of rules

The hierarchies of rules used in the traceability framework were created by hand, basing on
the meta-model hierarchies given in the UML specification. It seems to be possible to
support the construction of a strategy by a tool that analyses a given input meta-model. A
graph with ordering of the rules, and description of selected rules could be derived from the
meta-model in an automatic way, and further possibly modified by a user.
A traceability rule will be explained on two simple examples. Diagram in Figure 8 shows an
automaton specifying a rule of the Class - the rule associated with the Class vertex from the
hierarchy of rules (Figure 7). The rule has a priority equal to 2 and its precondition. The rule
precondition is associated with the initial node of the rule, i.e., the Class node in this
automaton. According to the precondition the rule is performed only if a current element is
an ProjectElement of type Class.

Fig. 8. An example of a traceability rule for metaclass Class

Priority = 2

uml.isClass(current)

Generalization

Priority = 1
PreCondition: uml.hasOwnedElements(current)
Action: var attrs = uml.getAttributes (current, project);

util.addToArea(attrs , area, “ownedAttributes”);

Priority = 2
PreCondition: uml.hasOwnedElements(current)

Action: var ops = uml.getOperations (current, project);

util.addToArea(ops , area, “ownedOperations”);

Priority = 3
PreCondition: uml.hasGeneralizations(current)

Action:
var gen = uml.geGeneralizedElements (current, project);
util.addToArea(gen , area, “generalization”);

Attribute

PreCondition:

Operation

Class

ModelElement
priority = 0

Classifier
priority = 1

Class
priority = 2

Actor
priority = 2

UseCase
priority = 2

Package
priority = 1

Engineering the Computer Science and IT184

In the rule automaton there are three further nodes: Attribute, Operation and Generalization.
The Class node is connected with transitions to these nodes. Any transition is labeled with a
priority, a precondition and an action. For example, a transition to Attribute has priority
equal 1, which is the lowest in the set of the edges outgoing from Class node. The
precondition checks whether the current Project element is owned by the class that
originates the transition. The action is responsible for adding the targeted attribute(s) to the
dependency area of the considered class.
It should be noted, that there is no node corresponding to an association in the rule of the
Class. A class is in UML specified as a classifier. Therefore in this simple strategy the node of
an association will be handled in the rule of the Classifier (Figure 9). Such a rule will be
performed later for any class, according to the rule priorities.
According to the precondition, the rule shown in Fig 9. can be applied for any initial element
of the Classifier type. In this example Classifier node is connected to two nodes: Association
and ClassifierWithTheSameName. The first transition with priority equal 1 is responsible for
adding elements connected via association with a current project element. The second
transition is labeled with an action that inserts to the dependency area an element having
the same name as the currently considered classifier. The precondition of the transition is
always satisfied (equal true), but the action is an empty operation if no elements with the
same names exists. The automaton can be easily extended with other transitions and more
complicated actions.

Fig. 9. An example of a traceability rule for metaclass Classifier

5.2 Realization of strategies
Any strategy can be specified in the XML format, comprising full descriptions of all
automata of the strategy. For any automaton, all its features (identifier, priority, staring
node, and the relation to an appropriate element from the meta-model hierarchy), as well as
all nodes and transitions are specified with appropriate XML tags. A part of an exemplary
specification is shown below. A rule starts with its condition - i.e. a condition of the initial
node of the rule automaton. Next, all nodes of the rule are specified. For each node a list of
outgoing edges is given.

Priority = 1

uml.isClassifier(current)
&& current == initial

ClassifierWithTheSameName

Priority = 1
PreCondition: uml.hasAssociation(current)

Action: var assoc = uml.getAssociatedElements (current, project);

util.addToArea(assoc , area, “association”);

Priority = 2
PreCondition: True

Action: var classifierName =util.filterElementsName(
uml.filterClassifier (elements), current);

util.addToArea(classifierName, area, “classifierWithTheSAmeName”);

Association

PreCondition:

Classifier

<rules>
<rule id="rule-0" priority="0" initialNode="rule-0.node-1" name="modelElement" >
<condition>
 ...
</condition>
<node id="rule-0.node-1" name="modelElement" rule="rule-0">
 <edge id="rule0.node-1.edge-1" target="rule-0.node-2" source="rule-0.node-1"
priority="1">
 <action>

 </action>
 <condition>

 /condition>
 </edge>
</node>
<node id="rule-0.node-2" name="alwaysTrue" rule="rule-0">
</node>
</rule>
<rule id="rule-1" priority="1" initialNode="rule-1.node-1" name="classifier">
<condition>

</condition>
<node id="rule-1.node-1" name="classifier" rule="rule-1">
<edge id="rule1.node-1.edge-1" target="rule-1.node-2" source="rule-1.node-1" priority="1">
 <action>
 ...
 </action>
....

Actions and conditions associated with nodes and transitions were written in a script
language. In the implemented solution, instances of Project and Dependency Area classes
are passed to the context of the script language. Therefore we can call directly those classes
in the specification of actions and conditions. The methods of these classes can be executed;
as well the values of public attributes can be got or updated. Functionality of the script
language can be extended by other objects added to the context.
For this purpose JavaScript and Rhino library were used (Documentation of Rhino). Rhino
library enables calling of scripts implemented in JavaScript directly from the Java code. For
example, a pre-condition of a rule can be specified in the following way:

<condition>
 <script>

<![CDATA[uml.isClassifier(current) && current == initial]]>
 </script>
</condition>

Application of Automata Based Approach for Specification of Model Transformation Strategies 185

In the rule automaton there are three further nodes: Attribute, Operation and Generalization.
The Class node is connected with transitions to these nodes. Any transition is labeled with a
priority, a precondition and an action. For example, a transition to Attribute has priority
equal 1, which is the lowest in the set of the edges outgoing from Class node. The
precondition checks whether the current Project element is owned by the class that
originates the transition. The action is responsible for adding the targeted attribute(s) to the
dependency area of the considered class.
It should be noted, that there is no node corresponding to an association in the rule of the
Class. A class is in UML specified as a classifier. Therefore in this simple strategy the node of
an association will be handled in the rule of the Classifier (Figure 9). Such a rule will be
performed later for any class, according to the rule priorities.
According to the precondition, the rule shown in Fig 9. can be applied for any initial element
of the Classifier type. In this example Classifier node is connected to two nodes: Association
and ClassifierWithTheSameName. The first transition with priority equal 1 is responsible for
adding elements connected via association with a current project element. The second
transition is labeled with an action that inserts to the dependency area an element having
the same name as the currently considered classifier. The precondition of the transition is
always satisfied (equal true), but the action is an empty operation if no elements with the
same names exists. The automaton can be easily extended with other transitions and more
complicated actions.

Fig. 9. An example of a traceability rule for metaclass Classifier

5.2 Realization of strategies
Any strategy can be specified in the XML format, comprising full descriptions of all
automata of the strategy. For any automaton, all its features (identifier, priority, staring
node, and the relation to an appropriate element from the meta-model hierarchy), as well as
all nodes and transitions are specified with appropriate XML tags. A part of an exemplary
specification is shown below. A rule starts with its condition - i.e. a condition of the initial
node of the rule automaton. Next, all nodes of the rule are specified. For each node a list of
outgoing edges is given.

Priority = 1

uml.isClassifier(current)
&& current == initial

ClassifierWithTheSameName

Priority = 1
PreCondition: uml.hasAssociation(current)

Action: var assoc = uml.getAssociatedElements (current, project);

util.addToArea(assoc , area, “association”);

Priority = 2
PreCondition: True

Action: var classifierName =util.filterElementsName(
uml.filterClassifier (elements), current);

util.addToArea(classifierName, area, “classifierWithTheSAmeName”);

Association

PreCondition:

Classifier

<rules>
<rule id="rule-0" priority="0" initialNode="rule-0.node-1" name="modelElement" >
<condition>
 ...
</condition>
<node id="rule-0.node-1" name="modelElement" rule="rule-0">
 <edge id="rule0.node-1.edge-1" target="rule-0.node-2" source="rule-0.node-1"
priority="1">
 <action>

 </action>
 <condition>

 /condition>
 </edge>
</node>
<node id="rule-0.node-2" name="alwaysTrue" rule="rule-0">
</node>
</rule>
<rule id="rule-1" priority="1" initialNode="rule-1.node-1" name="classifier">
<condition>

</condition>
<node id="rule-1.node-1" name="classifier" rule="rule-1">
<edge id="rule1.node-1.edge-1" target="rule-1.node-2" source="rule-1.node-1" priority="1">
 <action>
 ...
 </action>
....

Actions and conditions associated with nodes and transitions were written in a script
language. In the implemented solution, instances of Project and Dependency Area classes
are passed to the context of the script language. Therefore we can call directly those classes
in the specification of actions and conditions. The methods of these classes can be executed;
as well the values of public attributes can be got or updated. Functionality of the script
language can be extended by other objects added to the context.
For this purpose JavaScript and Rhino library were used (Documentation of Rhino). Rhino
library enables calling of scripts implemented in JavaScript directly from the Java code. For
example, a pre-condition of a rule can be specified in the following way:

<condition>
 <script>

<![CDATA[uml.isClassifier(current) && current == initial]]>
 </script>
</condition>

Engineering the Computer Science and IT186

In this JavaScript code we can call the objects passed in the execution context: uml - a class
supporting selected OCL operations, current - a current element of the considered project,
initial - an initial element of the project.
In the similar way actions associated with transitions can be specified. For example, three
actions of a rule are shown below. They used methods of object log - to log messages on a
console, uml - to access model elements according to UML relations, and util - to manipulate
on a dependency area.

<action>
 <script>

<![CDATA[log.debug("rule1.node-1.edge-1 : start");
var assoc = uml.getAssociatedElements(current, project);
util.addToArea(assoc , area, "association");
]]>

 </script>
</action>

Actions and conditions written in JavaScript are included in XML file. They can be executed
directly during a program run, as they are executed in the Rhino engine. Therefore the
strategy can be easily changed by rewriting only those scripts. The executed code will be
changed without modifying and recompiling the desired application.

5.3 Dependency Area Example
After specifying the input transformation to the model Project and the traceability
transformation, we can use the framework. Dependency areas were created for a set of
projects assuming different initial elements and different traceability strategies.
For the brevity reasons, we illustrate the idea using a simple plug-in for input the subset of
UML and an exemplary traceability strategy dealing with this subset. Model elements not
considered by the input transformation will be omitted during traceability analysis.
As an example, a simple Cinema system will be discussed. An actor of the system - Client can
review the repertoire of the cinema and buy a ticket of a selected film (Figure 10).

Fig. 10. Use cases of Cinema system

The system is divided into several packages. Classes Client and Ticket are included in Client
package, and classes Cinema, Repertoire and Movie belong to Cinema package. Selected
elements of the project used in this example are shown in Figure 11.

Client
<<initial>>

reviewRepertoire

buyTicket

Fig. 11. Part of the Cinema class model

Let us assume that actor Client is an initial element. After application of a traceability
strategy a dependency area is generated. The object diagram of the area is shown in Figure
13. For the simplicity, objects of class Link are omitted and the links between objects are
labeled by the types of traceability relations. Precisely, the labels are values of the type
attribute of Link objects (see meta-model in Figure 3). We can observe that several objects are
related according to the similarity of names, for example, actor Client and class Client. If
relations based on the name similarities were excluded, the resulting dependency area for
the actor Client would include only its use cases linked via associations.
Another dependency area will be created if Cinema package is selected as the initial element
(Figure 12). In this case, most of the relations reflect simple ownership relations of the UML
meta-model elements. A dependency area is simpler and has a tree-like structure. All
elements were included into dependency area according to one unique sequence of rules. In
the case of Figure 13 there are several paths connecting the initial element with some
elements, like class Repertoire, operations reviewRepertoire, buyTicket, attribute Client. It means
that the same element was classified to this dependency area based on different sets of rules.

Cinema

Client Client

+buyTicket()

Ticket
+price
+Client

*

Repertoire

+review()

Movie

+title

Cinema

+name
+reviewRepertoire()

*

*

PriceableItem

+reviewRepertoire()

Application of Automata Based Approach for Specification of Model Transformation Strategies 187

In this JavaScript code we can call the objects passed in the execution context: uml - a class
supporting selected OCL operations, current - a current element of the considered project,
initial - an initial element of the project.
In the similar way actions associated with transitions can be specified. For example, three
actions of a rule are shown below. They used methods of object log - to log messages on a
console, uml - to access model elements according to UML relations, and util - to manipulate
on a dependency area.

<action>
 <script>

<![CDATA[log.debug("rule1.node-1.edge-1 : start");
var assoc = uml.getAssociatedElements(current, project);
util.addToArea(assoc , area, "association");
]]>

 </script>
</action>

Actions and conditions written in JavaScript are included in XML file. They can be executed
directly during a program run, as they are executed in the Rhino engine. Therefore the
strategy can be easily changed by rewriting only those scripts. The executed code will be
changed without modifying and recompiling the desired application.

5.3 Dependency Area Example
After specifying the input transformation to the model Project and the traceability
transformation, we can use the framework. Dependency areas were created for a set of
projects assuming different initial elements and different traceability strategies.
For the brevity reasons, we illustrate the idea using a simple plug-in for input the subset of
UML and an exemplary traceability strategy dealing with this subset. Model elements not
considered by the input transformation will be omitted during traceability analysis.
As an example, a simple Cinema system will be discussed. An actor of the system - Client can
review the repertoire of the cinema and buy a ticket of a selected film (Figure 10).

Fig. 10. Use cases of Cinema system

The system is divided into several packages. Classes Client and Ticket are included in Client
package, and classes Cinema, Repertoire and Movie belong to Cinema package. Selected
elements of the project used in this example are shown in Figure 11.

Client
<<initial>>

reviewRepertoire

buyTicket

Fig. 11. Part of the Cinema class model

Let us assume that actor Client is an initial element. After application of a traceability
strategy a dependency area is generated. The object diagram of the area is shown in Figure
13. For the simplicity, objects of class Link are omitted and the links between objects are
labeled by the types of traceability relations. Precisely, the labels are values of the type
attribute of Link objects (see meta-model in Figure 3). We can observe that several objects are
related according to the similarity of names, for example, actor Client and class Client. If
relations based on the name similarities were excluded, the resulting dependency area for
the actor Client would include only its use cases linked via associations.
Another dependency area will be created if Cinema package is selected as the initial element
(Figure 12). In this case, most of the relations reflect simple ownership relations of the UML
meta-model elements. A dependency area is simpler and has a tree-like structure. All
elements were included into dependency area according to one unique sequence of rules. In
the case of Figure 13 there are several paths connecting the initial element with some
elements, like class Repertoire, operations reviewRepertoire, buyTicket, attribute Client. It means
that the same element was classified to this dependency area based on different sets of rules.

Cinema

Client Client

+buyTicket()

Ticket
+price
+Client

*

Repertoire

+review()

Movie

+title

Cinema

+name
+reviewRepertoire()

*

*

PriceableItem

+reviewRepertoire()

Engineering the Computer Science and IT188

Fig. 12. Dependency relations for initial element associated with package Cinema

6. Conclusions

Automata-based approach for the specification of strategies was presented in this paper.
The powerful and flexible mechanism for describing a wide scope of issues was introduced.
The approach combines the hierarchy of basic concepts, similar to a meta-model graph, with
sets of rules. An automaton defining a single rule is accompanied by conditions and actions
that can be specified in a desired notation. In this way a strategy is separated into different
abstraction levels, supporting the process of specification refinement and modification.
The automata-based strategy was applied in the generic framework for traceability of object-
oriented project. An engine for rule interpretation was realized. The traceability logic can be
described in the strategy by selecting appropriate priority levels of the rule hierarchy,
creating the set of automata and finally specifying details in conditions and actions. An
instance of the framework was implemented. It realized traceability rules based on the
dependency area concepts. Exemplary strategies were specified for the subsets of UML
models.
Flexibility of the methodology is very beneficial because the same rule execution engine can
be used in many cases and strategies can be easily modified. On the other hand, the
presented approach faced some problems. Preparation of a detailed specification of a non-
trivial strategy requires a lot of work. It could be profitable if a strategy is used many times
and the modified strategies are created as, for example, some variants of another, already
specified strategy.

Repertoire : ProjectElement

type = Class

Movie : ProjectElement
type = Class

title : ProjectElement
type = Attribute review : ProjectElement

area : DependencyArea

type = Package
Cinema : ProjectElement

+initial

classifierWithTheSameName

reviewRepertoire : ProjectElement
type = Operation

type = Operation name : ProjectElement
type = Attribute

ownedAttribute
Cinema : ProjectElement

type = Class

nestedElement

nestedElement

ownedAttribute
ownedOperation ownedOperation

Fi
g.

 1
3.

 D
ep

en
de

nc
y

re
la

tio
ns

 fo
r i

ni
tia

l e
le

m
en

t a
ss

oc
ia

te
d

w
ith

 a
ct

or
 C

lie
nt

ar
ea

 :
De

pe
nd

en
cy

Ar
ea

Cl
ie

nt
 :

Pr
oj

ec
tE

le
m

en
t

ty
pe

 =
 A

ct
or+

st
ar

tin
g

bu
yT

ick
et

 :
Pr

oj
ec

tE
le

m
en

t

ty
pe

 =
 U

se
Ca

se

re
vi

ew
Re

pe
rto

ire
 :

Pr
oj

ec
tE

le
m

en
t

ty
pe

 =
 U

se
Ca

se

Re
pe

rto
ire

 :
Pr

oj
ec

tE
le

m
en

t

ty
pe

 =
 C

la
ss

Cl
ie

nt
 :

Pr
oj

ec
tE

le
m

en
t

ty
pe

 =
 A

ttr
ib

ut
e

Cl
ie

nt
 :

Pr
oj

ec
tE

le
m

en
t

ty
pe

 =
 P

ac
ka

ge

bu
yT

ick
et

 :
Pr

oj
ec

tE
le

m
en

t

ty
pe

 =
 O

pe
ra

tio
n

re
vi

ew
Re

pe
rto

ire
 :

Pr
oj

ec
tE

le
m

en
t

ty
pe

 =
 O

pe
ra

tio
n

ow
ne

dO
pe

ra
tio

n

as
so

cia
tio

n
as

so
cia

tio
n

cla
ss

ifie
rW

ith
Th

eS
am

eN
am

e

pa
ck

ag
eW

ith
Th

eS
am

Na
m

e

at
tr
ib

ut
eW

ith
Th

eS
am

Na
m

e

re
vi

ew
Re

pe
rto

ire
 :

Pr
oj

ec
tE

le
m

en
t

ty
pe

 =
 O

pe
ra

tio
n

op
er

at
io

nW
ith

Th
eS

am
eN

am
e

op
er

at
io

nW
ith

Th
eS

am
eN

am
e

Pr
ice

ab
le

Ite
m

 :
Pr

oj
ec

tE
le

m
en

t

ty
pe

 =
 C

la
ss

Ti
ck

et
 :

Pr
oj

ec
tE

le
m

en
t

ty
pe

 =
 C

la
ss pr

ice
In

PL
N

: P
ro

je
ct

El
em

en
t

ty
pe

 =
 A

ttr
ib

ut
e

ne
st

ed
El

em
en

t

ne
st

ed
El

em
en

t

ge
ne

ra
liz

at
io

n
ow

ne
dA

ttr
ib

ut
eow

ne
dA

ttr
ib

ut
e

op
er

at
io

nW
ith

Th
eS

am
eN

am
e

pr
ic

e:
Pr

oj
ec

tE
le

m
en

t

C
lie

nt
:P

ro
je

ct
El

em
e

+i
ni

tia
l

Application of Automata Based Approach for Specification of Model Transformation Strategies 189

Fig. 12. Dependency relations for initial element associated with package Cinema

6. Conclusions

Automata-based approach for the specification of strategies was presented in this paper.
The powerful and flexible mechanism for describing a wide scope of issues was introduced.
The approach combines the hierarchy of basic concepts, similar to a meta-model graph, with
sets of rules. An automaton defining a single rule is accompanied by conditions and actions
that can be specified in a desired notation. In this way a strategy is separated into different
abstraction levels, supporting the process of specification refinement and modification.
The automata-based strategy was applied in the generic framework for traceability of object-
oriented project. An engine for rule interpretation was realized. The traceability logic can be
described in the strategy by selecting appropriate priority levels of the rule hierarchy,
creating the set of automata and finally specifying details in conditions and actions. An
instance of the framework was implemented. It realized traceability rules based on the
dependency area concepts. Exemplary strategies were specified for the subsets of UML
models.
Flexibility of the methodology is very beneficial because the same rule execution engine can
be used in many cases and strategies can be easily modified. On the other hand, the
presented approach faced some problems. Preparation of a detailed specification of a non-
trivial strategy requires a lot of work. It could be profitable if a strategy is used many times
and the modified strategies are created as, for example, some variants of another, already
specified strategy.

Repertoire : ProjectElement

type = Class

Movie : ProjectElement
type = Class

title : ProjectElement
type = Attribute review : ProjectElement

area : DependencyArea

type = Package
Cinema : ProjectElement

+initial

classifierWithTheSameName

reviewRepertoire : ProjectElement
type = Operation

type = Operation name : ProjectElement
type = Attribute

ownedAttribute
Cinema : ProjectElement

type = Class

nestedElement

nestedElement

ownedAttribute
ownedOperation ownedOperation

Fi
g.

 1
3.

 D
ep

en
de

nc
y

re
la

tio
ns

 fo
r i

ni
tia

l e
le

m
en

t a
ss

oc
ia

te
d

w
ith

 a
ct

or
 C

lie
nt

ar
ea

 :
De

pe
nd

en
cy

Ar
ea

Cl
ie

nt
 :

Pr
oj

ec
tE

le
m

en
t

ty
pe

 =
 A

ct
or+

st
ar

tin
g

bu
yT

ick
et

 :
Pr

oj
ec

tE
le

m
en

t

ty
pe

 =
 U

se
Ca

se

re
vi

ew
Re

pe
rto

ire
 :

Pr
oj

ec
tE

le
m

en
t

ty
pe

 =
 U

se
Ca

se

Re
pe

rto
ire

 :
Pr

oj
ec

tE
le

m
en

t

ty
pe

 =
 C

la
ss

Cl
ie

nt
 :

Pr
oj

ec
tE

le
m

en
t

ty
pe

 =
 A

ttr
ib

ut
e

Cl
ie

nt
 :

Pr
oj

ec
tE

le
m

en
t

ty
pe

 =
 P

ac
ka

ge

bu
yT

ick
et

 :
Pr

oj
ec

tE
le

m
en

t

ty
pe

 =
 O

pe
ra

tio
n

re
vi

ew
Re

pe
rto

ire
 :

Pr
oj

ec
tE

le
m

en
t

ty
pe

 =
 O

pe
ra

tio
n

ow
ne

dO
pe

ra
tio

n

as
so

cia
tio

n
as

so
cia

tio
n

cla
ss

ifie
rW

ith
Th

eS
am

eN
am

e

pa
ck

ag
eW

ith
Th

eS
am

Na
m

e

at
tr
ib

ut
eW

ith
Th

eS
am

Na
m

e

re
vi

ew
Re

pe
rto

ire
 :

Pr
oj

ec
tE

le
m

en
t

ty
pe

 =
 O

pe
ra

tio
n

op
er

at
io

nW
ith

Th
eS

am
eN

am
e

op
er

at
io

nW
ith

Th
eS

am
eN

am
e

Pr
ice

ab
le

Ite
m

 :
Pr

oj
ec

tE
le

m
en

t

ty
pe

 =
 C

la
ss

Ti
ck

et
 :

Pr
oj

ec
tE

le
m

en
t

ty
pe

 =
 C

la
ss pr

ice
In

PL
N

: P
ro

je
ct

El
em

en
t

ty
pe

 =
 A

ttr
ib

ut
e

ne
st

ed
El

em
en

t

ne
st

ed
El

em
en

t

ge
ne

ra
liz

at
io

n
ow

ne
dA

ttr
ib

ut
eow

ne
dA

ttr
ib

ut
e

op
er

at
io

nW
ith

Th
eS

am
eN

am
e

pr
ic

e:
Pr

oj
ec

tE
le

m
en

t

C
lie

nt
:P

ro
je

ct
El

em
e

+i
ni

tia
l

Engineering the Computer Science and IT190

Future work should be aimed at further verification of the approach in different
experiments. Specification of various strategies, as well as input transformations for
different sets of modeling elements can be applied in experiments using the framework. In
the strategies, various intentions of developers can be taken into account, revealing relations
between model elements that are not directly expressed in a model.
Another research direction is an application of the automata-based specification of a model
transformation strategy in other kinds of model manipulations, like merging of models,
weaving of model aspects, model refinement, etc.

7. References

Balogh, A. & Varro, D. (2006). Advanced model transformation language constructs in the
VIATRA2 framework, Proceedings of the ACM symposium on Applied Computing
(SAC'06), pp. 1280-1287, ISBN: 1-59593-108-2, Dijon France, April 2006, ACM Inc.
New York, NY, USA

Bensh, S.; Bordhin, H.; Holzer, M. & Kutrib, M. (2008). Deterministic Input-Reversal and
Input-Revolving Finite Automata, Proceedings of International Conference on Language
and Automata Theory and Applications (LATA 2008), LNCS 5196, pp. 113-124, ISBN
978-3-540-88281-7, Tarragona Spain, March 2008, Springer, Berlin Heidelberg

Buttner, F. & Bauerdic, H. (2006). Realizing UML Model Transformations with USE,
Proceedings of Workshop on OCL for (Meta-)Models in Multiple Application Domains (at
Models 2006), pp. 96-110, ISSN 1430-211X, Genova, Italy, Oct. 2006, Technical
Report of the Technische Universität Dresden

Czarnecki, K. & Helsen, S. (2006). Feature-based survey of model transformation
approaches, IBM System Journal, Vol. 45, No 3 pp. 621-645, ISSN 0018-8670

Dayan D., et al. (2008). MDA PIM-to PIM transformation using extended automata,
Computer Modelling and New Technologies, Vol. 12, No. 1, pp. 65-76, ISSN 1407-2742

Deo, N. (1974). Graph Theory with Applications to Engineering and Computer Science, Prentice-
Hall Inc., ISBN 0133634736, Upper Saddle River, NJ, USA

Derezińska, A. (2004). Reasoning about Traceability in Imperfect UML Projects, Foundations
on Computing and Decision Sciences, Vol. 29, No. 1-2, pp. 43-58, ISSN 0867-6356

Derezińska, A. & Bluemke, I. (2005). A Framework for Identification of Dependency Areas
in UML Designs, Proceedings of the 9th IASTED International Conference on Software
Engineering and Applications SEA'05, pp. 177-182, ISBN 0-88986-529-9, Phoenix,
Arizona, USA, Nov. 2005, Acta Press, Clagary Canada

Derezińska, A. (2006). Specification of Dependency Areas in UML Designs, Annales UMCS
Informatica, AI 4, Vol. 4, pp. 72-85, ISSN 1732-1360

Derezińska, A. & Zawłocki, J. (2007). Generic framework for automatic traceability in object-
oriented designs, Annals of Gdańsk University of Technology Faculty of ETI, No 5, pp.
291-298 , ISBN 978-83-60779-01-9 (in polish)

Derezińska, A. & J. Zawłocki, J. (2008). Towards Model Transformation - A Case Study of
Generic Framework for Traceability in Object-Oriented Designs, IADIS Inter.
Journal on Computer Science and Information Systems, Vol 3, No 1 April 2008, pp. 29-
43, ISSN: 1646-3692

Documentation of RHINO, http://www.mozilla.org/rhino/doc.html

Egyed, A. (2004). Consistent Adaptation and Evolution of Class Diagrams during
Refinement, Proceedings 7th Inter. Conf. on Fundamental Approaches to Software
Engineering (FASE), LNCS 2984, pp. 37-53, ISBN 3-540-21305-8, Barcelona, Spain,
March 2004, Springer, Berlin Heidelberg

Ehring, K. & Giese, H. (Eds.) (2007). Proc of the 6th Workshop on Graph Transformation and
Visual Modeling Techniques (GT-VMT), Electronic Communications of the EASST,
ISSN 1863-2122, vol. 10

Ehring K.; Guerra E. & de Lara, J., at al. (2005) Transformation by graph transformation: a
comparative study, Proccedings of the Model Transformation in Practice Workshop at
MoDELS 05, Montego Bay, Jamaica, October 2005

France, R. & Rumpe, B. (2007). Model-driven Development of Complex Software: A
Research Roadmap, Proceedings of Future of Software Engineering (FOSE at
ICSE'07), pp. 37-54, ISBN: 0-7695-2829-5, Minneaplois, Minnesota, May 2007, IEEE
Comp. Soc. Washington, DC, USA

Frankel, D. S. (2003). Model Driven Architecture: Appling MDA to enterprise computing, Wiley
Pub. Comp., ISBN 0-471-31920-1, Indianapolis, Indiana

Hopkroft J., Motwani R. & Ullman J. (2000) Introduction to automata Theory, Languages, and
Computation, 2nd ed., Addison-Wesley, ISBN-10: 0201441241

Jouault F. & Kurtev I. (2005). Transforming Models with the ATL, Proccedings of the Model
Transformation in Practice Workshop at MoDELS 05, LNCS 3844, pp. 128-138, ISBN 978-
3-540-31780-7, Montego Bay, Jamaica, October 2005, Springer, Berlin Heidelberg

Kleppe, A. G. & Warmer, J. (2003). The Object Constraint Language: Getting your models ready
for MDA, Addison-Wesley 2nd ed, ISBN 0321179366, Boston MA

Kolovos, D.S. at al. (2007). Update Transformations in the Small with the Epsilon Wizard
Language, Journal of Object Technology, Vol. 6, No. 9, Special Issue TOOLS EUROPE
Oct. 07, pp. 53-69, ISSN 1660-1769

Lakhnech, Y.; Mikk, E. & Siegel M. (1997). Hierarchical Automata as Model for Statecharts.
Advances in Computing Science - ASIAN '97, Proceedings of 3rd Asian Computing
Science Conference, LNCS 1345, pp. 181-196, ISBN 978-3-540-63875-9, Kathmandu,
Nepal, Dec. 1997, Springer, Berlin Heidelberg

Letelier, P. (2002). A Framework for Requirements Traceability in UML-based Projects, 1st
Int. Workshop on Traceability in Emerging Forms of Software Engineering by IEEE Conf.
on ASE, Sept. 2002, Edinburgh UK
http://www.soi.city.ac.uk/~zisman/WSProgramme.html

Maeder P. et al. (2006). Traceability for managing evolutionary change, Proceedings of 15th
Software Engeenierin Data Engeeniering SEDE (ICSA), pp. 1-8, ISBN: 978-1-880843-59-
5, Los Angeles USA, July 2006, ISCA, Cary, North Carolina USA

McMillan, K.: Cadence SMV. http://www.kenmcmil.com/ (visited 2009)
MDA Guide, Ver. 1.0.1, Object Management Group Document omg/2003-06-01 (2003)
Mens, T. & van Gorp P. (2006). Taxonomy of model transformation, Proceedings of the

International Workshop on Graph and Model Transformation (GraMoT 2005), Tallin,
Estonia, Sept. 2005, ENTCS, Vol. 152 , March 2006, pp. 125-142, ISSN: 1571-0661,
Elsevier

Meta Object Facility (MOF) , OMG Document, formal/2006-01-01, (2006)
MOF QVT Specification, OMG Document formal/2008-04-03 (2008)

Application of Automata Based Approach for Specification of Model Transformation Strategies 191

Future work should be aimed at further verification of the approach in different
experiments. Specification of various strategies, as well as input transformations for
different sets of modeling elements can be applied in experiments using the framework. In
the strategies, various intentions of developers can be taken into account, revealing relations
between model elements that are not directly expressed in a model.
Another research direction is an application of the automata-based specification of a model
transformation strategy in other kinds of model manipulations, like merging of models,
weaving of model aspects, model refinement, etc.

7. References

Balogh, A. & Varro, D. (2006). Advanced model transformation language constructs in the
VIATRA2 framework, Proceedings of the ACM symposium on Applied Computing
(SAC'06), pp. 1280-1287, ISBN: 1-59593-108-2, Dijon France, April 2006, ACM Inc.
New York, NY, USA

Bensh, S.; Bordhin, H.; Holzer, M. & Kutrib, M. (2008). Deterministic Input-Reversal and
Input-Revolving Finite Automata, Proceedings of International Conference on Language
and Automata Theory and Applications (LATA 2008), LNCS 5196, pp. 113-124, ISBN
978-3-540-88281-7, Tarragona Spain, March 2008, Springer, Berlin Heidelberg

Buttner, F. & Bauerdic, H. (2006). Realizing UML Model Transformations with USE,
Proceedings of Workshop on OCL for (Meta-)Models in Multiple Application Domains (at
Models 2006), pp. 96-110, ISSN 1430-211X, Genova, Italy, Oct. 2006, Technical
Report of the Technische Universität Dresden

Czarnecki, K. & Helsen, S. (2006). Feature-based survey of model transformation
approaches, IBM System Journal, Vol. 45, No 3 pp. 621-645, ISSN 0018-8670

Dayan D., et al. (2008). MDA PIM-to PIM transformation using extended automata,
Computer Modelling and New Technologies, Vol. 12, No. 1, pp. 65-76, ISSN 1407-2742

Deo, N. (1974). Graph Theory with Applications to Engineering and Computer Science, Prentice-
Hall Inc., ISBN 0133634736, Upper Saddle River, NJ, USA

Derezińska, A. (2004). Reasoning about Traceability in Imperfect UML Projects, Foundations
on Computing and Decision Sciences, Vol. 29, No. 1-2, pp. 43-58, ISSN 0867-6356

Derezińska, A. & Bluemke, I. (2005). A Framework for Identification of Dependency Areas
in UML Designs, Proceedings of the 9th IASTED International Conference on Software
Engineering and Applications SEA'05, pp. 177-182, ISBN 0-88986-529-9, Phoenix,
Arizona, USA, Nov. 2005, Acta Press, Clagary Canada

Derezińska, A. (2006). Specification of Dependency Areas in UML Designs, Annales UMCS
Informatica, AI 4, Vol. 4, pp. 72-85, ISSN 1732-1360

Derezińska, A. & Zawłocki, J. (2007). Generic framework for automatic traceability in object-
oriented designs, Annals of Gdańsk University of Technology Faculty of ETI, No 5, pp.
291-298 , ISBN 978-83-60779-01-9 (in polish)

Derezińska, A. & J. Zawłocki, J. (2008). Towards Model Transformation - A Case Study of
Generic Framework for Traceability in Object-Oriented Designs, IADIS Inter.
Journal on Computer Science and Information Systems, Vol 3, No 1 April 2008, pp. 29-
43, ISSN: 1646-3692

Documentation of RHINO, http://www.mozilla.org/rhino/doc.html

Egyed, A. (2004). Consistent Adaptation and Evolution of Class Diagrams during
Refinement, Proceedings 7th Inter. Conf. on Fundamental Approaches to Software
Engineering (FASE), LNCS 2984, pp. 37-53, ISBN 3-540-21305-8, Barcelona, Spain,
March 2004, Springer, Berlin Heidelberg

Ehring, K. & Giese, H. (Eds.) (2007). Proc of the 6th Workshop on Graph Transformation and
Visual Modeling Techniques (GT-VMT), Electronic Communications of the EASST,
ISSN 1863-2122, vol. 10

Ehring K.; Guerra E. & de Lara, J., at al. (2005) Transformation by graph transformation: a
comparative study, Proccedings of the Model Transformation in Practice Workshop at
MoDELS 05, Montego Bay, Jamaica, October 2005

France, R. & Rumpe, B. (2007). Model-driven Development of Complex Software: A
Research Roadmap, Proceedings of Future of Software Engineering (FOSE at
ICSE'07), pp. 37-54, ISBN: 0-7695-2829-5, Minneaplois, Minnesota, May 2007, IEEE
Comp. Soc. Washington, DC, USA

Frankel, D. S. (2003). Model Driven Architecture: Appling MDA to enterprise computing, Wiley
Pub. Comp., ISBN 0-471-31920-1, Indianapolis, Indiana

Hopkroft J., Motwani R. & Ullman J. (2000) Introduction to automata Theory, Languages, and
Computation, 2nd ed., Addison-Wesley, ISBN-10: 0201441241

Jouault F. & Kurtev I. (2005). Transforming Models with the ATL, Proccedings of the Model
Transformation in Practice Workshop at MoDELS 05, LNCS 3844, pp. 128-138, ISBN 978-
3-540-31780-7, Montego Bay, Jamaica, October 2005, Springer, Berlin Heidelberg

Kleppe, A. G. & Warmer, J. (2003). The Object Constraint Language: Getting your models ready
for MDA, Addison-Wesley 2nd ed, ISBN 0321179366, Boston MA

Kolovos, D.S. at al. (2007). Update Transformations in the Small with the Epsilon Wizard
Language, Journal of Object Technology, Vol. 6, No. 9, Special Issue TOOLS EUROPE
Oct. 07, pp. 53-69, ISSN 1660-1769

Lakhnech, Y.; Mikk, E. & Siegel M. (1997). Hierarchical Automata as Model for Statecharts.
Advances in Computing Science - ASIAN '97, Proceedings of 3rd Asian Computing
Science Conference, LNCS 1345, pp. 181-196, ISBN 978-3-540-63875-9, Kathmandu,
Nepal, Dec. 1997, Springer, Berlin Heidelberg

Letelier, P. (2002). A Framework for Requirements Traceability in UML-based Projects, 1st
Int. Workshop on Traceability in Emerging Forms of Software Engineering by IEEE Conf.
on ASE, Sept. 2002, Edinburgh UK
http://www.soi.city.ac.uk/~zisman/WSProgramme.html

Maeder P. et al. (2006). Traceability for managing evolutionary change, Proceedings of 15th
Software Engeenierin Data Engeeniering SEDE (ICSA), pp. 1-8, ISBN: 978-1-880843-59-
5, Los Angeles USA, July 2006, ISCA, Cary, North Carolina USA

McMillan, K.: Cadence SMV. http://www.kenmcmil.com/ (visited 2009)
MDA Guide, Ver. 1.0.1, Object Management Group Document omg/2003-06-01 (2003)
Mens, T. & van Gorp P. (2006). Taxonomy of model transformation, Proceedings of the

International Workshop on Graph and Model Transformation (GraMoT 2005), Tallin,
Estonia, Sept. 2005, ENTCS, Vol. 152 , March 2006, pp. 125-142, ISSN: 1571-0661,
Elsevier

Meta Object Facility (MOF) , OMG Document, formal/2006-01-01, (2006)
MOF QVT Specification, OMG Document formal/2008-04-03 (2008)

Engineering the Computer Science and IT192

Sendall S. at al. (2004). Understanding Model Transformation by Classification and
Formalization, Proceedings of Workshop on Software Transformation Systems (part of
3rd International Conference on Generative Programming and Component
Engineering GPCE), pp. 30-31, Vancouver, Canada, Oct. 2004,
http://www.program-transformation.org/Sts/STS04

Spanoudakis, G. et al. (2004). Rule-based Generation of Requirements Traceability Relations,
Journal of Systems and Software, Vol. 72, No. 22, pp. 105–127, ISSN: 0164-1212

Unified Modeling Language Superstructure v. 2.2, OMG Document formal/ptc/2008-05-05,
(2008), http://www.uml.org

Vanhoof, B. at al. (2007). UniTI: A Unified Transformation Infrastructure, Proccedings of of
10th International Conference Model Driven Engineering Languages and Systems (Models
2007), LNCS 4735, pp. 31-45, ISBN 978-3-540-75208-0, Nashville, USA, Sept-Oct.
2007, Springer, Berlin Heidelberg

Vanhooff, B. et al. (2007). Traceability as Input for Model Transformations, Proceedings of
ECMDA Traceability Workshop, pp. 37-46, ISBN 978-82-14-04056-2, Haifa, Israel,
June 2007

Wagner, G.; Giurca, A. & Lukichev, S. (2006). Modeling Web Services with URML,
Proceedings of Workshop Semantics for Business Process Management, Budva,
Montenegro, June 2006, http://idefix.pms.ifi.lmu.de:8080/rewerse/index.html

Walderhaug S., et al. (2006) Towards a Generic Solution for Traceability in MDD,
Proceedings of 2nd ECMDA Traceability Workshop. Bilbao, Spain, July 2006, ISBN 82-
14-04030, SINTEF Report, http://modelbased.net/ecmda-traceability/index.php?
option=com_content&task=view&id=23&Itemid=34

West Team, MDA - Transf User Guide, http://www.lifl.fr/west/modtransf/
W3C Recommendations for rules interchange

http://www.w3.org/2005/rules/wiki/RIF_Working_Group (visited 2008)

Dissociation of Colloidal Silver into Ionic Form through Membrane under Electric Field 193

Dissociation of Colloidal Silver into Ionic Form through Membrane under
Electric Field

Kuo-Hsiung Tseng, Chih-Yu Liao, Der-Chi Tien and Tsing-Tshih Tsung

X

Dissociation of Colloidal Silver into Ionic Form
through Membrane under Electric Field

Kuo-Hsiung Tsenga*, Chih-Yu Liaoa, Der-Chi Tienb, and Tsing-Tshih Tsungb

aDepartment of Electrical Engineering, NTUT
bGraduate Institute of Mechanical and Electrical Engineering, NTUT

Taipei 10608, Taiwan, R.O.C.

1. Introduction

In this study, an electric dissociation system (EDS) for converting colloidal silver (CS) into
ionic form through membrane under electric field has been proposed. More specifically, this
study was undertaken in order to understand how the silver nanoparticle and ion exerts
control over the electric field, and to suggest some theoretical as well as practical implication
of this process. This technology will be used to develop a chemical residue-free
administration of control-released medical device for iontophoretic application. It is well
known that the silver ions can obtain by dissolving the silver salt, for instance, silver nitrate
(AgNO3), silver sulfate (Ag2SO4), and silver chloride (AgCl), in the aqueous medium.
However, the counter-ion of silver salt such as nitrate (NO3-), sulfate (SO4--), and chloride
(Cl-) may cause severe burns or toxicity to body when the silver ion has been consumed.
Therefore, conversions of colloidal silver nanoparticles into ionic form are required, but not
directly use the silver salts to provide the silver ions. This paper is structured as follows. In
the first section of the article, we will start with an introduction to metallic silver and silver
nanoparticles, and then present a short literature review of iontophoresis. The second
section describes the experimental setup of the electric dissociation system (EDS). The third
section summarizes the results and discussions for the various analyses of experimental data.
Finally, conclusions are presented and suggestions are made for further research.

1.1 Metallic silver
Metallic silver has been known since ancient times and has long been valued as a precious
metal, used to make ornaments, jewelry, currency coins, tableware, and utensils. Today,
silver metal is widely used in conductors, switches, contacts, fuses and virtually all electrical
appliances. Silver's role as an effective antimicrobial agent has been well established in
several studies (Burrell et al., 1999; Thomas & McCubbin, 2003). It can control a wide variety
of yeast, fungi, and viruses (Thati et al., 2007). Human health care providers have used silver
for diverse purposes for several thousand years (Goodman & Gilman, 1975). Going back to
Roman times, silver vessels has been used to preserve drinking water and other liquids
fresh from bacteria. In the 18th century, immigrants tracking across America West found
that if they placed silver coins in their casks of drinking water, it kept the water safe from

11

Engineering the Computer Science and IT194

bacteria and algae. In the early 1800s, doctors used silver sutures in surgical wounds with
very successful results. In 1884, Credé proposed the use of drops of silver nitrate eye
solution (1% silver nitrate) to prevent ophthalmia neonatorum in newborns (Rungby, 1986).
During World War I, silver foil was used to protect wounds from infection (Lewis, 1909). In
the 1970s, the National Aeronautics and Space Administration (NASA) used silver
containers to preserve the purity of drinking water (Metodiev & Bozhilova, 1990) on
spacecraft. These varied uses demonstrated the bacteriostatic properties of silver. However,
at the beginning of the 20th century, the discovery and development of antibiotics has led to
a dramatic reduction in deaths from infection. Thus, silver became less used for medicinal
purposes. Over the last 50 years, widespread overuse of antibiotics has fueled a growing
increase of antibiotic resistance among bacteria. For example, MRSA (methicillin-resistant
Staphylococcus aureus) (Norrby et al., 2005) and VRSA (vancomycin-resistant Staphylococcus
aureus) (Tenover, 2005) developed a strong outer wall that prevented antibiotics (penicillin)
from penetrating and exerting its effects. But now, the growing ineffectiveness of traditional
antibiotics and emergence of nanotechnology have renewed attention in the antibiotic
properties of silver. As a result of the rapidly increasing growth of nanotechnology, silver
grants a new prospect in 21st century. The development of nano-scale techniques is leading
to a resurgence of interest in the medical use of silver.

1.2 Silver nanoparticles
The expression "nanoparticles" is, in general, used in the realm of materials science to
represent particles size less than 100 nanometers, ranging between the molecular state and
the bulk state. Within these nano-scales, materials in high surface-area-to-volume ratio will
create their unique properties (Bawendi et al., 1990) in an extraordinary region, leading to
novel and unexpected phenomena. In particular, metal nanoparticles such as silver
nanoparticles have become an important target for modern chemistry, physics, and
bioscience. Fabrication and characterization of silver nanoparticles has attracted
considerable attention as a result of their significant applications in the fundamental
sciences and nanotechnology. The potential applications of silver nanoparticles include
catalysis (Sun & Seff, 1994), photographic development processes (Huang et al., 1996), nano-
detection (Park et al., 1999), electrodes for multi layer ceramic capacitors (MLCC), spectrally
selective coating for solar energy absorption, and intercalation material for electrical
batteries (Klaus-Joerger et al., 2001). Application of silver nanoparticles depends on the
process used to manufacture particles with different size, shape, and chemical composition.
Additionally, the products should be chemically and physically stable without undergoing
degradation.
The silver nanoparticles suspended in solution as a colloidal suspension is a well-known
bacteriostatic and poisonous agent for different bacteria and viruses (Lee et al., 2003). No
side effects were observed when using drugs based on metallic nano-silver in clinical trials.
Although, silver's exact antimicrobial mechanism is unknown yet. It has been determined,
however, that the free silver ion is the active agent, with evidence that silver's antibacterial
activity is directly proportional to the amount of silver ions released (Lansdown, 2006).
These ions exhibit an oligodynamic effect by denaturing proteins in prokaryotic cells, typical
of microorganisms (Feng et al., 2000). Mammalian cells are eukaryotic and so display a
strong resistance to silver's effects, making the use of silver in treating human disease safe
(Bicanová & Thinschmidt, 1985).

Several methods of silver nanoparticles fabrication exist. Current techniques used to
produce silver nanoparticles are usually divided into chemical and physical methods.
Reduction of metal ions into neutral metal clusters is a commonly used treatment in
chemical synthesis. This includes conventional chemical (one- or two-phase system),
photochemical (Huang et al., 1996), sonochemical (Zhang et al., 2004), electrochemical
(Starowicz et al., 2006), and radiolytic reduction (Shin et al., 2008). From metal bulk samples
are used to generate nanoparticles by physical methods include: lithography (Klein et al.,
2008), evaporation (Korchagin et al., 2005), and laser ablation (Bae et al., 2002). Although
these conventional methods may successfully produce silver nanoparticles, they require the
use of stabilizers or surfactants to protect the silver particles against agglomeration
(maintain a colloidal suspension), leaving these undesired chemicals in the solution after
fabrication is complete. Additionally, these methods are usually expensive and potentially
dangerous for the environment. In order to overcome the problems described above, a novel
and easy method for the preparation of silver nanoparticles using the arc-discharge method
(ADM) was presented.
The arc-discharge method (ADM) involves pulse direct current (DC) being passed through
two silver electrodes which are submerged in deionized water. During discharge the
temperature between electrodes can reach several thousand degrees Celsius and the Ag rods
are etched in the water medium. Silver vapor condensed in water creates a well-dispersed
and thermodynamically stable Ag aqueous suspension. Silver nanoparticles fabricated by
ADM in water without any surfactants or stabilizers are characterized as a stable colloid,
which can be stored in a glass container for a fairly long time at room temperature without
visible sedimentation (no apparent precipitate). The ADM is a good alternative method for
silver nanoparticles preparation, and is not only a relatively inexpensive process, but also
environmentally friendly. Additionally, any experimental data obtained using these colloids
can be confidently established, as there is no interference from any additional chemicals.

1.3 Literature review of iontophoresis
Iontophoresis is a non-invasive transdermal delivery technique, which allows introduction
of various ions or other substance into the skin through the use of electricity. It could be
considered as a suitable and effective alternative to conventional injection or oral
administration. The iontophoresis technique has been developed and modified over the past
260 years. The first suggestions date from the mid 18th century, demonstrated an ongoing
relationship between electricity and drug. In 1747, the Giovanni Francesco Pivati reported
that the smell of Peruvian balsam preserved in a glass container turned into obvious in the
room after connecting electrical source. In 1748, Giovanni Giuseppe Veratti had successfully
treated patients with nervous diseases such as deafness, rheumatic afflictions, paralysis, and
sciatic pain (Veratti, 1748). In 1800, Bernard Raymond Fabré-Palaprat was interpreted as
proof for the electrically assisted transport of iodine ions through the body by using the
compress soaked with potassium iodide (KI) and starch solution separately fixed on the
both arm. A further significant milestone in the history of iontophoresis was the voltaic
narcotism. In 1858, Benjamin Ward Richardson used tincture of aconitine, aconite extract
and chloroform which has been used with the assistance of electric current for iontophoresis
in dental anaesthesia practice. In the 1870s, the current mediated transport of matter
through porous membranes or intact human skin had been extensively studied by the
Hermann Musk. To explain his theory, he introduced strychnine hydrochloride into rabbits

Dissociation of Colloidal Silver into Ionic Form through Membrane under Electric Field 195

bacteria and algae. In the early 1800s, doctors used silver sutures in surgical wounds with
very successful results. In 1884, Credé proposed the use of drops of silver nitrate eye
solution (1% silver nitrate) to prevent ophthalmia neonatorum in newborns (Rungby, 1986).
During World War I, silver foil was used to protect wounds from infection (Lewis, 1909). In
the 1970s, the National Aeronautics and Space Administration (NASA) used silver
containers to preserve the purity of drinking water (Metodiev & Bozhilova, 1990) on
spacecraft. These varied uses demonstrated the bacteriostatic properties of silver. However,
at the beginning of the 20th century, the discovery and development of antibiotics has led to
a dramatic reduction in deaths from infection. Thus, silver became less used for medicinal
purposes. Over the last 50 years, widespread overuse of antibiotics has fueled a growing
increase of antibiotic resistance among bacteria. For example, MRSA (methicillin-resistant
Staphylococcus aureus) (Norrby et al., 2005) and VRSA (vancomycin-resistant Staphylococcus
aureus) (Tenover, 2005) developed a strong outer wall that prevented antibiotics (penicillin)
from penetrating and exerting its effects. But now, the growing ineffectiveness of traditional
antibiotics and emergence of nanotechnology have renewed attention in the antibiotic
properties of silver. As a result of the rapidly increasing growth of nanotechnology, silver
grants a new prospect in 21st century. The development of nano-scale techniques is leading
to a resurgence of interest in the medical use of silver.

1.2 Silver nanoparticles
The expression "nanoparticles" is, in general, used in the realm of materials science to
represent particles size less than 100 nanometers, ranging between the molecular state and
the bulk state. Within these nano-scales, materials in high surface-area-to-volume ratio will
create their unique properties (Bawendi et al., 1990) in an extraordinary region, leading to
novel and unexpected phenomena. In particular, metal nanoparticles such as silver
nanoparticles have become an important target for modern chemistry, physics, and
bioscience. Fabrication and characterization of silver nanoparticles has attracted
considerable attention as a result of their significant applications in the fundamental
sciences and nanotechnology. The potential applications of silver nanoparticles include
catalysis (Sun & Seff, 1994), photographic development processes (Huang et al., 1996), nano-
detection (Park et al., 1999), electrodes for multi layer ceramic capacitors (MLCC), spectrally
selective coating for solar energy absorption, and intercalation material for electrical
batteries (Klaus-Joerger et al., 2001). Application of silver nanoparticles depends on the
process used to manufacture particles with different size, shape, and chemical composition.
Additionally, the products should be chemically and physically stable without undergoing
degradation.
The silver nanoparticles suspended in solution as a colloidal suspension is a well-known
bacteriostatic and poisonous agent for different bacteria and viruses (Lee et al., 2003). No
side effects were observed when using drugs based on metallic nano-silver in clinical trials.
Although, silver's exact antimicrobial mechanism is unknown yet. It has been determined,
however, that the free silver ion is the active agent, with evidence that silver's antibacterial
activity is directly proportional to the amount of silver ions released (Lansdown, 2006).
These ions exhibit an oligodynamic effect by denaturing proteins in prokaryotic cells, typical
of microorganisms (Feng et al., 2000). Mammalian cells are eukaryotic and so display a
strong resistance to silver's effects, making the use of silver in treating human disease safe
(Bicanová & Thinschmidt, 1985).

Several methods of silver nanoparticles fabrication exist. Current techniques used to
produce silver nanoparticles are usually divided into chemical and physical methods.
Reduction of metal ions into neutral metal clusters is a commonly used treatment in
chemical synthesis. This includes conventional chemical (one- or two-phase system),
photochemical (Huang et al., 1996), sonochemical (Zhang et al., 2004), electrochemical
(Starowicz et al., 2006), and radiolytic reduction (Shin et al., 2008). From metal bulk samples
are used to generate nanoparticles by physical methods include: lithography (Klein et al.,
2008), evaporation (Korchagin et al., 2005), and laser ablation (Bae et al., 2002). Although
these conventional methods may successfully produce silver nanoparticles, they require the
use of stabilizers or surfactants to protect the silver particles against agglomeration
(maintain a colloidal suspension), leaving these undesired chemicals in the solution after
fabrication is complete. Additionally, these methods are usually expensive and potentially
dangerous for the environment. In order to overcome the problems described above, a novel
and easy method for the preparation of silver nanoparticles using the arc-discharge method
(ADM) was presented.
The arc-discharge method (ADM) involves pulse direct current (DC) being passed through
two silver electrodes which are submerged in deionized water. During discharge the
temperature between electrodes can reach several thousand degrees Celsius and the Ag rods
are etched in the water medium. Silver vapor condensed in water creates a well-dispersed
and thermodynamically stable Ag aqueous suspension. Silver nanoparticles fabricated by
ADM in water without any surfactants or stabilizers are characterized as a stable colloid,
which can be stored in a glass container for a fairly long time at room temperature without
visible sedimentation (no apparent precipitate). The ADM is a good alternative method for
silver nanoparticles preparation, and is not only a relatively inexpensive process, but also
environmentally friendly. Additionally, any experimental data obtained using these colloids
can be confidently established, as there is no interference from any additional chemicals.

1.3 Literature review of iontophoresis
Iontophoresis is a non-invasive transdermal delivery technique, which allows introduction
of various ions or other substance into the skin through the use of electricity. It could be
considered as a suitable and effective alternative to conventional injection or oral
administration. The iontophoresis technique has been developed and modified over the past
260 years. The first suggestions date from the mid 18th century, demonstrated an ongoing
relationship between electricity and drug. In 1747, the Giovanni Francesco Pivati reported
that the smell of Peruvian balsam preserved in a glass container turned into obvious in the
room after connecting electrical source. In 1748, Giovanni Giuseppe Veratti had successfully
treated patients with nervous diseases such as deafness, rheumatic afflictions, paralysis, and
sciatic pain (Veratti, 1748). In 1800, Bernard Raymond Fabré-Palaprat was interpreted as
proof for the electrically assisted transport of iodine ions through the body by using the
compress soaked with potassium iodide (KI) and starch solution separately fixed on the
both arm. A further significant milestone in the history of iontophoresis was the voltaic
narcotism. In 1858, Benjamin Ward Richardson used tincture of aconitine, aconite extract
and chloroform which has been used with the assistance of electric current for iontophoresis
in dental anaesthesia practice. In the 1870s, the current mediated transport of matter
through porous membranes or intact human skin had been extensively studied by the
Hermann Musk. To explain his theory, he introduced strychnine hydrochloride into rabbits

Engineering the Computer Science and IT196

by means of electricity. After exposure to an electrified strychnine solution, spontaneous
cramps were observed in the rabbits. In 1908, Leduc (Leduc, 1908) reported the medical use
of iontophoresis for the transport of drugs into the body. He was aware that some chemicals
under a direct current which could be carried across an avascular membrane as the
transporting agent. The strychnine experiments were also performed by Leduc (Latham et
al., 2003). In 1965, Rapperport (Rapperport et al., 1965) achieved a very high level of
penicillin in eschar by using iontophoresis. In 1978 and 1980 iontophoresis was clinically
used for the treatment of ear chondritis (LaForest & Cofrancesco, 1978). Today,
iontophoresis has wide variety of applications, including in ophthalmology, dermatology,
ENT (ear, nose, throat), allergic conditions, furthermore in neurological diseases.
The basic components of transdermal iontophoresis consists of a battery, two oppositely
charged electrodes, and drug reservoir, as shown in Figure 1. The drug in ionic form in
communication with the permeable skin is very susceptible, due to the fact that each ion can
be influenced under an electrical field effect formed within the solution. For instance,
positively charged ions (cations) like silver will be attracted to the negative electrode
(cathode) and repelled from the positive electrode (anode). The electrostatic repulsion of like
charges will become the primary driving force for iontophoresis process. In mainly
applications, the power source supplies a constant current. As the current drives the ions
through the skin barrier walls, the electrical circuit is accomplished whereby the charged
molecules. The iontophoretic system offers the following key benefits to improve quality of
drug delivery and reduce potential complications. (1) Because the iontophoretic treatment is
a non-invasive and simplified therapeutic regimen, it poses minimal tissue trauma, infection
risk, and avoids the inconvenience of continuous intravenous infusion. (2) Drug solutions
are directly transferred to the treatment or evaluation site without the disadvantage of oral
administration. (3) It provides a relatively pain free alternative for patients who are unable
or reluctant to receive injections. (4) The therapeutic efficacy can be enhanced due to the
hepatic first-pass metabolism is bypassed. (5) Reduce the possibility of over- or under-
dosing by continuous drug release at the programmed rate. (6) Permit the administration of
a drug with a short biological half-life.

Fig. 1. Basic principle of iontophoresis

2. Experimental Methods

2.1 Preparation of the colloidal silver
An arc-discharge method (ADM) is used to fabricate the colloid silver solution in present
work. The ADM system, as indicated in Figure 2, consists of five main parts listed and
described below: (1) Two silver electrodes (Gredmann, 99.99%) 1 mm in diameter; (2) A
servo control system which maintains a constant distance between the electrodes; (3) A
power supply system connected to the electrode, which controls the DC arc-discharge
parameters; (4) A glass container with an electrode holder and deionized water (pH = 5.8,
conductivity = 0.8 - 0.9 µS/cm) to collect the silver colloids; (5) A stirring system with
magnetic stirrer and stirring bar.
The servo control system based on a feedback loop controls the gap between electrodes
which is equal to a few microns (20 ~ 40 µm). The glass container with deionized water is
stirred by using the magnetic stirrer at room temperature. Silver wires are used as both the
positive and negative electrodes. The upper Ag electrode is held by the servo control system
and the bottom one is fixed by the electrode holder. The parameters of the control system
were chosen for optimal conditions of Ag nanoparticles production.
The power supply system provides a stable pulse voltage of 70-135 V for 2-3 µs and then
maintains a pulse of 20-40 V for around 7-8 µs, in order to ionize the aqua medium between
the Ag electrodes. In this moment, the etching current can reach 4 A. Well-controlled timing
on and off is demonstrated in Figure 3. The governing parameters of this system given in
Table 1, such as the working voltage, selected current, pulse duration (on/off-time),
electrode gap, and temperature of the deionized water are crucial factors for nanoparticles
production. During the spark discharge, the surface layer of the Ag wires is evaporated and
condensed in the water. The transparent solution converts to the characteristic pale yellow,
and then a stable silver suspension is created. Calculation of the energy is required for
system level energy consumption evaluation and optimization. The energy (E) in Joules is
the product of the voltage (V), the current (I) and the time (t). By recording this energy level,
the corresponding amount of consumed electrode per energy used can be calculated. This in
turn, gives information on amount of nanoparticles formed and solution concentration.

Fig. 2. Schema of the arc-discharge method for colloidal silver production

Dissociation of Colloidal Silver into Ionic Form through Membrane under Electric Field 197

by means of electricity. After exposure to an electrified strychnine solution, spontaneous
cramps were observed in the rabbits. In 1908, Leduc (Leduc, 1908) reported the medical use
of iontophoresis for the transport of drugs into the body. He was aware that some chemicals
under a direct current which could be carried across an avascular membrane as the
transporting agent. The strychnine experiments were also performed by Leduc (Latham et
al., 2003). In 1965, Rapperport (Rapperport et al., 1965) achieved a very high level of
penicillin in eschar by using iontophoresis. In 1978 and 1980 iontophoresis was clinically
used for the treatment of ear chondritis (LaForest & Cofrancesco, 1978). Today,
iontophoresis has wide variety of applications, including in ophthalmology, dermatology,
ENT (ear, nose, throat), allergic conditions, furthermore in neurological diseases.
The basic components of transdermal iontophoresis consists of a battery, two oppositely
charged electrodes, and drug reservoir, as shown in Figure 1. The drug in ionic form in
communication with the permeable skin is very susceptible, due to the fact that each ion can
be influenced under an electrical field effect formed within the solution. For instance,
positively charged ions (cations) like silver will be attracted to the negative electrode
(cathode) and repelled from the positive electrode (anode). The electrostatic repulsion of like
charges will become the primary driving force for iontophoresis process. In mainly
applications, the power source supplies a constant current. As the current drives the ions
through the skin barrier walls, the electrical circuit is accomplished whereby the charged
molecules. The iontophoretic system offers the following key benefits to improve quality of
drug delivery and reduce potential complications. (1) Because the iontophoretic treatment is
a non-invasive and simplified therapeutic regimen, it poses minimal tissue trauma, infection
risk, and avoids the inconvenience of continuous intravenous infusion. (2) Drug solutions
are directly transferred to the treatment or evaluation site without the disadvantage of oral
administration. (3) It provides a relatively pain free alternative for patients who are unable
or reluctant to receive injections. (4) The therapeutic efficacy can be enhanced due to the
hepatic first-pass metabolism is bypassed. (5) Reduce the possibility of over- or under-
dosing by continuous drug release at the programmed rate. (6) Permit the administration of
a drug with a short biological half-life.

Fig. 1. Basic principle of iontophoresis

2. Experimental Methods

2.1 Preparation of the colloidal silver
An arc-discharge method (ADM) is used to fabricate the colloid silver solution in present
work. The ADM system, as indicated in Figure 2, consists of five main parts listed and
described below: (1) Two silver electrodes (Gredmann, 99.99%) 1 mm in diameter; (2) A
servo control system which maintains a constant distance between the electrodes; (3) A
power supply system connected to the electrode, which controls the DC arc-discharge
parameters; (4) A glass container with an electrode holder and deionized water (pH = 5.8,
conductivity = 0.8 - 0.9 µS/cm) to collect the silver colloids; (5) A stirring system with
magnetic stirrer and stirring bar.
The servo control system based on a feedback loop controls the gap between electrodes
which is equal to a few microns (20 ~ 40 µm). The glass container with deionized water is
stirred by using the magnetic stirrer at room temperature. Silver wires are used as both the
positive and negative electrodes. The upper Ag electrode is held by the servo control system
and the bottom one is fixed by the electrode holder. The parameters of the control system
were chosen for optimal conditions of Ag nanoparticles production.
The power supply system provides a stable pulse voltage of 70-135 V for 2-3 µs and then
maintains a pulse of 20-40 V for around 7-8 µs, in order to ionize the aqua medium between
the Ag electrodes. In this moment, the etching current can reach 4 A. Well-controlled timing
on and off is demonstrated in Figure 3. The governing parameters of this system given in
Table 1, such as the working voltage, selected current, pulse duration (on/off-time),
electrode gap, and temperature of the deionized water are crucial factors for nanoparticles
production. During the spark discharge, the surface layer of the Ag wires is evaporated and
condensed in the water. The transparent solution converts to the characteristic pale yellow,
and then a stable silver suspension is created. Calculation of the energy is required for
system level energy consumption evaluation and optimization. The energy (E) in Joules is
the product of the voltage (V), the current (I) and the time (t). By recording this energy level,
the corresponding amount of consumed electrode per energy used can be calculated. This in
turn, gives information on amount of nanoparticles formed and solution concentration.

Fig. 2. Schema of the arc-discharge method for colloidal silver production

Engineering the Computer Science and IT198

Fig. 3. Current and voltage pulses created by the ADM during etching of the silver
electrodes

Parameter Value
Fabrication pressure 1 atm
Fabrication time 60 s
Initial voltage 135 V
Off-pulse duration 50 μs
On-pulse duration 50 μs
Working current 4 A
Temperature of deionized water 25 °C
Volume of deionized water 500 mL

Table 1. Key parameters for silver nanoparticles suspension production

2.2 Electric dissociation system setup
The complete electric dissociation system (EDS) is shown in Figure 4. The system was
performed using two glass bottles (600 cm3) positioned horizontally with a membrane
between them, silicone rings to hold the bottles together, and platinum (Pt) electrode wires
(99.99%, Gredmann). Inert Pt was chosen for both electrodes because it was resistant to
reaction with the other elements involved and presents no toxicity to any situation.
Colloidal silver solution with a yellow tint (400 cm3) was placed in the anodic chamber with
the anode being mounted therein and submerged in the solution. On the other hand, the
deionized water (400 cm3, pH = 6.5, conductivity = 0.7 µS/cm) was placed similarly in the
cathodic chamber with the cathode. Cellophane was selected as a membrane between the
bottles, and its semi-permeability allows for ions to pass through, but not particles or large
molecules. Magnetic spin bars were placed in the bottom of both bottles to ensure the
homogeneity of the solutions, and eliminating the concentration variable when monitored
by the measuring devices placed within the bottle. Lastly, a direct current (DC) power
supply was used to provide constant-voltage (CV) and constant-current (CC) across the
electrodes.

The silver ion concentration and light absorbance of the two chambers were collected using,
respectively, an ion selective electrode (ISE) and UV-Vis spectrophotometer. Ion selective
electrode is a membrane electrode, which responds selectively towards one (or several) ion
species in the presence of others, based on the thin membrane property to bind only the
intended ion. For instance, the Ag ion selective electrode gives voltage when it is submerged
in Ag+ solution; the voltage is proportional to the ion concentration. A peristaltic pump
circulated solution from the chamber to a UV-Vis double-beam spectrophotometer (Helios
Alpha 9423UVA1002E) for continuous absorbance measurement during the entire course of
the experiment. The spectrum was scanned from 190 nm to 600 nm. The optical properties of
a metallic nanoparticle depend mainly on its surface plasmon resonance (SPR), where the
plasmon corresponds to the collective oscillation of the free electrons in the conduction band
of Ag. According to the Mie theory (Mie, 1908), it is well known that the peaks, intensity,
and line-widths of plasmon resonant are sensitive to the nanoparticle size (Tilaki et al.,
2006), concentration (Eustis et al., 2005), shape (Sosa et al., 2003), metallic species (Mulvaney,
1996), and the surrounding medium (Kossyrev et al., 2005).
In this investigation, the parameters of EDS such as applied voltage and current were
carried out for exploring the properties of this system in detail. A precisely regulated DC
power supply can be used to provide either a constant-voltage or constant-current sources.
A constant-voltage (CV) source generates a DC voltage that can be set to any determined
value in a specific range. On the other hand, a constant-current (CC) source produces a
regulated current independent of the voltage over the entire chamber (up to the maximum
allowable voltage). As a separate step in the experimental design, the different parameters
of constant-voltage (50V, 100V, 150V, 200V) and constant-current (100uA, 200uA, 400uA,
600uA, 800uA) have to be taken into consideration for estimating and optimizing the
controlled release of silver ions. An interpretation of these experimental results outlining the
main features and phenomena will be presented in detail below.

Fig. 4. Schematic of the electric dissociation system (EDS)

Dissociation of Colloidal Silver into Ionic Form through Membrane under Electric Field 199

Fig. 3. Current and voltage pulses created by the ADM during etching of the silver
electrodes

Parameter Value
Fabrication pressure 1 atm
Fabrication time 60 s
Initial voltage 135 V
Off-pulse duration 50 μs
On-pulse duration 50 μs
Working current 4 A
Temperature of deionized water 25 °C
Volume of deionized water 500 mL

Table 1. Key parameters for silver nanoparticles suspension production

2.2 Electric dissociation system setup
The complete electric dissociation system (EDS) is shown in Figure 4. The system was
performed using two glass bottles (600 cm3) positioned horizontally with a membrane
between them, silicone rings to hold the bottles together, and platinum (Pt) electrode wires
(99.99%, Gredmann). Inert Pt was chosen for both electrodes because it was resistant to
reaction with the other elements involved and presents no toxicity to any situation.
Colloidal silver solution with a yellow tint (400 cm3) was placed in the anodic chamber with
the anode being mounted therein and submerged in the solution. On the other hand, the
deionized water (400 cm3, pH = 6.5, conductivity = 0.7 µS/cm) was placed similarly in the
cathodic chamber with the cathode. Cellophane was selected as a membrane between the
bottles, and its semi-permeability allows for ions to pass through, but not particles or large
molecules. Magnetic spin bars were placed in the bottom of both bottles to ensure the
homogeneity of the solutions, and eliminating the concentration variable when monitored
by the measuring devices placed within the bottle. Lastly, a direct current (DC) power
supply was used to provide constant-voltage (CV) and constant-current (CC) across the
electrodes.

The silver ion concentration and light absorbance of the two chambers were collected using,
respectively, an ion selective electrode (ISE) and UV-Vis spectrophotometer. Ion selective
electrode is a membrane electrode, which responds selectively towards one (or several) ion
species in the presence of others, based on the thin membrane property to bind only the
intended ion. For instance, the Ag ion selective electrode gives voltage when it is submerged
in Ag+ solution; the voltage is proportional to the ion concentration. A peristaltic pump
circulated solution from the chamber to a UV-Vis double-beam spectrophotometer (Helios
Alpha 9423UVA1002E) for continuous absorbance measurement during the entire course of
the experiment. The spectrum was scanned from 190 nm to 600 nm. The optical properties of
a metallic nanoparticle depend mainly on its surface plasmon resonance (SPR), where the
plasmon corresponds to the collective oscillation of the free electrons in the conduction band
of Ag. According to the Mie theory (Mie, 1908), it is well known that the peaks, intensity,
and line-widths of plasmon resonant are sensitive to the nanoparticle size (Tilaki et al.,
2006), concentration (Eustis et al., 2005), shape (Sosa et al., 2003), metallic species (Mulvaney,
1996), and the surrounding medium (Kossyrev et al., 2005).
In this investigation, the parameters of EDS such as applied voltage and current were
carried out for exploring the properties of this system in detail. A precisely regulated DC
power supply can be used to provide either a constant-voltage or constant-current sources.
A constant-voltage (CV) source generates a DC voltage that can be set to any determined
value in a specific range. On the other hand, a constant-current (CC) source produces a
regulated current independent of the voltage over the entire chamber (up to the maximum
allowable voltage). As a separate step in the experimental design, the different parameters
of constant-voltage (50V, 100V, 150V, 200V) and constant-current (100uA, 200uA, 400uA,
600uA, 800uA) have to be taken into consideration for estimating and optimizing the
controlled release of silver ions. An interpretation of these experimental results outlining the
main features and phenomena will be presented in detail below.

Fig. 4. Schematic of the electric dissociation system (EDS)

Engineering the Computer Science and IT200

3. Results and Discussions

3.1 Characterization of the colloidal silver
The field emission scanning electron microscope (FE-SEM, HITACHI S4700) was used to
observe the size distribution and morphology of the silver nanoparticles. Figure 5 show
representative SEM image and corresponding size distribution histograms of the Ag
particles. As can be seen, a particle size below 30 nm is observed. A titrator (METTLER
TOLEDO-DL50), to estimate the concentration of the ionic silver—using NaCl of a
predetermined molar concentration that reacts with the ionic silver to form a precipitate, we
can calculate the concentration of ionic silver in the colloidal silver (CS) solution. An atomic
absorption spectrophotometer (AA, Shimadzu AA-680), to measure the concentration of
ionic silver below the threshold of 6 ppm in order to check the accuracy of the estimate
made with the titrator. As shown in Table 2, the concentration of the ionic silver in the CS
was 19.9 ppm (Titrator) and 26.4 ppm (AA). The measurement taken with the AA is greater
than the measurement taken with the titrator because the AA is sensitive to both the ionic
silver and the metallic silver nanoparticle, whereas the titrator is sensitive solely to the ionic
silver. Using a centrifuge, it was able to separate the ions from the particles and to perform
individual qualitative and quantitative analyses in an attempt to explore the nature of the
ions. A centrifuge running at 18,000 rpm for 100 minutes is then used to extract the ionic
silver (which is contained in the supernatant－Ag+) and the metallic silver nanoparticles
(which are contained in the sediment－Ag0). Because ionic silver dissolve only in the
supernatant, therefore can determine silver ions concentration of CS through the use of
Titration and AA. These gave us measurements of 18.6 ppm and 19.2 ppm respectively.
After the sediment (Ag particles) dissolved fully in the nitric acid, the titrator and the AA
gave measurements of 11.2 ppm and 11.4 ppm respectively. This suggests that the metallic
silver nanoparticle suspended in the CS had a concentration of approximately 11 ppm.

Sample
Titrator AA

(ppm) (ppm)

1 Colloidal silver 19.9 26.4

2 Supernatant (Ag+) 18.6 19.2

3 Sediment (Ag0) dissolved by HNO3 11.2 11.4

Table 2. Measurement result of silver concentration

10 20 30 40 50
0

5

10

15

20

N
um

be
rs

 (%
)

Particle size (nm)
Fig. 5. (Upper panel) SEM image of silver nanoparticles; (lower panel) histogram of size
distribution

3.2 UV-visible light absorbance analysis
The UV-visible light absorbance of the both chambers was spectrophotometrically
determined detail of silver activity throughout the course of the experiment. Absorption
peaks at around 396 nm, characteristic of Ag nanoparticles (Badr et al., 2006), and at around
190 nm, which is assumed to signify silver ions (Matsuoka et al., 2000), are seen in the
anodic chamber as shown in Figure 6. These then decrease progressively in absorption peak
with increasing time intervals (from 0 to 180 min), indicating loss of both forms (Ag0 & Ag+).
A corresponding trend towards steadily increasing peak around 190 nm with the migration
time in the cathodic chamber indicates the presence of only silver ions, as shown in Figure 7.
The anodic chamber shows an unusual increase in absorbance around 435-550 nm region
after 60 minutes as shown in Figure 6. This is probably caused by some silver nanoparticle
aggregation, due to lacking of Ag+ in colloidal silver solution. These were visually observed
as brown cloud forms billowing outward from the anode in the direction of the cathode.
Van der Waal’s force causes these to agglomerate together and take on the brown color

Dissociation of Colloidal Silver into Ionic Form through Membrane under Electric Field 201

3. Results and Discussions

3.1 Characterization of the colloidal silver
The field emission scanning electron microscope (FE-SEM, HITACHI S4700) was used to
observe the size distribution and morphology of the silver nanoparticles. Figure 5 show
representative SEM image and corresponding size distribution histograms of the Ag
particles. As can be seen, a particle size below 30 nm is observed. A titrator (METTLER
TOLEDO-DL50), to estimate the concentration of the ionic silver—using NaCl of a
predetermined molar concentration that reacts with the ionic silver to form a precipitate, we
can calculate the concentration of ionic silver in the colloidal silver (CS) solution. An atomic
absorption spectrophotometer (AA, Shimadzu AA-680), to measure the concentration of
ionic silver below the threshold of 6 ppm in order to check the accuracy of the estimate
made with the titrator. As shown in Table 2, the concentration of the ionic silver in the CS
was 19.9 ppm (Titrator) and 26.4 ppm (AA). The measurement taken with the AA is greater
than the measurement taken with the titrator because the AA is sensitive to both the ionic
silver and the metallic silver nanoparticle, whereas the titrator is sensitive solely to the ionic
silver. Using a centrifuge, it was able to separate the ions from the particles and to perform
individual qualitative and quantitative analyses in an attempt to explore the nature of the
ions. A centrifuge running at 18,000 rpm for 100 minutes is then used to extract the ionic
silver (which is contained in the supernatant－Ag+) and the metallic silver nanoparticles
(which are contained in the sediment－Ag0). Because ionic silver dissolve only in the
supernatant, therefore can determine silver ions concentration of CS through the use of
Titration and AA. These gave us measurements of 18.6 ppm and 19.2 ppm respectively.
After the sediment (Ag particles) dissolved fully in the nitric acid, the titrator and the AA
gave measurements of 11.2 ppm and 11.4 ppm respectively. This suggests that the metallic
silver nanoparticle suspended in the CS had a concentration of approximately 11 ppm.

Sample
Titrator AA

(ppm) (ppm)

1 Colloidal silver 19.9 26.4

2 Supernatant (Ag+) 18.6 19.2

3 Sediment (Ag0) dissolved by HNO3 11.2 11.4

Table 2. Measurement result of silver concentration

10 20 30 40 50
0

5

10

15

20

N
um

be
rs

 (%
)

Particle size (nm)
Fig. 5. (Upper panel) SEM image of silver nanoparticles; (lower panel) histogram of size
distribution

3.2 UV-visible light absorbance analysis
The UV-visible light absorbance of the both chambers was spectrophotometrically
determined detail of silver activity throughout the course of the experiment. Absorption
peaks at around 396 nm, characteristic of Ag nanoparticles (Badr et al., 2006), and at around
190 nm, which is assumed to signify silver ions (Matsuoka et al., 2000), are seen in the
anodic chamber as shown in Figure 6. These then decrease progressively in absorption peak
with increasing time intervals (from 0 to 180 min), indicating loss of both forms (Ag0 & Ag+).
A corresponding trend towards steadily increasing peak around 190 nm with the migration
time in the cathodic chamber indicates the presence of only silver ions, as shown in Figure 7.
The anodic chamber shows an unusual increase in absorbance around 435-550 nm region
after 60 minutes as shown in Figure 6. This is probably caused by some silver nanoparticle
aggregation, due to lacking of Ag+ in colloidal silver solution. These were visually observed
as brown cloud forms billowing outward from the anode in the direction of the cathode.
Van der Waal’s force causes these to agglomerate together and take on the brown color

Engineering the Computer Science and IT202

indicative of high silver nanoparticles concentration. Eventually these dissociate into ions as
well, contributing to the silver ion absorbance peak in the cathodic chamber.

200 300 400 500 600

0.1

0.2

0.3

0.4

0.5

450 500 550

0.10

0.15

0.20

 0min
 30min
 60min
 90min
 120min
 150min
 180min

A
bs

or
ba

nc
e

Wavelength (nm)
Fig. 6. Typical UV-Vis spectra of anodic chamber during process

190 200 210 220 230 240 250
0.0

0.2

0.4

0.6

0.8

1.0

 0 min
 30 min
 60 min
 90 min
 120 min
 150 min
 180 min

A
bs

or
ba

nc
e

Wavelength (nm)
Fig. 7. Typical UV-Vis spectra of cathodic chamber during process

3.3 Time-concentration curve analysis
To consider the processes of electric dissociation system (EDS), the Ag+ concentration of
both chamber have to be measured. Figure 8 illustrates a typical concentration-time profile
of anodic and cathodic chamber of using ion-selective electrodes (ISE) to monitor the ionic
silver concentration. As can be seen in this figure, the curve reflects two stages of different
behaviour. In the stage 1, the process begins when the anodic chamber concentration
decreases as the ions move to the cathodic chamber. The cathodic chamber concentration is
increased in the first three hours and then reaches a peak. After three hours (second stage), it
slowly dropped due to the source of silver at anodic side is fully consumed. As time
proceeds, the Ag+ concentration will decline in the anodic chamber, rise to a maximum in
the cathodic chamber, and then decline. It is important to note that the maximum cathodic
ion concentration (cathodicCmax

) is not as same as initial anodic ion concentration (anodic
initialC) that

depend on Ag+ reduction rate dictated by the cathode. However, the changes in the anodic
concentration quantitatively reflect changes in the cathodic. The AUC (area under curve) of
both sides indicates that more ions reach the cathodic side than were initially present in the
colloidal solution, due to the cathodic ions not only come from the anodic ions but also
anodic dissociated Ag particle. However, most of ions in the cathodic side will quickly
attach onto the cathode, and rapidly convert to atomic form. Finally, the steady-state Ag+
concentration gradient in the both chambers tend to zero and the solutions become diluted
as water.

0 1 2 3 4 5 6
0

2

4

6

8

10

12

anodicAUC
cathodicAUC

 anod ic
in i t ia lC

 cathodicCmax

Stage.2

 Cathodic side
 Anodic side

C
on

ce
nt

ra
tio

n
of

 A
g+

 (p
pm

)

Time (hour)

Stage.1

AU
C

: area under curve

Fig. 8. Typical concentration-time profile (constant voltage 150V) of anodic and cathodic
chamber

Dissociation of Colloidal Silver into Ionic Form through Membrane under Electric Field 203

indicative of high silver nanoparticles concentration. Eventually these dissociate into ions as
well, contributing to the silver ion absorbance peak in the cathodic chamber.

200 300 400 500 600

0.1

0.2

0.3

0.4

0.5

450 500 550

0.10

0.15

0.20

 0min
 30min
 60min
 90min
 120min
 150min
 180min

A
bs

or
ba

nc
e

Wavelength (nm)
Fig. 6. Typical UV-Vis spectra of anodic chamber during process

190 200 210 220 230 240 250
0.0

0.2

0.4

0.6

0.8

1.0

 0 min
 30 min
 60 min
 90 min
 120 min
 150 min
 180 min

A
bs

or
ba

nc
e

Wavelength (nm)
Fig. 7. Typical UV-Vis spectra of cathodic chamber during process

3.3 Time-concentration curve analysis
To consider the processes of electric dissociation system (EDS), the Ag+ concentration of
both chamber have to be measured. Figure 8 illustrates a typical concentration-time profile
of anodic and cathodic chamber of using ion-selective electrodes (ISE) to monitor the ionic
silver concentration. As can be seen in this figure, the curve reflects two stages of different
behaviour. In the stage 1, the process begins when the anodic chamber concentration
decreases as the ions move to the cathodic chamber. The cathodic chamber concentration is
increased in the first three hours and then reaches a peak. After three hours (second stage), it
slowly dropped due to the source of silver at anodic side is fully consumed. As time
proceeds, the Ag+ concentration will decline in the anodic chamber, rise to a maximum in
the cathodic chamber, and then decline. It is important to note that the maximum cathodic
ion concentration (cathodicCmax

) is not as same as initial anodic ion concentration (anodic
initialC) that

depend on Ag+ reduction rate dictated by the cathode. However, the changes in the anodic
concentration quantitatively reflect changes in the cathodic. The AUC (area under curve) of
both sides indicates that more ions reach the cathodic side than were initially present in the
colloidal solution, due to the cathodic ions not only come from the anodic ions but also
anodic dissociated Ag particle. However, most of ions in the cathodic side will quickly
attach onto the cathode, and rapidly convert to atomic form. Finally, the steady-state Ag+
concentration gradient in the both chambers tend to zero and the solutions become diluted
as water.

0 1 2 3 4 5 6
0

2

4

6

8

10

12

anodicAUC
cathodicAUC

 anod ic
in i t ia lC

 cathodicCmax

Stage.2

 Cathodic side
 Anodic side

C
on

ce
nt

ra
tio

n
of

 A
g+

 (p
pm

)

Time (hour)

Stage.1

AU
C

: area under curve

Fig. 8. Typical concentration-time profile (constant voltage 150V) of anodic and cathodic
chamber

Engineering the Computer Science and IT204

3.4 CV and CC effects on the properties of EDS
The dissociation experiment tests in constant voltage (CV) mode increased from 50 to 250
VDC in 50V steps had been achieved. All the initial conditions had been pre-determined
throughout the entire course, such as the concentration and volume of colloidal silver, the
distance between two electrodes, and stirring rate. The concentration-time profiles of anodic
and cathodic chamber are shown in Figure 9 and Figure 10, respectively. As observed in
Figure 9 (anodic side), it can be clearly found that the magnitude of the applied voltage will
correlate with decline in silver ion concentration. That is, the higher the voltage is, the
stronger the electric field will be, which will increase the silver consumption rate
(ppm/hour). In addition, Figure 10 shows the voltage level will affect the area under curve
(AUC), rate of rise and fall of profiles, total dissociation time, as well as the time required to
reach peak concentration but not influence the peak level of concentration. The rate of rise is
proportional to the ion-flow velocity that correlates to the number of silver ions through the
semi-permeable membrane per unit time. The rate of fall indicates the speed of silver ions
reduced into atoms by accepting an electron from negative pole. Consecutively, the peak-
time was shown on the cathodic chamber, it regarded that the source of silver in anodic side
was fully consumed at that particular point. According to the AUC, it can be seen that the
lower applied voltage, the higher the AUC. Therefore, in the same initial conditions, a lower
voltage can support large AUC with similar peak level of concentration provided by other
voltage levels.
The dissociation experiment tests in constant current (CC) mode increased from 100, 200,
400, 600, and 800 uA were also be explored. The experimental results of anodic and cathodic
chamber are shown in Figure 11 and Figure 12, respectively. As observed in Figure 11, it can
be found that the rise in iontophoretic currents led to an increase in ions transport rate and
this effect became larger as the current was increased. These results are compared with
results from the CV mode; the performance characteristics of two curves are similar.
However, the driving force of ions is relative to the applied current, and as a result, the
slope of decline on the anodic side in CC mode is more linear than in CV mode (variable
current). Furthermore, Figure 12 shows that applied current can control more operating
parameters, such as AUC, rate of rise and fall of profiles, total dissociation time, time
required to reach peak, as well as the peak level of concentration. It was evident that the CC
mode whether for research purposes or for solving practical problems has more freedom to
optimize the performance, particularly in a medical environment.
The quantity of ion transported rate in anodic side and ion received rate in cathodic side for
both kinds of modes are shown in Table 3. The release rate of anodic side and cathodic side
are calculated by considering the fall- and rise-portion of the curve, respectively. The
dissociation rate is a function of current; however, the current always changes over entire
course in the CV mode. As a result, the dissociation rate in CC mode is regarded as more
stable than that in CV mode. Thus, the maximum dissociation rate in CV mode and average
dissociation rate in CC mode of both chambers are listed in this Table. The profiles of release
rate versus voltage and current according to the Table 3 are shown in Figure 13 and Figure
14. Therefore, from the above experimental results, it can be inferred that the release
concentration of silver ions can be programmed by controlling the magnitude of voltage or
current. However, the CC mode is more controllable, due to the premeditated driving force
is more precisely rely on the current not voltage.

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

C
on

ce
nt

ra
tio

n
of

 A
g+ (p

pm
)

Time (hour)

 50V
 100V
 150V
 200V
 250V

Fig. 9. CV mode (anodic side) – Curve of Ag+ concentration versus time at difference voltage

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

 50V
 100V
 150V
 200V
 250V

C
on

ce
nt

ra
tio

n
of

 A
g+ (p

pm
)

Time (hour)
Fig. 10. CV mode (cathodic side) – Curve of Ag+ concentration versus time at difference
voltage

Dissociation of Colloidal Silver into Ionic Form through Membrane under Electric Field 205

3.4 CV and CC effects on the properties of EDS
The dissociation experiment tests in constant voltage (CV) mode increased from 50 to 250
VDC in 50V steps had been achieved. All the initial conditions had been pre-determined
throughout the entire course, such as the concentration and volume of colloidal silver, the
distance between two electrodes, and stirring rate. The concentration-time profiles of anodic
and cathodic chamber are shown in Figure 9 and Figure 10, respectively. As observed in
Figure 9 (anodic side), it can be clearly found that the magnitude of the applied voltage will
correlate with decline in silver ion concentration. That is, the higher the voltage is, the
stronger the electric field will be, which will increase the silver consumption rate
(ppm/hour). In addition, Figure 10 shows the voltage level will affect the area under curve
(AUC), rate of rise and fall of profiles, total dissociation time, as well as the time required to
reach peak concentration but not influence the peak level of concentration. The rate of rise is
proportional to the ion-flow velocity that correlates to the number of silver ions through the
semi-permeable membrane per unit time. The rate of fall indicates the speed of silver ions
reduced into atoms by accepting an electron from negative pole. Consecutively, the peak-
time was shown on the cathodic chamber, it regarded that the source of silver in anodic side
was fully consumed at that particular point. According to the AUC, it can be seen that the
lower applied voltage, the higher the AUC. Therefore, in the same initial conditions, a lower
voltage can support large AUC with similar peak level of concentration provided by other
voltage levels.
The dissociation experiment tests in constant current (CC) mode increased from 100, 200,
400, 600, and 800 uA were also be explored. The experimental results of anodic and cathodic
chamber are shown in Figure 11 and Figure 12, respectively. As observed in Figure 11, it can
be found that the rise in iontophoretic currents led to an increase in ions transport rate and
this effect became larger as the current was increased. These results are compared with
results from the CV mode; the performance characteristics of two curves are similar.
However, the driving force of ions is relative to the applied current, and as a result, the
slope of decline on the anodic side in CC mode is more linear than in CV mode (variable
current). Furthermore, Figure 12 shows that applied current can control more operating
parameters, such as AUC, rate of rise and fall of profiles, total dissociation time, time
required to reach peak, as well as the peak level of concentration. It was evident that the CC
mode whether for research purposes or for solving practical problems has more freedom to
optimize the performance, particularly in a medical environment.
The quantity of ion transported rate in anodic side and ion received rate in cathodic side for
both kinds of modes are shown in Table 3. The release rate of anodic side and cathodic side
are calculated by considering the fall- and rise-portion of the curve, respectively. The
dissociation rate is a function of current; however, the current always changes over entire
course in the CV mode. As a result, the dissociation rate in CC mode is regarded as more
stable than that in CV mode. Thus, the maximum dissociation rate in CV mode and average
dissociation rate in CC mode of both chambers are listed in this Table. The profiles of release
rate versus voltage and current according to the Table 3 are shown in Figure 13 and Figure
14. Therefore, from the above experimental results, it can be inferred that the release
concentration of silver ions can be programmed by controlling the magnitude of voltage or
current. However, the CC mode is more controllable, due to the premeditated driving force
is more precisely rely on the current not voltage.

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

C
on

ce
nt

ra
tio

n
of

 A
g+ (p

pm
)

Time (hour)

 50V
 100V
 150V
 200V
 250V

Fig. 9. CV mode (anodic side) – Curve of Ag+ concentration versus time at difference voltage

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

 50V
 100V
 150V
 200V
 250V

C
on

ce
nt

ra
tio

n
of

 A
g+ (p

pm
)

Time (hour)
Fig. 10. CV mode (cathodic side) – Curve of Ag+ concentration versus time at difference
voltage

Engineering the Computer Science and IT206

0 4 8 12 16 20 24
0

2

4

6

8

10
 100A
 200A
 400A
 600A
 800A

C
on

ce
nt

ra
tio

n
of

 A
g+ (p

pm
)

Time (hour)
Fig. 11. CC mode (anodic side) – Curve of Ag+ concentration versus time at difference
current

0 4 8 12 16 20 24
0

2

4

6

8

10
 100A
 200A
 400A
 600A
 800A

C
on

ce
nt

ra
tio

n
of

 A
g+ (p

pm
)

Time (hour)
Fig. 12. CC mode (cathodic side) – Curve of Ag+ concentration versus time at difference
current

50 100 150 200 250

4

8

12

16

 Anodic side
 Cathodic side

M
ax

im
a

re
le

as
e

ra
te

 (p
pm

/h
ou

r)

Voltage (V)
Fig. 13. Maxima ion release rate under different constant voltage

0 200 400 600 800
0

1

2

3

4
 Anodic side
 Cathodic side

A
ve

ra
ge

 re
le

as
e

ra
te

 (p
pm

/h
ou

r)

Current (A)
Fig. 14. Average ion release rate under different constant current

Dissociation of Colloidal Silver into Ionic Form through Membrane under Electric Field 207

0 4 8 12 16 20 24
0

2

4

6

8

10
 100A
 200A
 400A
 600A
 800A

C
on

ce
nt

ra
tio

n
of

 A
g+ (p

pm
)

Time (hour)
Fig. 11. CC mode (anodic side) – Curve of Ag+ concentration versus time at difference
current

0 4 8 12 16 20 24
0

2

4

6

8

10
 100A
 200A
 400A
 600A
 800A

C
on

ce
nt

ra
tio

n
of

 A
g+ (p

pm
)

Time (hour)
Fig. 12. CC mode (cathodic side) – Curve of Ag+ concentration versus time at difference
current

50 100 150 200 250

4

8

12

16

 Anodic side
 Cathodic side

M
ax

im
a

re
le

as
e

ra
te

 (p
pm

/h
ou

r)

Voltage (V)
Fig. 13. Maxima ion release rate under different constant voltage

0 200 400 600 800
0

1

2

3

4
 Anodic side
 Cathodic side

A
ve

ra
ge

 re
le

as
e

ra
te

 (p
pm

/h
ou

r)

Current (A)
Fig. 14. Average ion release rate under different constant current

Engineering the Computer Science and IT208

Maxima release rate in CV mode (ppm/hour)

Voltage (V) Anodic Cathodic

50 2.18 ± 0.04 2.45 ± 0.07

100 4.61 ± 0.14 4.40 ± 0.30

150 6.84 ± 0.34 6.37 ± 0.47

200 8.42 ± 1.01 6.79 ± 0.29

250 13.35 ± 1.19 7.90 ± 0.79

Average release rate in CC mode (ppm/hour)

Current (μA) Anodic Cathodic

100 0.53 ± 0.14 0.42 ± 0.05

200 0.96 ± 0.12 0.86 ± 0.16

400 1.79 ± 0.29 1.64 ± 0.50

600 2.58 ± 0.28 2.51 ± 0.68

800 3.11 ± 0.38 3.34 ± 0.68
Table 3. Ion release rate under different conditions

3.5 Dissociation mechanism of colloidal silver
Schematic illustration of the colloidal silver dissociation and migration process is illustrated
in Figure 15. As soon as power is applied to the primary system (Figure 15a), the first
commencement of process commences (Figure 15b). Here, existing Ag+ are removed from
the colloidal solution, as they move rapidly to the negatively charged cathode. Upon contact,
the silver ions obtain an electron and convert to atomic form, as seen by the increasing
formation of dendrites on the cathode (Figure 15c). In the next stage as demonstrated in
Figure 15d, the silver nanoparticles dissociate into ionic form, and likewise migrate towards
the cathode, finally leaving a water solution free of silver nanoparticles and ions in the
anodic chamber (Figure 15e). In the end, both sides’ solutions are turned into pure water as
shown in Figure 15f.

Fig. 15. Schematic illustration of the colloidal silver dissociation and migration process, (a)
initial system, (b)(c) existing Ag+ are removed from the colloidal solution to the negatively
charged cathode, (d) silver nanoparticles dissociate into ionic form and migrate towards the
cathode, (e) the source of silver at anodic side is fully exhausted, (d) both sides’ solutions are
turned into pure water.

4. Conclusion

In recent years, there has been a dramatic proliferation of research related to the silver
nanoparticle and ion. There is evidence indicating that the antibacterial potency of silver is
directly proportional to the concentration of silver ions. Unfortunately, there have been no
literature reviews or discussions concerned with the nano-silver suspension as a drug
reservoir for iontophoretic application. For medical application, conversion of colloidal

Dissociation of Colloidal Silver into Ionic Form through Membrane under Electric Field 209

Maxima release rate in CV mode (ppm/hour)

Voltage (V) Anodic Cathodic

50 2.18 ± 0.04 2.45 ± 0.07

100 4.61 ± 0.14 4.40 ± 0.30

150 6.84 ± 0.34 6.37 ± 0.47

200 8.42 ± 1.01 6.79 ± 0.29

250 13.35 ± 1.19 7.90 ± 0.79

Average release rate in CC mode (ppm/hour)

Current (μA) Anodic Cathodic

100 0.53 ± 0.14 0.42 ± 0.05

200 0.96 ± 0.12 0.86 ± 0.16

400 1.79 ± 0.29 1.64 ± 0.50

600 2.58 ± 0.28 2.51 ± 0.68

800 3.11 ± 0.38 3.34 ± 0.68
Table 3. Ion release rate under different conditions

3.5 Dissociation mechanism of colloidal silver
Schematic illustration of the colloidal silver dissociation and migration process is illustrated
in Figure 15. As soon as power is applied to the primary system (Figure 15a), the first
commencement of process commences (Figure 15b). Here, existing Ag+ are removed from
the colloidal solution, as they move rapidly to the negatively charged cathode. Upon contact,
the silver ions obtain an electron and convert to atomic form, as seen by the increasing
formation of dendrites on the cathode (Figure 15c). In the next stage as demonstrated in
Figure 15d, the silver nanoparticles dissociate into ionic form, and likewise migrate towards
the cathode, finally leaving a water solution free of silver nanoparticles and ions in the
anodic chamber (Figure 15e). In the end, both sides’ solutions are turned into pure water as
shown in Figure 15f.

Fig. 15. Schematic illustration of the colloidal silver dissociation and migration process, (a)
initial system, (b)(c) existing Ag+ are removed from the colloidal solution to the negatively
charged cathode, (d) silver nanoparticles dissociate into ionic form and migrate towards the
cathode, (e) the source of silver at anodic side is fully exhausted, (d) both sides’ solutions are
turned into pure water.

4. Conclusion

In recent years, there has been a dramatic proliferation of research related to the silver
nanoparticle and ion. There is evidence indicating that the antibacterial potency of silver is
directly proportional to the concentration of silver ions. Unfortunately, there have been no
literature reviews or discussions concerned with the nano-silver suspension as a drug
reservoir for iontophoretic application. For medical application, conversion of colloidal

Engineering the Computer Science and IT210

silver into ionic form are required, but not directly use the silver salts to provide the silver
ions, due to the counter-ion of silver salt may cause severe problems to body as the silver ion
has been consumed. The primary goal of this research is to develop a silver nanoparticles
electric dissociation system (EDS) which can provide relatively safe silver ion solution with
controllable electric field. In this study, the UV-visible spectroscopy and ionic selective
electrode (ISE) were used to identify and observe details of the system activity. Both
qualitative and quantitative data analyses were performed. The experimental results reveal
that the release concentration of silver ions can be programmed by controlling the
magnitude of electric power. These results are of great interest both for application and
scientific research to develop a chemical residue-free administration of control-released
medical device, and will open the doors for further study and application of silver ions.
There are four advantages for getting the ionic form of silver via the colloidal solution.

1. The ionic silver is dissociated from metallic silver and will be no interference of
counter-ion, as compared with silver salts dissolved in aqueous solution.

2. Under the same power condition, the silver nanoparticle, due to its large surface area
per unit mass, may have a higher dissociation rate and efficiency than bulk metal.
Thus, it can be drive at lower power for releasing silver ions.

3. Silver nanoparticles suspension prepared by arc-discharge method (ADM) without
adding any conventional chemical surfactants is stable and non-toxic, thus there
would be no chemical residue after the dissociation process.

4. An electric dissociation system (EDS) exploited in this paper that permits more
controllable release rate of silver ion by an electric field for the potential future
iontophoretic application.

Future study of this entire process could be integrated into a wound dressing. Its
performance is dependent on a continuous controlled rate of silver ion release, which could
be achieved by monitoring the current level and using a feedback loop to adjust voltage
accordingly.

5. References

Badr, Y.; Wahed, M. G. A. E. & Mahmoud, M. A. (2006). On 308 nm photofragmentation of
the silver nanoparticles. Applied Surface Science, Vol. 253, No. 5, pp. 2502-2507, ISSN
0169-4332

Bae, C. H.; Nam, S. H. & Park, S. M. (2002). Formation of silver nanoparticles by laser
ablation of a silver target in NaCl solution. Applied Surface Science, Vol. 197-198, pp.
628-634, ISSN 0169-4332

Bawendi, M. G.; Steigerwald, M. L. & Brus, L. E. (1990). The quantum mechanics of larger
semiconductor clusters ("Quantum dots"). Annual Review of Physical Chemistry,
Vol. 41, No. 1, pp. 477-496

Bicanová, M. & Thinschmidt, G. (1985). Oligodynamic action of silver ions on micro-
organisms. Pharmazie, Vol. 40, No. 10, pp. 736, ISSN 0031-7144

Burrell, R. E.; Heggers, J. P.; Davis, G. J. & Wright, J. B. (1999). Efficacy of silver-coated
dressings as bacterial barriers in a rodent burn sepsis model. Wounds, Vol. 11, No. 4,
pp. 64-71, ISSN 10447946

Eustis, S.; Krylova, G.; Eremenko, A.; Smirnova, N.; Schill, A. W. & El-Sayed, M. (2005).
Growth and fragmentation of silver nanoparticles in their synthesis with a fs laser
and CW light by photo-sensitization with benzophenone. Photochemical &
Photobiological Sciences, Vol. 4, No. 1, pp. 154-159

Feng, Q. L.; Wu, J.; Chen, G. Q.; Cui, F. Z.; Kim, T. N. & Kim, J. O. (2000). A mechanistic
study of the antibacterial effect of silver ions on Escherichia coli and
Staphylococcus aureus. Journal of Biomedical Materials Research Part A, Vol. 52, No. 4,
pp. 662-668, ISSN 1552-4965

Goodman, L. S. & Gilman, A. (1975). The pharmacological basis of therapeutics, Macmillan
Publishing Co., New York, NY

Huang, H. H.; Ni, X. P.; Loy, G. L.; Chew, C. H.; Tan, K. L.; Loh, F. C.; Deng, J. F. & Xu, G. Q.
(1996). Photochemical formation of silver nanoparticles in poly(N-
vinylpyrrolidone). Langmuir, Vol. 12, No. 4, pp. 909-912

Klaus-Joerger, T.; Joerger, R.; Olsson, E. & Granqvist, C.-G. (2001). Bacteria as workers in the
living factory: metal-accumulating bacteria and their potential for materials science.
Trends in Biotechnology, Vol. 19, No. 1, pp. 15-20, ISSN 0167-7799

Klein, M. F. G.; Hein, H.; Jakobs, P.-J.; Linden, S.; Meinzer, N.; Wegener, M.; Saile, V. & Kohl,
M. (2008). Electron beam lithography of V-shaped silver nanoantennas.
Microelectronic Engineering, Vol.In Press, Corrected Proof, ISSN 0167-9317

Korchagin, A. I.; Kuksanov, N. K.; Lavrukhin, A. V.; Fadeev, S. N.; Salimov, R. A.;
Bardakhanov, S. P.; Goncharov, V. B.; Suknev, A. P.; Paukshtis, E. A.; Larina, T. V.;
Zaikovskii, V. I.; Bogdanov, S. V. & Bal'zhinimaev, B. S. (2005). Production of silver
nano-powders by electron beam evaporation. Vacuum, Vol. 77, No. 4, pp. 485-491,
ISSN 0042-207X

Kossyrev, P. A.; Yin, A.; Cloutier, S. G.; Cardimona, D. A.; Huang, D.; Alsing, P. M. & Xu, J.
M. (2005). Electric field tuning of plasmonic response of nanodot array in liquid
crystal matrix. Nano Letters, Vol. 5, No. 10, pp. 1978-1981

LaForest, N. T. & Cofrancesco, C. (1978). Antibiotic iontophoresis in the treatment of ear
chondritis. Physical Therapy, Vol. 58, No. 1, pp. 32-4, ISSN 0031-9023

Lansdown, A. B. (2006). Silver in health care: antimicrobial effects and safety in use. Current
Problems in Dermatology, Vol. 33, pp. 17-34, ISSN 1421-5721

Latham, R.; Linford, R. & Schlindwein, W. (2003). Pharmaceutical and medical applications
of polymer electrolytes. Ionics, Vol. 9, No. 1, pp. 41-46

Leduc, S. (1908). Electronic ions and their use in medicine, Rebman, London
Lee, H. J.; Yeo, S. Y. & Jeong, S. H. (2003). Antibacterial effect of nanosized silver colloidal

solution on textile fabrics. Journal of Materials Science, Vol. 38, No. 10, pp. 2199-2204
Lewis, J. S. (1909). IX. Note on silver foil in surgery. Annals of Surgery, Vol. 50, No. 4, pp. 793-

6, ISSN 0003-4932
Matsuoka, M.; Ju, W.-S. & Anpo, M. (2000). Photocatalytic decomposition of N2O into N2

and O2 on the silver(I) ion-exchanged ZSM-5 catalyst. Chemistry Letters, Vol. 29,
No. 6, pp. 626-627

Metodiev, V. & Bozhilova, N. (1990). The effect of electrochemical silver on the
microbiological qualities of drinking water. Problemi na Khigienata, Vol. 15, pp. 26-
30, ISSN 0323-9179

Mie, G. (1908). Beiträge zur optik trüber medien, speziell kolloidaler metallösungen. Annalen
der Physik, Vol. 330, No. 3, pp. 377-445, ISSN 1521-3889

Dissociation of Colloidal Silver into Ionic Form through Membrane under Electric Field 211

silver into ionic form are required, but not directly use the silver salts to provide the silver
ions, due to the counter-ion of silver salt may cause severe problems to body as the silver ion
has been consumed. The primary goal of this research is to develop a silver nanoparticles
electric dissociation system (EDS) which can provide relatively safe silver ion solution with
controllable electric field. In this study, the UV-visible spectroscopy and ionic selective
electrode (ISE) were used to identify and observe details of the system activity. Both
qualitative and quantitative data analyses were performed. The experimental results reveal
that the release concentration of silver ions can be programmed by controlling the
magnitude of electric power. These results are of great interest both for application and
scientific research to develop a chemical residue-free administration of control-released
medical device, and will open the doors for further study and application of silver ions.
There are four advantages for getting the ionic form of silver via the colloidal solution.

1. The ionic silver is dissociated from metallic silver and will be no interference of
counter-ion, as compared with silver salts dissolved in aqueous solution.

2. Under the same power condition, the silver nanoparticle, due to its large surface area
per unit mass, may have a higher dissociation rate and efficiency than bulk metal.
Thus, it can be drive at lower power for releasing silver ions.

3. Silver nanoparticles suspension prepared by arc-discharge method (ADM) without
adding any conventional chemical surfactants is stable and non-toxic, thus there
would be no chemical residue after the dissociation process.

4. An electric dissociation system (EDS) exploited in this paper that permits more
controllable release rate of silver ion by an electric field for the potential future
iontophoretic application.

Future study of this entire process could be integrated into a wound dressing. Its
performance is dependent on a continuous controlled rate of silver ion release, which could
be achieved by monitoring the current level and using a feedback loop to adjust voltage
accordingly.

5. References

Badr, Y.; Wahed, M. G. A. E. & Mahmoud, M. A. (2006). On 308 nm photofragmentation of
the silver nanoparticles. Applied Surface Science, Vol. 253, No. 5, pp. 2502-2507, ISSN
0169-4332

Bae, C. H.; Nam, S. H. & Park, S. M. (2002). Formation of silver nanoparticles by laser
ablation of a silver target in NaCl solution. Applied Surface Science, Vol. 197-198, pp.
628-634, ISSN 0169-4332

Bawendi, M. G.; Steigerwald, M. L. & Brus, L. E. (1990). The quantum mechanics of larger
semiconductor clusters ("Quantum dots"). Annual Review of Physical Chemistry,
Vol. 41, No. 1, pp. 477-496

Bicanová, M. & Thinschmidt, G. (1985). Oligodynamic action of silver ions on micro-
organisms. Pharmazie, Vol. 40, No. 10, pp. 736, ISSN 0031-7144

Burrell, R. E.; Heggers, J. P.; Davis, G. J. & Wright, J. B. (1999). Efficacy of silver-coated
dressings as bacterial barriers in a rodent burn sepsis model. Wounds, Vol. 11, No. 4,
pp. 64-71, ISSN 10447946

Eustis, S.; Krylova, G.; Eremenko, A.; Smirnova, N.; Schill, A. W. & El-Sayed, M. (2005).
Growth and fragmentation of silver nanoparticles in their synthesis with a fs laser
and CW light by photo-sensitization with benzophenone. Photochemical &
Photobiological Sciences, Vol. 4, No. 1, pp. 154-159

Feng, Q. L.; Wu, J.; Chen, G. Q.; Cui, F. Z.; Kim, T. N. & Kim, J. O. (2000). A mechanistic
study of the antibacterial effect of silver ions on Escherichia coli and
Staphylococcus aureus. Journal of Biomedical Materials Research Part A, Vol. 52, No. 4,
pp. 662-668, ISSN 1552-4965

Goodman, L. S. & Gilman, A. (1975). The pharmacological basis of therapeutics, Macmillan
Publishing Co., New York, NY

Huang, H. H.; Ni, X. P.; Loy, G. L.; Chew, C. H.; Tan, K. L.; Loh, F. C.; Deng, J. F. & Xu, G. Q.
(1996). Photochemical formation of silver nanoparticles in poly(N-
vinylpyrrolidone). Langmuir, Vol. 12, No. 4, pp. 909-912

Klaus-Joerger, T.; Joerger, R.; Olsson, E. & Granqvist, C.-G. (2001). Bacteria as workers in the
living factory: metal-accumulating bacteria and their potential for materials science.
Trends in Biotechnology, Vol. 19, No. 1, pp. 15-20, ISSN 0167-7799

Klein, M. F. G.; Hein, H.; Jakobs, P.-J.; Linden, S.; Meinzer, N.; Wegener, M.; Saile, V. & Kohl,
M. (2008). Electron beam lithography of V-shaped silver nanoantennas.
Microelectronic Engineering, Vol.In Press, Corrected Proof, ISSN 0167-9317

Korchagin, A. I.; Kuksanov, N. K.; Lavrukhin, A. V.; Fadeev, S. N.; Salimov, R. A.;
Bardakhanov, S. P.; Goncharov, V. B.; Suknev, A. P.; Paukshtis, E. A.; Larina, T. V.;
Zaikovskii, V. I.; Bogdanov, S. V. & Bal'zhinimaev, B. S. (2005). Production of silver
nano-powders by electron beam evaporation. Vacuum, Vol. 77, No. 4, pp. 485-491,
ISSN 0042-207X

Kossyrev, P. A.; Yin, A.; Cloutier, S. G.; Cardimona, D. A.; Huang, D.; Alsing, P. M. & Xu, J.
M. (2005). Electric field tuning of plasmonic response of nanodot array in liquid
crystal matrix. Nano Letters, Vol. 5, No. 10, pp. 1978-1981

LaForest, N. T. & Cofrancesco, C. (1978). Antibiotic iontophoresis in the treatment of ear
chondritis. Physical Therapy, Vol. 58, No. 1, pp. 32-4, ISSN 0031-9023

Lansdown, A. B. (2006). Silver in health care: antimicrobial effects and safety in use. Current
Problems in Dermatology, Vol. 33, pp. 17-34, ISSN 1421-5721

Latham, R.; Linford, R. & Schlindwein, W. (2003). Pharmaceutical and medical applications
of polymer electrolytes. Ionics, Vol. 9, No. 1, pp. 41-46

Leduc, S. (1908). Electronic ions and their use in medicine, Rebman, London
Lee, H. J.; Yeo, S. Y. & Jeong, S. H. (2003). Antibacterial effect of nanosized silver colloidal

solution on textile fabrics. Journal of Materials Science, Vol. 38, No. 10, pp. 2199-2204
Lewis, J. S. (1909). IX. Note on silver foil in surgery. Annals of Surgery, Vol. 50, No. 4, pp. 793-

6, ISSN 0003-4932
Matsuoka, M.; Ju, W.-S. & Anpo, M. (2000). Photocatalytic decomposition of N2O into N2

and O2 on the silver(I) ion-exchanged ZSM-5 catalyst. Chemistry Letters, Vol. 29,
No. 6, pp. 626-627

Metodiev, V. & Bozhilova, N. (1990). The effect of electrochemical silver on the
microbiological qualities of drinking water. Problemi na Khigienata, Vol. 15, pp. 26-
30, ISSN 0323-9179

Mie, G. (1908). Beiträge zur optik trüber medien, speziell kolloidaler metallösungen. Annalen
der Physik, Vol. 330, No. 3, pp. 377-445, ISSN 1521-3889

Engineering the Computer Science and IT212

Mulvaney, P. (1996). Surface plasmon spectroscopy of nanosized metal particles. Langmuir,
Vol. 12, No. 3, pp. 788-800

Norrby, S. R.; Nord, C. E. & Finch, R. (2005). Lack of development of new antimicrobial
drugs: a potential serious threat to public health. The Lancet Infectious Diseases,
Vol. 5, No. 2, pp. 115-119, ISSN 1473-3099

Park, S.-H.; Im, J.-H.; Im, J.-W.; Chun, B.-H. & Kim, J.-H. (1999). Adsorption kinetics of Au
and Ag nanoparticles on functionalized glass surfaces. Microchemical Journal,
Vol. 63, No. 1, pp. 71-91, ISSN 0026-265X

Rapperport, A. S.; Larson, D. L.; Henges, D. F.; Lynch, J. B.; Blocker, T. G., Jr. & Lewis, R. S.
(1965). Iontophoresis. A method of antibiotic administration in the burn patient.
Plastic and Reconstructive Surgery, Vol. 36, No. 5, pp. 547-52, ISSN 0032-1052

Rungby, J. (1986). The silver nitrate prophylaxis of Credé causes silver deposition in the
cornea of experimental animals. Experimental Eye Research, Vol. 42, No. 1, pp. 93-94,
ISSN 0014-4835

Shin, J.; Kim, Y.; Lee, K.; Lim, Y. M. & Nho, Y. C. (2008). Significant effects of sodium acetate,
an impurity present in poly(vinyl alcohol) solution on the radiolytic formation of
silver nanoparticle. Radiation Physics and Chemistry, Vol. 77, No. 7, pp. 871-876, ISSN
0969-806X

Sosa, I. O.; Noguez, C. & Barrera, R. G. (2003). Optical properties of metal nanoparticles with
arbitrary shapes. The Journal of Physical Chemistry B, Vol. 107, No. 26, pp. 6269-6275

Starowicz, M.; Stypula, B. & Banas, J. (2006). Electrochemical synthesis of silver
nanoparticles. Electrochemistry Communications, Vol. 8, No. 2, pp. 227-230, ISSN
1388-2481

Sun, T. & Seff, K. (1994). Silver clusters and chemistry in zeolites. Chemical Reviews, Vol. 94,
No. 4, pp. 857-870

Tenover, F. C. (2005). The real vancomycin-resistant Staphylococcus aureus has arrived.
Clinical Microbiology Newsletter, Vol. 27, No. 5, pp. 35-40, ISSN 0196-4399

Thati, B.; Noble, A.; Rowan, R.; Creaven, B. S.; Walsh, M.; McCann, M.; Egan, D. &
Kavanagh, K. (2007). Mechanism of action of coumarin and silver(I)-coumarin
complexes against the pathogenic yeast Candida albicans. Toxicology in Vitro,
Vol. 21, No. 5, pp. 801-808, ISSN 08872333

Thomas, S. & McCubbin, P. (2003). A comparison of the antimicrobial effects of four silver-
containing dressings on three organisms. Journal of wound care, Vol. 12, No. 3, pp.
101-107, ISSN 09690700

Tilaki, R. M.; Iraji zad, A. & Mahdavi, S. M. (2006). Stability, size and optical properties of
silver nanoparticles prepared by laser ablation in different carrier media. Applied
Physics A: Materials Science & Processing, Vol. 84, No. 1, pp. 215-219

Veratti, G. (1748). Osservazioni fisico-mediche intorno alla elettricità, Lelio della Volpe Bologna,
Italy

Zhang, J.-P.; Chen, P.; Sun, C.-H. & Hu, X.-J. (2004). Sonochemical synthesis of colloidal
silver catalysts for reduction of complexing silver in DTR system. Applied Catalysis
A: General, Vol. 266, No. 1, pp. 49-54, ISSN 0926-860X

SOA and supporting software processes integrated with self-organizing business networks 213

SOA and supporting software processes integrated with self-organizing
business networks

Francesco Rago

X

SOA and supporting software processes
integrated with self-organizing

business networks

Francesco Rago
M3 Comp. Llc

USA

1. Introduction

Actual business leverages on software services to improve general firm performance.
Software is always more a strategic asset to sustain business, but in meantime business is
changing continuously: there is a transition from centralized to distributed and cooperative
organizations. For this reason Business Models of firms are changing: there is an evolution
toward distributed models better suited for integration into a global economy. This scenario
implies a strategic capacity to manage new emerging values, strategies, technologies and
products. The enterprise organizational models have to consider a network of internal and
external agents (partners) with fuzzy boundaries and continuous exceptions in processes.
The Business Model approach help a firm or a network of firms to structure its organization
in a way to become more efficient, more flexible and responsive to customer demand, to
forecast possible future scenarios and therefore to stay competitive.
This environment is particularly challenging for software maintenance and new "smart"
approaches have to be defined. We describe a software development and maintenance
process strictly integrated with enterprise evolution. The innovative aspect derives from an
agile approach integrated with self-organizing and changing business. It is also based on the
basic hypothesis that the service model of software maintenance has to be integrated in the
process of define or improve business models at run time and not in a separate step. The
shift from centralized to distributed and cooperative organizations needs software with
Service Oriented Architecture (SOA) dynamically integrated with business architecture.
Software services become the fundamental platform to support products delivery and
services management. Their maintenance is becoming a major challenge to guarantee
software aligned to business processes.

2. Inter-Organizational Systems (IOS)

The consequence of actual economic and technological scenario is the blurring of boundaries
of companies in the field of knowledge, locations, information. This process is amplified by

12

Engineering the Computer Science and IT214

the so called "ubiquitous computing" fundamentally characterized by the "connection of
things" in the world with computation.
Partnering is becoming an alternative to mergers and acquisitions particularly for Subject
Matter Experts, as it is cheaper and less capital intensive. The formation of Inter-
Organizational Networks has environmental drivers such as technological changes,
changing customer behavior and increasing importance of information and knowledge.
Motives of the co-operating parties derive from the need to enhance services or products
portfolio, to improve the efficiency of processes and to share of risks and development costs.
The network strategy is described by an inter-firm strategic planning and a technical
configuring networking initiative. ITC is an enabler making collaboration feasible and it
supports IOS to coordinate interdependencies or to pool information with the emergence of
networked organizations with core business ICT-based (e.g. virtual organizations, value
webs, value nets etc.). The different partners offer specialization and focus on core
competencies. Firms need clear responsibilities and clear views of contribution of each
element of the net defined essentially as groups often belonging to more companies.
Forming of groups is Project-dependent and Integration of groups means an Organizational
context that facilitates the cohesion.
This scenario is feasible if technical trends are in right focus. The ICT infrastructures become
global supported by Standards and Protocols like EDIFACT, XML and Three-tier
architecture.
We have different types of interdependencies between firms and their activities: first of all a
configuration can be called Pooled. Pooled means the existence of some firms that create
pools having a basic set of capabilities to share with others firms. In this case there are
infrastructures coordinated by Standards & Rules. Type of Inter-Organizational Systems
Pooled are information and resource IOS.
A second type of interdependence is Sequential: it is a chain of companies creating a
connection to satisfy specific goals. Value Chain stages are coordinated by Standards &
Rules, Schedules & Plans. Types of Inter-Organizational Systems are EDI, SCM Applications
and Workflow Systems.
Last but not least, Reciprocal is a "small-world", based on Collaborative project management
to produce customer specific product. The Co-ordination mechanism is more complex
requiring Standards & Rules, Schedules & Plans and Mutual Adjustments. Inter-
Organizational Systems are Groupware and Distributed Project Management. All these
organization style requires SOA as a common base of services: Inter-Organizational Systems
fit well organizations if services and not application oriented. This generates flexibility and
adaptability.
With the extending enterprise, organizational networks arise and information systems cross
the firm's boundaries. There is a complex interaction between technology and the
Organization generated by IOS driven linkages and networks.

3. Firms and ITC Strategies

"Business strategies specify how a business model can be applied to the market to
differentiate the firm from its competitors" (Elliot, 2002).
In the book "Competitive Advantage", Michael Porter introduces the value chain as a tool
for developing a competitive advantage. The tool has the goal to define a strategy for

interrelationships between value chains of different firms segments. Value chain analysis
describes the activities within and around an organization, and relates them to an analysis
of the competitive strength of the organization, starting with the generic value chain and
then identifying the relevant firm-specific activities. Process flows are defined and used to
isolate the individual value-creating activities. Linkages between activities describe the
affects of performance or cost of one activity on another. The linkages are flows of
information, goods and services, as well as systems and processes for adjusting activities.
These linkages are crucial for corporate success and are the basic point of introduction of
appropriate SOA. Competitive advantage may be obtained by optimizing and coordinating
linked activities. A result of his approach was the understanding of the role of technology in
competitive advantage.
Integration between business planning and ITC planning is one important enabler of
business-IT alignment (Teo and King 1997). Teo and King found a significant relationship
between the level of business and IT planning integration and the extent of information
systems contribution to organizational performance. The role of ITC function has an
evolution from technically oriented and non-strategic at first, until resource to support and
influence business strategy. ITC becomes critical to long-term survival of organization in a
fully inter-operational strategy. In mean time the different stage of business integration have
to happen. The purpose of integration begins with administrative and non-strategic as first
stage arriving to full integration with joint development of business and ITC strategies.
Thompson (1967) describes three types of technology, which are important to the
understanding of strategy in organizations: long-linked technology, mediating technology,
and intensive technology.

Fig. 1. IT and Business Integration

The classification has importance in the integration approach and in the platforms choice.
As the three technology types have distinctive value creation logic, this has an impact in
strategic planning.
Long-linked technologies focus on transformation of inputs into outputs having a
production process consisting of a fixed sequence of steps to transform standardized inputs
into standardized outputs.

SOA and supporting software processes integrated with self-organizing business networks 215

the so called "ubiquitous computing" fundamentally characterized by the "connection of
things" in the world with computation.
Partnering is becoming an alternative to mergers and acquisitions particularly for Subject
Matter Experts, as it is cheaper and less capital intensive. The formation of Inter-
Organizational Networks has environmental drivers such as technological changes,
changing customer behavior and increasing importance of information and knowledge.
Motives of the co-operating parties derive from the need to enhance services or products
portfolio, to improve the efficiency of processes and to share of risks and development costs.
The network strategy is described by an inter-firm strategic planning and a technical
configuring networking initiative. ITC is an enabler making collaboration feasible and it
supports IOS to coordinate interdependencies or to pool information with the emergence of
networked organizations with core business ICT-based (e.g. virtual organizations, value
webs, value nets etc.). The different partners offer specialization and focus on core
competencies. Firms need clear responsibilities and clear views of contribution of each
element of the net defined essentially as groups often belonging to more companies.
Forming of groups is Project-dependent and Integration of groups means an Organizational
context that facilitates the cohesion.
This scenario is feasible if technical trends are in right focus. The ICT infrastructures become
global supported by Standards and Protocols like EDIFACT, XML and Three-tier
architecture.
We have different types of interdependencies between firms and their activities: first of all a
configuration can be called Pooled. Pooled means the existence of some firms that create
pools having a basic set of capabilities to share with others firms. In this case there are
infrastructures coordinated by Standards & Rules. Type of Inter-Organizational Systems
Pooled are information and resource IOS.
A second type of interdependence is Sequential: it is a chain of companies creating a
connection to satisfy specific goals. Value Chain stages are coordinated by Standards &
Rules, Schedules & Plans. Types of Inter-Organizational Systems are EDI, SCM Applications
and Workflow Systems.
Last but not least, Reciprocal is a "small-world", based on Collaborative project management
to produce customer specific product. The Co-ordination mechanism is more complex
requiring Standards & Rules, Schedules & Plans and Mutual Adjustments. Inter-
Organizational Systems are Groupware and Distributed Project Management. All these
organization style requires SOA as a common base of services: Inter-Organizational Systems
fit well organizations if services and not application oriented. This generates flexibility and
adaptability.
With the extending enterprise, organizational networks arise and information systems cross
the firm's boundaries. There is a complex interaction between technology and the
Organization generated by IOS driven linkages and networks.

3. Firms and ITC Strategies

"Business strategies specify how a business model can be applied to the market to
differentiate the firm from its competitors" (Elliot, 2002).
In the book "Competitive Advantage", Michael Porter introduces the value chain as a tool
for developing a competitive advantage. The tool has the goal to define a strategy for

interrelationships between value chains of different firms segments. Value chain analysis
describes the activities within and around an organization, and relates them to an analysis
of the competitive strength of the organization, starting with the generic value chain and
then identifying the relevant firm-specific activities. Process flows are defined and used to
isolate the individual value-creating activities. Linkages between activities describe the
affects of performance or cost of one activity on another. The linkages are flows of
information, goods and services, as well as systems and processes for adjusting activities.
These linkages are crucial for corporate success and are the basic point of introduction of
appropriate SOA. Competitive advantage may be obtained by optimizing and coordinating
linked activities. A result of his approach was the understanding of the role of technology in
competitive advantage.
Integration between business planning and ITC planning is one important enabler of
business-IT alignment (Teo and King 1997). Teo and King found a significant relationship
between the level of business and IT planning integration and the extent of information
systems contribution to organizational performance. The role of ITC function has an
evolution from technically oriented and non-strategic at first, until resource to support and
influence business strategy. ITC becomes critical to long-term survival of organization in a
fully inter-operational strategy. In mean time the different stage of business integration have
to happen. The purpose of integration begins with administrative and non-strategic as first
stage arriving to full integration with joint development of business and ITC strategies.
Thompson (1967) describes three types of technology, which are important to the
understanding of strategy in organizations: long-linked technology, mediating technology,
and intensive technology.

Fig. 1. IT and Business Integration

The classification has importance in the integration approach and in the platforms choice.
As the three technology types have distinctive value creation logic, this has an impact in
strategic planning.
Long-linked technologies focus on transformation of inputs into outputs having a
production process consisting of a fixed sequence of steps to transform standardized inputs
into standardized outputs.

Engineering the Computer Science and IT216

Mediating technologies are characterized by a standardized transformation process and
unique inputs and outputs. Service providers deliver to unique clients based on a pre-
defined delivery process. These technologies often link partners in an exchange that helps
them locate appropriate parties to conduct their transactions. Of course this type of
technological approach has a meaning when precise and unique chain of firms is defined.
Intensive technologies combined a non-standard transformation process with unique inputs
and outputs. This technology focused on the coordination of experts and pooling their
expertise to create a unique outcome.
We have had a forth technology: Adaptive. It normalizes the status of transformation
process to standard inputs and outputs with the scope to value what it is happening when
environmental changes of the net happen.
Having in mind a general strategy, the organization structure and the type(s) of technology
the integration of general strategy and IT Planning can be represented using a business
model that all Stakeholders share and agree.
Rappa (Rappa 2005) gave the following definition of Business Model:

"In the most basic sense, a business model is the method of doing business by which a company can
sustain itself -- that is, generate revenue. The business model spells-out how a company makes money
by specifying where it is positioned in the value chain."

A Business Model is a blueprint that describes how a network of cooperating agents intends
to create and capture value. In a Business Model one of the main points is the Customer
Value: this describes how the firm offering its customers something distinctive or lower cost
than its competitors. Another basic issue was the Scope which describes to which customers
is the firm offering his value and the range of products/services offered that embody this
value. Capabilities are the firm's capabilities and capabilities gaps that need to be filled to
sustain the Scope. Something distinctive characterizes capabilities to allow the firm to offer
the value better than other firms and that makes them difficult to imitate. The sources of
these capabilities can be many and exploited using appropriate SOA and specific ITC
infrastructure. For this reason we have to clarify what is the fit between them and how SOA
do to the strategy, structure, systems, people and environment of firm. The components of a
business value are here summarized:

 Model Ontology Concepts: purpose of the ontology is to improve communication,
inter-company interoperability, intra-company interoperability, achieving reliability,
enhance business model maintenance, knowledge acquisition, fundament for enabling
support tools. The Ontology allows to accurately describe the business model of a firm

 Service domain: it is a description of the service offering, its added value, and the
market segment at which the offering is targeted.

 Technology domain: a description of the SOA required to realize the service offering.
 Organization domain: a description of the structure of the multi-agents value network

required to create and distribute the service offering (organizational arrangements)
 Finance domain: a description of how risks, investments and revenues are divided

over the different actors of a value network (financial arrangements).

Of course Business Models have their dynamics depending on external and internal issue.
Any change has a direct impact on business models to continue to give to a firm a
competitive advantage. The Model is subject of Technological changes because the natural
evolution of IT and of its application in competitors.

4. Business Model Framework

We propose a specific Business Model that we consider well suited to improve IOS and SOA
interrelationship. The framework is divided into six principal components:

(1) The agents that agrees the alliance.
(2) The products and services a firm offers represent a substantial value to a target
customer (value proposition), and for which he is willing to pay.
(3) The relationship capital the firm creates and maintains with the customer, in order to
satisfy him and to generate sustainable revenues.
(4) The infrastructure.
(5) The network of partners that are necessary in order to create value and to maintain a
good customer relationship.
(6) The financial aspects such as cost and revenue structures.

There are no interfaces listing Agents and their all processes in a common and agreed open
space. The Business Model can be enforced deriving its components from shared value
propositions, available capabilities in each forms and business constraints. In an
organization based on the described Business Model the SOA permits more easily to
organize and use distributed capabilities that may be under the control of different
ownership domains.

Fig. 2. Business Model Framework

SOA and supporting software processes integrated with self-organizing business networks 217

Mediating technologies are characterized by a standardized transformation process and
unique inputs and outputs. Service providers deliver to unique clients based on a pre-
defined delivery process. These technologies often link partners in an exchange that helps
them locate appropriate parties to conduct their transactions. Of course this type of
technological approach has a meaning when precise and unique chain of firms is defined.
Intensive technologies combined a non-standard transformation process with unique inputs
and outputs. This technology focused on the coordination of experts and pooling their
expertise to create a unique outcome.
We have had a forth technology: Adaptive. It normalizes the status of transformation
process to standard inputs and outputs with the scope to value what it is happening when
environmental changes of the net happen.
Having in mind a general strategy, the organization structure and the type(s) of technology
the integration of general strategy and IT Planning can be represented using a business
model that all Stakeholders share and agree.
Rappa (Rappa 2005) gave the following definition of Business Model:

"In the most basic sense, a business model is the method of doing business by which a company can
sustain itself -- that is, generate revenue. The business model spells-out how a company makes money
by specifying where it is positioned in the value chain."

A Business Model is a blueprint that describes how a network of cooperating agents intends
to create and capture value. In a Business Model one of the main points is the Customer
Value: this describes how the firm offering its customers something distinctive or lower cost
than its competitors. Another basic issue was the Scope which describes to which customers
is the firm offering his value and the range of products/services offered that embody this
value. Capabilities are the firm's capabilities and capabilities gaps that need to be filled to
sustain the Scope. Something distinctive characterizes capabilities to allow the firm to offer
the value better than other firms and that makes them difficult to imitate. The sources of
these capabilities can be many and exploited using appropriate SOA and specific ITC
infrastructure. For this reason we have to clarify what is the fit between them and how SOA
do to the strategy, structure, systems, people and environment of firm. The components of a
business value are here summarized:

 Model Ontology Concepts: purpose of the ontology is to improve communication,
inter-company interoperability, intra-company interoperability, achieving reliability,
enhance business model maintenance, knowledge acquisition, fundament for enabling
support tools. The Ontology allows to accurately describe the business model of a firm

 Service domain: it is a description of the service offering, its added value, and the
market segment at which the offering is targeted.

 Technology domain: a description of the SOA required to realize the service offering.
 Organization domain: a description of the structure of the multi-agents value network

required to create and distribute the service offering (organizational arrangements)
 Finance domain: a description of how risks, investments and revenues are divided

over the different actors of a value network (financial arrangements).

Of course Business Models have their dynamics depending on external and internal issue.
Any change has a direct impact on business models to continue to give to a firm a
competitive advantage. The Model is subject of Technological changes because the natural
evolution of IT and of its application in competitors.

4. Business Model Framework

We propose a specific Business Model that we consider well suited to improve IOS and SOA
interrelationship. The framework is divided into six principal components:

(1) The agents that agrees the alliance.
(2) The products and services a firm offers represent a substantial value to a target
customer (value proposition), and for which he is willing to pay.
(3) The relationship capital the firm creates and maintains with the customer, in order to
satisfy him and to generate sustainable revenues.
(4) The infrastructure.
(5) The network of partners that are necessary in order to create value and to maintain a
good customer relationship.
(6) The financial aspects such as cost and revenue structures.

There are no interfaces listing Agents and their all processes in a common and agreed open
space. The Business Model can be enforced deriving its components from shared value
propositions, available capabilities in each forms and business constraints. In an
organization based on the described Business Model the SOA permits more easily to
organize and use distributed capabilities that may be under the control of different
ownership domains.

Fig. 2. Business Model Framework

Engineering the Computer Science and IT218

The adaptability is improved if a Business Model is able to provide a systems of values, a
shared structure and a SOA input to ITC. ITC loses the role of infrastructure and becomes a
component of business organization.
In general, agents create capabilities to solve or support a solution for the problems they face
in the course of their business. The needs of a web of firms are met by capabilities offered by
net members.
The value of SOA is that it provides a powerful framework for matching needs and
capabilities and for combining capabilities to address firms nets. Services are the mechanism
by which needs and capabilities are brought together. SOA is a mean of organizing solutions
that promotes reuse, growth and interoperability.
Visibility, interaction, and effect are key concepts of the SOA paradigm. In our approach
visibility refers to the capacity for those with needs and those with capabilities to be able to
see each other. The descriptions need to be in a form (or can be transformed to a form) in
which their syntax and semantics are widely accessible and understandable.
The Business Model declares activities based on visible services and interactions are the way
of using a capability. At its core, an interaction is "an act" and the result of an interaction is a
set/series of effects. This effect may be the return of information or the change in the state of
entities that are involved in the interaction. Effects are couched in terms of changes to
shared states.
Visibility is promoted through the service description which contains the information
necessary to interact with the service and describes this in such terms as the service inputs,
outputs, and associated semantics. The service description also conveys what is
accomplished when the service is invoked and the conditions for using the service.
Agents offer capabilities and act as service providers. Those with needs who make use of
services are referred to as service consumers. The service description allows prospective
consumers to decide if the service is suitable for their current needs and establishes whether
a consumer satisfies any requirements of the service provider.
A software service specification is the definition of a set of capabilities that fulfil a defined
purpose. In model-driven systems development, a service specification can be made using
Systems Modelling Language like SysML or UML or any other Specification tool.

5. Software Maintenance of Systems

This environment is particularly challenging for software maintenance and new "smart"
approaches have to be defined. Maintenance is becoming a major challenge to guarantee
software aligned to the business processes of the Business Model.
The maintenance process designed to satisfy the described scenario has an agile approach
integrated with self-organizing and changing business.
The shift from centralized to distributed and cooperative organizations needs software with
SOA dynamically integrated with business architecture. Software services become the
fundamental platform to support products delivery and services management. There is a
paradigmatic changes: from top down development and maintenance to a bottom-up
evolutionarily life cycle where software assets maintenance is integrated with organizational
assets maintenance. The benefits of the approach are measured reduction of the number of
defects on high level requirements and the incremental commitment nature of the process:
expenditures tend to be balanced with certainty level. Another advantage is a reduced time
to upgrade software assets.

Once a business model is defined and agreed by all agents, we used a method to support
software maintenance through advanced iterative and incremental approach. We adopted a
process similar to SCRUM because it is not a step-by-step cookbook approach and requires
active, thoughtful development and management. The method starts with the premise that
maintenance environment is complicated and unpredictable. You can predict or definitively
plan what you will deliver, when you will deliver it, and what the quality and cost will be,
but you have to negotiate continuously them according to various risks and needs as you
proceed. SCRUM method is integrated with the Business Model maintenance to improve the
associated SOA model and the software architecture.

Fig. 3. Self-Organization Business Model Ontology

The fundamental steps of the method follow:

Stage I. Concept

The purpose of the concept stage is to better define exactly how the business model and
its context was changed or improved, who is aimed at, how it will be positioned in
market segments and how Information Technology assets has to be changed/improved
to support business focus on target.

Stage II. Backlog update

The software maintenance begins in earnest. It is used a streamlined, flexible approach
to requirements change management reflecting both Extreme Programming (XP)'s
planning game and the SCRUM methodology.

SOA and supporting software processes integrated with self-organizing business networks 219

The adaptability is improved if a Business Model is able to provide a systems of values, a
shared structure and a SOA input to ITC. ITC loses the role of infrastructure and becomes a
component of business organization.
In general, agents create capabilities to solve or support a solution for the problems they face
in the course of their business. The needs of a web of firms are met by capabilities offered by
net members.
The value of SOA is that it provides a powerful framework for matching needs and
capabilities and for combining capabilities to address firms nets. Services are the mechanism
by which needs and capabilities are brought together. SOA is a mean of organizing solutions
that promotes reuse, growth and interoperability.
Visibility, interaction, and effect are key concepts of the SOA paradigm. In our approach
visibility refers to the capacity for those with needs and those with capabilities to be able to
see each other. The descriptions need to be in a form (or can be transformed to a form) in
which their syntax and semantics are widely accessible and understandable.
The Business Model declares activities based on visible services and interactions are the way
of using a capability. At its core, an interaction is "an act" and the result of an interaction is a
set/series of effects. This effect may be the return of information or the change in the state of
entities that are involved in the interaction. Effects are couched in terms of changes to
shared states.
Visibility is promoted through the service description which contains the information
necessary to interact with the service and describes this in such terms as the service inputs,
outputs, and associated semantics. The service description also conveys what is
accomplished when the service is invoked and the conditions for using the service.
Agents offer capabilities and act as service providers. Those with needs who make use of
services are referred to as service consumers. The service description allows prospective
consumers to decide if the service is suitable for their current needs and establishes whether
a consumer satisfies any requirements of the service provider.
A software service specification is the definition of a set of capabilities that fulfil a defined
purpose. In model-driven systems development, a service specification can be made using
Systems Modelling Language like SysML or UML or any other Specification tool.

5. Software Maintenance of Systems

This environment is particularly challenging for software maintenance and new "smart"
approaches have to be defined. Maintenance is becoming a major challenge to guarantee
software aligned to the business processes of the Business Model.
The maintenance process designed to satisfy the described scenario has an agile approach
integrated with self-organizing and changing business.
The shift from centralized to distributed and cooperative organizations needs software with
SOA dynamically integrated with business architecture. Software services become the
fundamental platform to support products delivery and services management. There is a
paradigmatic changes: from top down development and maintenance to a bottom-up
evolutionarily life cycle where software assets maintenance is integrated with organizational
assets maintenance. The benefits of the approach are measured reduction of the number of
defects on high level requirements and the incremental commitment nature of the process:
expenditures tend to be balanced with certainty level. Another advantage is a reduced time
to upgrade software assets.

Once a business model is defined and agreed by all agents, we used a method to support
software maintenance through advanced iterative and incremental approach. We adopted a
process similar to SCRUM because it is not a step-by-step cookbook approach and requires
active, thoughtful development and management. The method starts with the premise that
maintenance environment is complicated and unpredictable. You can predict or definitively
plan what you will deliver, when you will deliver it, and what the quality and cost will be,
but you have to negotiate continuously them according to various risks and needs as you
proceed. SCRUM method is integrated with the Business Model maintenance to improve the
associated SOA model and the software architecture.

Fig. 3. Self-Organization Business Model Ontology

The fundamental steps of the method follow:

Stage I. Concept

The purpose of the concept stage is to better define exactly how the business model and
its context was changed or improved, who is aimed at, how it will be positioned in
market segments and how Information Technology assets has to be changed/improved
to support business focus on target.

Stage II. Backlog update

The software maintenance begins in earnest. It is used a streamlined, flexible approach
to requirements change management reflecting both Extreme Programming (XP)'s
planning game and the SCRUM methodology.

Engineering the Computer Science and IT220

Stage III. Technical Cycle

This is an iterative stage where technical operations are accomplished. The structure of
the service application is created/maintained. The stage has the following steps:

III.1 Create/Update Solution architecture Definition of Model Technology and its
use. Define/Update the conceptual structure of the SOA.

III.2 Define/Update runtime environments
Define the runtime environments in which the Service application should run. This
covers all test environments, including unit test and final production environments.

III.3 Identify Existing Models and Common Patterns
The repeating patterns are identified within the service application.

III.4 Define/Update design model

III.5 Design, code, test

Stage IV. Trial

Stage V: Launch

6. Stage I. Concept

The purpose of the concept stage is to better define exactly how the business model and its
context was changed or improved, who is aimed at, how it will be positioned in market
segments and how Information Technology assets has to be changed or improved to
support business focus on target. The Business Model can be analyzed with a process
approach using Statistical Process Control results (where applicable) to value the actual
status of processes. Processes are at the core of Business Model and the starting point of any
innovation, adaptation or integration of firms (Dubray, 2007). There is a clear distinction
between business processes and services orchestrations that can be defined in another Stage.
Business processes are defined using Business Process Modelling Notation (BPMN) and are
modelled from a user point of view. These process models describes user's view of the BM.
We now introduce some details on BPMN so that it is more easy to understand how to
integrate it with software maintenance process.
BPMN is focused on creating a standard look and feel for process diagrams that is more
"business-friendly". By standardizing the semantics of things like tasks, sub-processes, and
events, and linking each to specific graphical shapes, icons, and line styles in the process
diagram, BPMN allows Agents to understand a process diagram regardless of which
vendor's modelling tool created it, and conversely to create process diagrams that other
analysts can immediately understand without special training. While the BPMN
specification suggests mappings of certain shapes and patterns to specific BPEL code, it's
been reduced a bit from the original vision of a standard business-friendly front end for
executable process models.

BPMN Diagrams are essentially flowcharts. Process participants are defined by pools, which
may be subdivided into swim-lanes, as in many other modelling notations. From the
perspective of the executable model, each pool represents a BPEL process. In addition, blank
but named pools can also be used to represent other business processes for which the
internals are opaque, a black box, as decided in the contract phase. A single business process
diagram can be composed of multiple pools, meaning multiple executable processes.
The basic units of a process are tasks, sub-processes, and events. Sub-processes and tasks are
represented by rectangles, events by circles. Various icons within those shapes indicate the
particular type of event or sub-process. Sub-processes may either be embedded in the
calling process or launched as an independent process, running in parallel with the calling
process, and synchronizing with it via messages. Solid lines group sequence flows and
interconnect the tasks, sub-processes, and events within a single pool. Each sequence flow
may be conditional or unconditional. In addition, BPMN offers a diamond Gateway shape
that, depending on its icon, can be used for branching, splits, conditional splits, merges, or
synchronizing joins.

Fig. 4. Simple BPMN chart.

In addition to sequence flows within a pool, BPMN shows message flows exchanged
between pools. These indicate the signals the process uses to communicate with invoked
services and partner processes. BPMN explicitly shows events, actions triggered by a signal
of some sort, such as receipt of a message, expiration of a timer, detection of an error, etc.
Each event has a trigger and a resulting action. The various types of triggers and resulting
actions are indicated by the placement of the event in the diagram along with its internal
icon. Events shown with an incoming sequence flow mean that the process issues the event
(i.e., sends the message, waits for a time delay, or throws the error), and those with no
incoming sequence flow mean that its outgoing sequence flow is triggered by the event (e.g.,
receipt of a message, timeout, or exception). Events of the second type placed on the border
of a task, sub-process, or pool indicate that the normal flow within that task, sub-process, or
pool is to be interrupted and the exception flow connected to the event is to be triggered.
Already completed tasks within a process interrupted in this way are reversed by
compensation actions defined by a compensation event linked to the task. Thus with BPMN
events, exception-handling behaviour and inter-process communications critical to the

SOA and supporting software processes integrated with self-organizing business networks 221

Stage III. Technical Cycle

This is an iterative stage where technical operations are accomplished. The structure of
the service application is created/maintained. The stage has the following steps:

III.1 Create/Update Solution architecture Definition of Model Technology and its
use. Define/Update the conceptual structure of the SOA.

III.2 Define/Update runtime environments
Define the runtime environments in which the Service application should run. This
covers all test environments, including unit test and final production environments.

III.3 Identify Existing Models and Common Patterns
The repeating patterns are identified within the service application.

III.4 Define/Update design model

III.5 Design, code, test

Stage IV. Trial

Stage V: Launch

6. Stage I. Concept

The purpose of the concept stage is to better define exactly how the business model and its
context was changed or improved, who is aimed at, how it will be positioned in market
segments and how Information Technology assets has to be changed or improved to
support business focus on target. The Business Model can be analyzed with a process
approach using Statistical Process Control results (where applicable) to value the actual
status of processes. Processes are at the core of Business Model and the starting point of any
innovation, adaptation or integration of firms (Dubray, 2007). There is a clear distinction
between business processes and services orchestrations that can be defined in another Stage.
Business processes are defined using Business Process Modelling Notation (BPMN) and are
modelled from a user point of view. These process models describes user's view of the BM.
We now introduce some details on BPMN so that it is more easy to understand how to
integrate it with software maintenance process.
BPMN is focused on creating a standard look and feel for process diagrams that is more
"business-friendly". By standardizing the semantics of things like tasks, sub-processes, and
events, and linking each to specific graphical shapes, icons, and line styles in the process
diagram, BPMN allows Agents to understand a process diagram regardless of which
vendor's modelling tool created it, and conversely to create process diagrams that other
analysts can immediately understand without special training. While the BPMN
specification suggests mappings of certain shapes and patterns to specific BPEL code, it's
been reduced a bit from the original vision of a standard business-friendly front end for
executable process models.

BPMN Diagrams are essentially flowcharts. Process participants are defined by pools, which
may be subdivided into swim-lanes, as in many other modelling notations. From the
perspective of the executable model, each pool represents a BPEL process. In addition, blank
but named pools can also be used to represent other business processes for which the
internals are opaque, a black box, as decided in the contract phase. A single business process
diagram can be composed of multiple pools, meaning multiple executable processes.
The basic units of a process are tasks, sub-processes, and events. Sub-processes and tasks are
represented by rectangles, events by circles. Various icons within those shapes indicate the
particular type of event or sub-process. Sub-processes may either be embedded in the
calling process or launched as an independent process, running in parallel with the calling
process, and synchronizing with it via messages. Solid lines group sequence flows and
interconnect the tasks, sub-processes, and events within a single pool. Each sequence flow
may be conditional or unconditional. In addition, BPMN offers a diamond Gateway shape
that, depending on its icon, can be used for branching, splits, conditional splits, merges, or
synchronizing joins.

Fig. 4. Simple BPMN chart.

In addition to sequence flows within a pool, BPMN shows message flows exchanged
between pools. These indicate the signals the process uses to communicate with invoked
services and partner processes. BPMN explicitly shows events, actions triggered by a signal
of some sort, such as receipt of a message, expiration of a timer, detection of an error, etc.
Each event has a trigger and a resulting action. The various types of triggers and resulting
actions are indicated by the placement of the event in the diagram along with its internal
icon. Events shown with an incoming sequence flow mean that the process issues the event
(i.e., sends the message, waits for a time delay, or throws the error), and those with no
incoming sequence flow mean that its outgoing sequence flow is triggered by the event (e.g.,
receipt of a message, timeout, or exception). Events of the second type placed on the border
of a task, sub-process, or pool indicate that the normal flow within that task, sub-process, or
pool is to be interrupted and the exception flow connected to the event is to be triggered.
Already completed tasks within a process interrupted in this way are reversed by
compensation actions defined by a compensation event linked to the task. Thus with BPMN
events, exception-handling behaviour and inter-process communications critical to the

Engineering the Computer Science and IT222

executable implementation are shown explicitly in the diagram, without requiring the
modeller to specify the underlying technical details.

The analysis of a BM permits to decide the implementation or update of SOA. A service will
be implemented or updated if it adheres to the following principles (Erl, 2007):

• Standardized Service Contracts: services within the same service inventory are in
compliance with the same contract design standards.

• Service Discoverability: services are supplemented with communicative meta data by
which they can be effectively discovered and interpreted.

• Service Abstraction: service contracts only contain essential information and
information about services is limited to what is published in service contracts.

 • Service Loose Coupling: service contracts impose low consumer coupling requirements
and are themselves decoupled from their surrounding environment.

• Service Autonomy: services exercise a high level of control over their underlying
runtime execution environment.

• Service Composability: services are effective composition participants, regardless of the
size and complexity of the composition.

• Service Statelessness: services minimize resource consumption by deferring the
management of state information when necessary.

Standardized service contracts, discoverability and abstraction are all about the definition of
the interface (or contract) of a service. These general requirements are accomplished in
compliance to the chosen BM that different Agents have agreed. The other principles are
more technical and are needed to enable the principles of reusability and loose coupling.
Loose coupling calls for a messaging system supporting the communication between
services. Service composability asks for the concept of assemblies to be introduced as a
programming concept. The principle about service statelessness is good to strive for, but not
always possible. Therefore the notion of state alignment is crucial to loosely coupled
solutions (Dubray, Composite Software Construction, 2007).
From a technical perspective the presented principles can be applied only if an
infrastructure is defined and available.
A distinction can be made between two main types of services (Cohen, 2007): those that are
infrastructural in nature and provide common facilities that would not be considered part of
the application, and those that are part of the application and provide the application's
building blocks. Infrastructure services are common facilities that are part of the required
infrastructure for the implementation of any business process in a SOA. Infrastructure
services can be further divided into (Cohen, 2007): Communication services, which are
mainly used for message transportation, and Utility services, which deliver generic (non-
application-specific) infrastructural functionality. Application services, on the other hand,
are services that take part in the implementation of a business process providing explicit
business value. Cohen (Cohen, 2007) divides these services into entity, capability, activity
and process services. Dubray (Dubray, Composite Software Construction, 2007) adds two
important types of services: delivery and decision services. These classifications are
described as follows:

• Entity services, exposing and managing business entities;
• Activity services, implementing a specific application-level business capability;
• Capability services, implementing a generic value-add business capability;
• Process services, implementing a business process by orchestrating other services;
• Decision services, supporting the externalization and reuse of complex and critical

decision points within a task, process or business object;
• Delivery services, enabling user interactions with the system, which are always

performed within a task.
The main difference between Capability services and Activity services is the scope in which
they are used. While Capability services are an organizational resources, Activity services
are used in a much smaller scope, such as a single composite application (Cohen, 2007).
The common and shared Business Model generates decision about common SOA. At this
point a service contract is agreed on comprehensive of description of the business
functionality provided by the service, but also the high-level requirements of the service
along with specifications governing its usage service level declarations and key performance
indicators. A service contract description develops and catalogues a uniform yet multi-
dimensional, enterprise-wide understanding of the purpose, scope and representation of what
this service entails and involves.

Starting from BPMN model the following characteristics will be collected:

Responsibility of the service: This provides the basic description of why the service should
exist. In other words, this states the basic business scope of the service. A service "does"
something in terms of business significance (in other words, encapsulates business
functionality). This also identifies the software component/s which implement(s) the
service.

Pre-conditions and post-conditions: Describe the factors that must be in place for this
service to be used and the limitations and constraints of the service.

Synchronous or asynchronous conditions: This refers to the call semantics of the service -
synchronous or asynchronous.

Identify the consumers of this service: Define the Agents and their roles that need to
represent when calling this service.

Other documented requirements: Security, Data, availability and Service Level Agreement
governing the service with costs.

7. Stage II. Backlog update

The software maintenance begins in earnest. It is used a streamlined, flexible approach to
requirements change management reflecting both Extreme Programming (XP)'s planning
game and the SCRUM methodology.
Scrum is a "lean" approach to software development. Scrum is a simple framework used to
organize teams and get work done more productively with higher quality. Designed to

SOA and supporting software processes integrated with self-organizing business networks 223

executable implementation are shown explicitly in the diagram, without requiring the
modeller to specify the underlying technical details.

The analysis of a BM permits to decide the implementation or update of SOA. A service will
be implemented or updated if it adheres to the following principles (Erl, 2007):

• Standardized Service Contracts: services within the same service inventory are in
compliance with the same contract design standards.

• Service Discoverability: services are supplemented with communicative meta data by
which they can be effectively discovered and interpreted.

• Service Abstraction: service contracts only contain essential information and
information about services is limited to what is published in service contracts.

 • Service Loose Coupling: service contracts impose low consumer coupling requirements
and are themselves decoupled from their surrounding environment.

• Service Autonomy: services exercise a high level of control over their underlying
runtime execution environment.

• Service Composability: services are effective composition participants, regardless of the
size and complexity of the composition.

• Service Statelessness: services minimize resource consumption by deferring the
management of state information when necessary.

Standardized service contracts, discoverability and abstraction are all about the definition of
the interface (or contract) of a service. These general requirements are accomplished in
compliance to the chosen BM that different Agents have agreed. The other principles are
more technical and are needed to enable the principles of reusability and loose coupling.
Loose coupling calls for a messaging system supporting the communication between
services. Service composability asks for the concept of assemblies to be introduced as a
programming concept. The principle about service statelessness is good to strive for, but not
always possible. Therefore the notion of state alignment is crucial to loosely coupled
solutions (Dubray, Composite Software Construction, 2007).
From a technical perspective the presented principles can be applied only if an
infrastructure is defined and available.
A distinction can be made between two main types of services (Cohen, 2007): those that are
infrastructural in nature and provide common facilities that would not be considered part of
the application, and those that are part of the application and provide the application's
building blocks. Infrastructure services are common facilities that are part of the required
infrastructure for the implementation of any business process in a SOA. Infrastructure
services can be further divided into (Cohen, 2007): Communication services, which are
mainly used for message transportation, and Utility services, which deliver generic (non-
application-specific) infrastructural functionality. Application services, on the other hand,
are services that take part in the implementation of a business process providing explicit
business value. Cohen (Cohen, 2007) divides these services into entity, capability, activity
and process services. Dubray (Dubray, Composite Software Construction, 2007) adds two
important types of services: delivery and decision services. These classifications are
described as follows:

• Entity services, exposing and managing business entities;
• Activity services, implementing a specific application-level business capability;
• Capability services, implementing a generic value-add business capability;
• Process services, implementing a business process by orchestrating other services;
• Decision services, supporting the externalization and reuse of complex and critical

decision points within a task, process or business object;
• Delivery services, enabling user interactions with the system, which are always

performed within a task.
The main difference between Capability services and Activity services is the scope in which
they are used. While Capability services are an organizational resources, Activity services
are used in a much smaller scope, such as a single composite application (Cohen, 2007).
The common and shared Business Model generates decision about common SOA. At this
point a service contract is agreed on comprehensive of description of the business
functionality provided by the service, but also the high-level requirements of the service
along with specifications governing its usage service level declarations and key performance
indicators. A service contract description develops and catalogues a uniform yet multi-
dimensional, enterprise-wide understanding of the purpose, scope and representation of what
this service entails and involves.

Starting from BPMN model the following characteristics will be collected:

Responsibility of the service: This provides the basic description of why the service should
exist. In other words, this states the basic business scope of the service. A service "does"
something in terms of business significance (in other words, encapsulates business
functionality). This also identifies the software component/s which implement(s) the
service.

Pre-conditions and post-conditions: Describe the factors that must be in place for this
service to be used and the limitations and constraints of the service.

Synchronous or asynchronous conditions: This refers to the call semantics of the service -
synchronous or asynchronous.

Identify the consumers of this service: Define the Agents and their roles that need to
represent when calling this service.

Other documented requirements: Security, Data, availability and Service Level Agreement
governing the service with costs.

7. Stage II. Backlog update

The software maintenance begins in earnest. It is used a streamlined, flexible approach to
requirements change management reflecting both Extreme Programming (XP)'s planning
game and the SCRUM methodology.
Scrum is a "lean" approach to software development. Scrum is a simple framework used to
organize teams and get work done more productively with higher quality. Designed to

Engineering the Computer Science and IT224

adapt to changing requirements during the development process at short, regular intervals,
Scrum allows teams to prioritize customer requirements and adapts the work product in
time to customer needs.
The output of periodic Concept stage is an input to a plan which includes a Product
Backlog. The Product Backlog is a list of functional and non-functional requirements that
will deliver the SOA updates when turned into functionality. The Product Backlog is
prioritized so that the more value items are top priority. The Product Backlog is divided into
proposed releases and the release are reported and validated in periodic Concept Meetings.
Changes in the Product Backlog reflect changing requirements and how quickly or slowly
the Team can transform the Product Backlog into functionality.
All work is done in Sprints. Each Sprint is an iteration of one month. Each Sprint is initiated
with a Sprint Planning meeting, where the Product Owner and Team get together to
collaborate about.

8. Stage III. Technical Cycle

This is an iterative stage where technical operations are accomplished. The structure of the
service application is created or maintained. The Stage transforms requirements in a
technical feasible set of Services and Applications. We have the problem to integrate
different realities and technical environments and this cannot be coped with traditional
approaches.
According to the Object Management Group (OMG): "Given the continued, and growing,
diversity of systems, this will never be achieved by forcing all software development to be
based on a single operating system, programming language, instruction set architecture,
application server framework or any other choice. There are simply too many platforms in
existence, and too many conflicting implementation requirements, to ever agree on a single
choice in any of these fields." (OMG, 2003). The solution of the OMG is Model-Driven
Architecture (MDA).
OMG generated MDA as the difficulty to manage Enterprise Architecture able to cover
distributed multi firms organizations. Organizations are complex and as consequences the
design of architecture is difficult even if SOA approach is used. We give some definition to
introduce SOA/MDA:
A model of a system is a description or specification of that system and its environment for
some certain purpose. The text may be in a modelling language or in a natural language
(OMG,2003).

Fig. 5. Technical Cycle

A viewpoint on a system is a technique for abstraction using a selected set of architectural
concepts and structuring rules, in order to focus on particular concerns within that system.
The word abstraction is used to mean the process of suppressing selected detail to establish
a simplified model (OMG, 2003).
A platform is a set of subsystems and technologies that provide a coherent set of
functionality through interfaces and specified usage patterns, which any application
supported by that platform can use without concern for the details of how the functionality
provided by the platform is implemented (OMG, 2003).
MDA is an approach using models in software development. The MDA prescribes certain
kinds of models to be used, how those models may be prepared and the relationships of the
different kinds of models. The basic concept of the Model-Driven Architecture is the
separation of the operations of a system from capabilities details of its platform. The MDA
provides an approach in which systems are specified independently of the platform that
supports it. It also provides an approach for specifying platforms, for choosing a particular
platform for the system and for transforming the system specification into one for a
particular platform. The three primary goals of MDA are portability, interoperability and
reusability through architectural separation of concerns (OMG, 2003).

SOA and supporting software processes integrated with self-organizing business networks 225

adapt to changing requirements during the development process at short, regular intervals,
Scrum allows teams to prioritize customer requirements and adapts the work product in
time to customer needs.
The output of periodic Concept stage is an input to a plan which includes a Product
Backlog. The Product Backlog is a list of functional and non-functional requirements that
will deliver the SOA updates when turned into functionality. The Product Backlog is
prioritized so that the more value items are top priority. The Product Backlog is divided into
proposed releases and the release are reported and validated in periodic Concept Meetings.
Changes in the Product Backlog reflect changing requirements and how quickly or slowly
the Team can transform the Product Backlog into functionality.
All work is done in Sprints. Each Sprint is an iteration of one month. Each Sprint is initiated
with a Sprint Planning meeting, where the Product Owner and Team get together to
collaborate about.

8. Stage III. Technical Cycle

This is an iterative stage where technical operations are accomplished. The structure of the
service application is created or maintained. The Stage transforms requirements in a
technical feasible set of Services and Applications. We have the problem to integrate
different realities and technical environments and this cannot be coped with traditional
approaches.
According to the Object Management Group (OMG): "Given the continued, and growing,
diversity of systems, this will never be achieved by forcing all software development to be
based on a single operating system, programming language, instruction set architecture,
application server framework or any other choice. There are simply too many platforms in
existence, and too many conflicting implementation requirements, to ever agree on a single
choice in any of these fields." (OMG, 2003). The solution of the OMG is Model-Driven
Architecture (MDA).
OMG generated MDA as the difficulty to manage Enterprise Architecture able to cover
distributed multi firms organizations. Organizations are complex and as consequences the
design of architecture is difficult even if SOA approach is used. We give some definition to
introduce SOA/MDA:
A model of a system is a description or specification of that system and its environment for
some certain purpose. The text may be in a modelling language or in a natural language
(OMG,2003).

Fig. 5. Technical Cycle

A viewpoint on a system is a technique for abstraction using a selected set of architectural
concepts and structuring rules, in order to focus on particular concerns within that system.
The word abstraction is used to mean the process of suppressing selected detail to establish
a simplified model (OMG, 2003).
A platform is a set of subsystems and technologies that provide a coherent set of
functionality through interfaces and specified usage patterns, which any application
supported by that platform can use without concern for the details of how the functionality
provided by the platform is implemented (OMG, 2003).
MDA is an approach using models in software development. The MDA prescribes certain
kinds of models to be used, how those models may be prepared and the relationships of the
different kinds of models. The basic concept of the Model-Driven Architecture is the
separation of the operations of a system from capabilities details of its platform. The MDA
provides an approach in which systems are specified independently of the platform that
supports it. It also provides an approach for specifying platforms, for choosing a particular
platform for the system and for transforming the system specification into one for a
particular platform. The three primary goals of MDA are portability, interoperability and
reusability through architectural separation of concerns (OMG, 2003).

Engineering the Computer Science and IT226

Fig. 6. Meta-model of MDA

MDA specifies three default models of a system:

• The Computation Independent Model (CIM).
• Platform Independent Model (PIM).
• Platform Specific Model (PSM)

The Computation Independent Model (CIM). A computation independent model is a view
of a system from the computation independent viewpoint. A CIM does not show details of
the structure of systems. A CIM is sometimes called a domain model and a vocabulary that
is familiar to the practitioners of the domain in question is used in its specification (OMG,
2003). It is assumed that the primary user of the CIM is the domain practitioner or business
consultant. The user of a CIM doesn't have to have knowledge about the models or artefacts
used to realize the construction of the application complying to the requirements defined in
the CIM. The CIM specifies the function (or external behaviour) of a system without
showing constructional details.
An instantiation of a CIM can be an UML or BPMN chart or business functional
characteristics (inner and external objects, functional features) by means of noun and verb
analysis in the informal problem description. Cause-effect relations form causal chains that
are functioning cycles. All the cycles and sub-cycles should be carefully analyzed in order to
completely identify existing functionality of the system.
In case of studying a complex system, a CIM can be separated into a series of subsystems
according to identified.
A platform independent model is a view of a system from the platform independent
viewpoint. A PIM exhibits a specified degree of platform independence so as to be suitable
for use with a number of different platforms of similar type (OMG, 2003). A PIM describes
the construction of a system on an ontological level, meaning that the construction of the
system is specified without implementation details.

A platform specific model is a view of a system from the platform specific viewpoint. A
PSM combines the specifications in the PIM with the details that specify how that system
uses a particular type of platform (OMG, 2003). In other words: the PSM is a more detailed
version of a PIM. Platform specific elements are added. When defining a PSM a target
Platform Model has to be available.

8.1 Create/Update Solution architecture
Transition from an initial problem domain model to a CIM "output" model, i.e. a use case
model, goes as follows:
1) Acquire the list of Agents and their goals belonging to BPNM charts. Identification of
goals is the identification of the set of functional features necessary for the satisfaction of the
goal.
2) Identification and refinement of system's use cases that include discovering functional
features specified by requirements that are needed to achieve a business goal. An executor
of the goal is transformed into an (UML) actor. Identified use cases can be represented in an
UML activity diagram by transforming functional features into activities, and cause-effect
relations into control flows.
The last step is identification of a conceptual class model. In order to obtain a conceptual
class model each functional feature is detailed to the level where it only uses one type
objects. This is an architecture solution that can also be retrieved melting or updating
existing CIM's in organisation repository.

8.2 Define/Update runtime environments
This step define the runtime environments in which the service application should run. A
runtime environments is a platform defined as a set of subsystems and technologies that
provide a coherent set of functionality through interfaces and specified usage patterns. Any
application supported by that platform can use without concern for the details of how the
functionality provided by the platform.
As known, the CIM will be transformed into a Platform Independent Model. The resulting
PIM has to be targeted to a platform to complete the build process. Therefore a detailed
model of the platform is needed.
Of course all test environments, including unit test and final production, will be defined
inside the running environments.

8.3 Identify Existing Models and Common Patterns
The main challenge of the design is the transformation between the different models. In
traditional approaches these transformation are mostly very inefficient because no formal
models are used. Without formal models it isn't possible to define a formal transformation
which can be (partly) automated. In practice the process from CIM to PSM might be a lot
more complex. Gaps can exist between models not small enough to perform a direct
transformation. In that case many interrelated models may consist on different layers of
abstraction. Within this global set of models horizontal transformations may occur within a
single layer of abstraction. This happens if models already exists and are identified for reuse
and adapted to new requirements.

SOA and supporting software processes integrated with self-organizing business networks 227

Fig. 6. Meta-model of MDA

MDA specifies three default models of a system:

• The Computation Independent Model (CIM).
• Platform Independent Model (PIM).
• Platform Specific Model (PSM)

The Computation Independent Model (CIM). A computation independent model is a view
of a system from the computation independent viewpoint. A CIM does not show details of
the structure of systems. A CIM is sometimes called a domain model and a vocabulary that
is familiar to the practitioners of the domain in question is used in its specification (OMG,
2003). It is assumed that the primary user of the CIM is the domain practitioner or business
consultant. The user of a CIM doesn't have to have knowledge about the models or artefacts
used to realize the construction of the application complying to the requirements defined in
the CIM. The CIM specifies the function (or external behaviour) of a system without
showing constructional details.
An instantiation of a CIM can be an UML or BPMN chart or business functional
characteristics (inner and external objects, functional features) by means of noun and verb
analysis in the informal problem description. Cause-effect relations form causal chains that
are functioning cycles. All the cycles and sub-cycles should be carefully analyzed in order to
completely identify existing functionality of the system.
In case of studying a complex system, a CIM can be separated into a series of subsystems
according to identified.
A platform independent model is a view of a system from the platform independent
viewpoint. A PIM exhibits a specified degree of platform independence so as to be suitable
for use with a number of different platforms of similar type (OMG, 2003). A PIM describes
the construction of a system on an ontological level, meaning that the construction of the
system is specified without implementation details.

A platform specific model is a view of a system from the platform specific viewpoint. A
PSM combines the specifications in the PIM with the details that specify how that system
uses a particular type of platform (OMG, 2003). In other words: the PSM is a more detailed
version of a PIM. Platform specific elements are added. When defining a PSM a target
Platform Model has to be available.

8.1 Create/Update Solution architecture
Transition from an initial problem domain model to a CIM "output" model, i.e. a use case
model, goes as follows:
1) Acquire the list of Agents and their goals belonging to BPNM charts. Identification of
goals is the identification of the set of functional features necessary for the satisfaction of the
goal.
2) Identification and refinement of system's use cases that include discovering functional
features specified by requirements that are needed to achieve a business goal. An executor
of the goal is transformed into an (UML) actor. Identified use cases can be represented in an
UML activity diagram by transforming functional features into activities, and cause-effect
relations into control flows.
The last step is identification of a conceptual class model. In order to obtain a conceptual
class model each functional feature is detailed to the level where it only uses one type
objects. This is an architecture solution that can also be retrieved melting or updating
existing CIM's in organisation repository.

8.2 Define/Update runtime environments
This step define the runtime environments in which the service application should run. A
runtime environments is a platform defined as a set of subsystems and technologies that
provide a coherent set of functionality through interfaces and specified usage patterns. Any
application supported by that platform can use without concern for the details of how the
functionality provided by the platform.
As known, the CIM will be transformed into a Platform Independent Model. The resulting
PIM has to be targeted to a platform to complete the build process. Therefore a detailed
model of the platform is needed.
Of course all test environments, including unit test and final production, will be defined
inside the running environments.

8.3 Identify Existing Models and Common Patterns
The main challenge of the design is the transformation between the different models. In
traditional approaches these transformation are mostly very inefficient because no formal
models are used. Without formal models it isn't possible to define a formal transformation
which can be (partly) automated. In practice the process from CIM to PSM might be a lot
more complex. Gaps can exist between models not small enough to perform a direct
transformation. In that case many interrelated models may consist on different layers of
abstraction. Within this global set of models horizontal transformations may occur within a
single layer of abstraction. This happens if models already exists and are identified for reuse
and adapted to new requirements.

Engineering the Computer Science and IT228

The repeating patterns are identified within the models. These patterns often occur either
because of the consistent use of an architectural style or because of the requirements of the
runtime platforms. Common patterns are compared with existing models, making any
necessary small adjustment to their architecture to exploit what is already available.

8.4 Define/Update design model
The transformation of a PIM to a PSM will be done by a technical specialist. The resulting
PSM can be an implementation if it provides all the information needed to. Between the
models gaps can exist not small enough to perform a direct transformation. A
transformation is the manual, semi-automatic or automatic generation of a target model
from a source model, in accordance with a definition of transformation. It is a collection of
transformation rules that describe how to transform a model specified in a source language
into another model specified in a target language. Approaches that transform models can
be: marking, transformation meta-model, model transformation, and application of patterns
merger models (model merging).
Within a set of models horizontal transformations may occur within a single layer of
abstraction. By example, a PIM is transformed in a more detailed PIM several times. These
horizontal transformations are an addition to the vertical transformation of models across
the layers. At the current level of MDA, the model of entry is often the PIM and the target
model is often PSM. However, a transformation can have a PSM as a source and a target
PSM.

Fig. 7. From PIM to PSM

8.5 Design refinement, code, test
The resulting PSM can be an implementation if it provides all the information needed to
construct a system and to put it into operation. The design artefact has the final refinements,
if necessary.

Service orchestrations are modelled from a system's point of view and are used to
implement new composite services based on other services, if appropriate. The coding and
testing activities are executed.

9. Stage IV. Trial

The Trial stage is a validation of the product's design and features in use. Software
prototypes are tested within the firm to determine that no technical flaws exist. In parallel,
an agent test of the product is conducted. The object is to identify design defects, and, in
particular, modifications needed to improve business agents' acceptance. The trial stage
represents a "dry run" of all commercial facets of the software. The agents' tests provide the
inputs to finalize the business model if issues appear in the new enterprise architecture. This
means the identification of needed adjustments to the business model. A final estimate of
market share and expected sales are two results of the test market.

10. Stage V. Launch

The launch stage involves startup of full or commercial production and the implementation
of infrastructure assets of the business model. Post launch evaluation or control points at
pre-designated times after launch provide benchmarks to gauge whether a software product
is "on target." Such benchmarks include market share, sales volume, production costs, etc.
Post-launch evaluations are essential to control the software product and to signal the
implementation of corrective schemes to move the software product back on course.

11. Conclusion

People culture is still not aligned to service approach. Managers think in term of functional
black box, with strictly defined boundary following a typical top-down engineering
approach. This is a problem in the beginning of the innovation process. It is difficult to
reason in term of knowledge and services sharing on common goals in a network. This has a
heavy impact on the start-up of software process with an over-cost of 30-40% of effort. The
real improvement was measured in the number of defects on high level requirements,
giving a positive answer to the basic hypothesis that the software service model has to be
integrated in the process of define/improve business model at run time and not after in a
separate step.
New software product/service maintenance will never be risk free. Much can be learned
about effective new software management from a review of the experiences in past projects.
Many of these insights have been incorporated into the method presented. The benefits of
the model are many. One result is that the process becomes more multidisciplinary. The
balance between the internal versus external orientation becomes obvious. A second payoff
is that interaction between agents is encouraged: many evaluation nodes demand diverse
inputs from different groups in the company. A third benefit is the incremental commitment
nature of the process: expenditures tend to be balanced with certainty level; each stage
involves progressively better information and concurrently entails progressively higher
expenditures; and risk is managed. Further, decision nodes and bail-out points are provided
at each stage. Finally, the process is market oriented, providing for ample market

SOA and supporting software processes integrated with self-organizing business networks 229

The repeating patterns are identified within the models. These patterns often occur either
because of the consistent use of an architectural style or because of the requirements of the
runtime platforms. Common patterns are compared with existing models, making any
necessary small adjustment to their architecture to exploit what is already available.

8.4 Define/Update design model
The transformation of a PIM to a PSM will be done by a technical specialist. The resulting
PSM can be an implementation if it provides all the information needed to. Between the
models gaps can exist not small enough to perform a direct transformation. A
transformation is the manual, semi-automatic or automatic generation of a target model
from a source model, in accordance with a definition of transformation. It is a collection of
transformation rules that describe how to transform a model specified in a source language
into another model specified in a target language. Approaches that transform models can
be: marking, transformation meta-model, model transformation, and application of patterns
merger models (model merging).
Within a set of models horizontal transformations may occur within a single layer of
abstraction. By example, a PIM is transformed in a more detailed PIM several times. These
horizontal transformations are an addition to the vertical transformation of models across
the layers. At the current level of MDA, the model of entry is often the PIM and the target
model is often PSM. However, a transformation can have a PSM as a source and a target
PSM.

Fig. 7. From PIM to PSM

8.5 Design refinement, code, test
The resulting PSM can be an implementation if it provides all the information needed to
construct a system and to put it into operation. The design artefact has the final refinements,
if necessary.

Service orchestrations are modelled from a system's point of view and are used to
implement new composite services based on other services, if appropriate. The coding and
testing activities are executed.

9. Stage IV. Trial

The Trial stage is a validation of the product's design and features in use. Software
prototypes are tested within the firm to determine that no technical flaws exist. In parallel,
an agent test of the product is conducted. The object is to identify design defects, and, in
particular, modifications needed to improve business agents' acceptance. The trial stage
represents a "dry run" of all commercial facets of the software. The agents' tests provide the
inputs to finalize the business model if issues appear in the new enterprise architecture. This
means the identification of needed adjustments to the business model. A final estimate of
market share and expected sales are two results of the test market.

10. Stage V. Launch

The launch stage involves startup of full or commercial production and the implementation
of infrastructure assets of the business model. Post launch evaluation or control points at
pre-designated times after launch provide benchmarks to gauge whether a software product
is "on target." Such benchmarks include market share, sales volume, production costs, etc.
Post-launch evaluations are essential to control the software product and to signal the
implementation of corrective schemes to move the software product back on course.

11. Conclusion

People culture is still not aligned to service approach. Managers think in term of functional
black box, with strictly defined boundary following a typical top-down engineering
approach. This is a problem in the beginning of the innovation process. It is difficult to
reason in term of knowledge and services sharing on common goals in a network. This has a
heavy impact on the start-up of software process with an over-cost of 30-40% of effort. The
real improvement was measured in the number of defects on high level requirements,
giving a positive answer to the basic hypothesis that the software service model has to be
integrated in the process of define/improve business model at run time and not after in a
separate step.
New software product/service maintenance will never be risk free. Much can be learned
about effective new software management from a review of the experiences in past projects.
Many of these insights have been incorporated into the method presented. The benefits of
the model are many. One result is that the process becomes more multidisciplinary. The
balance between the internal versus external orientation becomes obvious. A second payoff
is that interaction between agents is encouraged: many evaluation nodes demand diverse
inputs from different groups in the company. A third benefit is the incremental commitment
nature of the process: expenditures tend to be balanced with certainty level; each stage
involves progressively better information and concurrently entails progressively higher
expenditures; and risk is managed. Further, decision nodes and bail-out points are provided
at each stage. Finally, the process is market oriented, providing for ample market

Engineering the Computer Science and IT230

information and marketing planning, not only towards the launch phase, but throughout
the entire process.

12. References

Cohen, S, 2007, Ontology and Taxonomy of Services in a Service-Oriented Architecture, The
Achitecture Journal. MSDN. Journal 11. May 2007.

Elliot. (2002) Electronic Commerce: B2C Strategies and Models. Chichester: Prentice-Hall
TSH Teo, WR King. (1997). Integration between business planning and information systems

planning: an evolutionary-contingency, Journal of Management Information
Systems I Summer

Erl, T. (2007). SOA Principles. Retrieved June 18, 2007, from SOA Principles, an introduction to
the Service-Orientation paradigm: http://www.soaprinciples.com, Dubray, J.-J.
(2007). Composite Software Construction. InfoQ.com: C4Media.

Dubray, J.-J. (2007, December 04). The Seven Fallacies of Business Process Execution.
Retrieved April 24, 2008, from InfoQ: http://www.infoq.com/articles/seven-
fallacies-of-bpm, Dubray, J. J. (2007). Composite Software Construction, Lulu.com

Erl, T. (2007). SOA Principles. Retrieved June 18, 2007, from SOA Principles, an introduction to
the Service-Orientation paradigm: http://www.soaprinciples.com/

Dubray, J.-J. (n.d.). Automata, State, Actions, and Interactions. Retrieved April 25, 2008,
from eBPML: http://www.ebpml.org/pi-calculus.htm

Küster, J. M., Ryndina, K., & Gall, H. (2007). Generation of Business Process Models for
Object Life Cycle Compliance. In G. Alonso, P. Dadam, & M. Rosemann (Ed.), BPM
2007, LNCS 4714 (pp. 165-181). Berlin Heidelberg: Springer-Verlag OMG. (2003, 06
12). MDA Guide Version 1.0.1. Retrieved from Object Management Group:
http://www.omg.org/mda

Rappa, M. (2005). Managing the Digital Enterprise, North Carolina State University
Thompson, J. D. (1967). Organizations in action, McGraw-Hill.

King, W.R., and Teo, T.S.H. (1997a), Integration between business planning and information
systems planning: validating a stage hypothesis, Decision Sciences, Vol 28, Number 2,
p 279-308.

King, W.R., and Teo, T.S.H. (1997b), Integration between business planning and information
systems planning: An evolutionary-contingency perspective, Journal of Management
Information Systems, Vol 14, Number 1, p 185-214

Algebraic Algorithms for Image Tomographic Reconstruction from Incomplete Projection Data 231

Algebraic Algorithms for Image Tomographic Reconstruction from
Incomplete Projection Data

Nadiya Gubareni

X

Algebraic Algorithms for Image Tomographic
Reconstruction from Incomplete Projection Data

Nadiya Gubareni

Technical University of Częstochowa
Poland

1. Introduction

Technique of computerized tomography has a wide application not only in medicine but
also in different fields of technique. In many applications because of some reasons one
cannot obtain the full set of projection data of a reconstructed object, e.g. the projection data
are not available at each angle of view or they are very limited in number. Sometimes
because of the large size of objects and limitation in the size of the scanners it is not possible
to obtain the complete set of required projections. In these cases we deal with the problem of
image reconstruction from incomplete projection data. In particular, such kind of problems
arise in mineral industries and engineering geophysics connected with acid drainage, the
stability of mine workers, mineral exploration and others.
When the projection data available are not limited in number and complete, the transform
methods of reconstructions are usually used (Herman, 1980), (Natterer, 1986), (Kak &
Slaney, 1988). For incomplete projection data these methods cannot be used directly. In this
case there often used different kinds of algebraic iterative algorithms the most well-known
from which are algorithms of algebraic reconstruction technique (ART) (Gordon et al., 1970),
(Herman et al., 1973), (Eggermont et al., 1981). They are generally simple, flexible and
permit to use a priori knowledge of the object before its reconstruction that is very
important in many practical applications. Recently algebraic iterative algorithms are also
used in magnetic resonance imaging (MRI) (Liang & Lauterbur, 2000), (Harshbarger &
Twieg, 1999) and low-contrast 3D-cone-beam tomography (Mueller et al., 1997).
However the application of algebraic iterative algorithms to real practical problems has
some important obstacles. The main repellant for using these algorithms are their
significantly slow reconstruction speed and so a large time of computations for obtaining
the good results, and a large memory space required to store the reconstruction image,
projection data and the projection matrix. In order to avoid these difficulties there are often
used the algebraic algorithms which can be allowed to parallelize and can be realized on the
parallel computing systems (PCS). The main general types of parallel iterative algebraic
algorithms for computerized tomography were proposed by Y. Censor (Censor, 1988). The
efficient performance of some of the parallel algorithms were described in (De Pierro &
Iusem, 1985); (Chen & Lee, 1994); (Chen et al., 1990); (Laurent et al., 1996); (Gubareni, 1998a).

13

Engineering the Computer Science and IT232

One of the most perspective areas of parallel computations is an elaboration of
asynchronous realizations of iterative algorithms. The main characteristic of the
organization of asynchronous computations is that the solution is obtained during a non-
synchronous interaction of processor elements of a parallel structure. Each processor of this
PCS updates the values of corresponding components of the solution using available
information about other components of the solution, and it obtains this information from
local processors or shared memory without waiting their full update. The researches
showed that the asynchronous realizations of parallel algorithms are more efficient from the
point of view of their speed of convergence in many important cases (Kung, 1976);
(Bertsekas & Tsitsiklis, 1989; 1991); (Savari & Bertsekas, 1996). Note that the convergence of
asynchronous algorithms and their synchronous prototypes may be different. Some models
of asynchronous iterative methods for image reconstruction are considered in (Baudet,
1978); (Chazan & Miranker, 1969); (Bru et al., 1988); (Elsner et al., 1990); (Kaszkurewicz et al.,
1990). Some generalization of these models for image reconstruction were considered in
(Baran et al., 1996); (Gubareni et al., 1997b); (Gubareni, 1999).
This chapter is devoted to consider the problem of image reconstruction from incomplete
projection data for particular reconstruction systems which arise in engineering geophysics
and mineral industry. Besides the well-known algorithms such as ART and MART their
chaotic, parallel and block-parallel implementations are considered in this chapter. The use
of these algorithms to reconstruct high-contrast objects from incomplete data is examined.
The influence of various parameters of these algorithms, such as the relaxation coefficients,
the number of iterations, the number of projections, and noise in projection data on the
reconstruction quality for different schemes of reconstruction are investigated.
Numerical results of image reconstruction from incomplete projection data for some
modeling objects, comparing evaluations of errors and the rate of convergence of these
algorithms are presented and discussed. It is shown that for some choice of parameters one
can obtain a good quality of reconstruction with these algorithms under the noise and
incomplete data.

2. Problem of incomplete projection data

The main goal of computerized tomography is to recover an unknown density function
from its line integrals. Let f(x,y) be a density function which represents the spatial
distribution of a physical parameter. If sincos: yxlL is a line (ray) in the plane then
the line integral

L

L dLyxfp),(=

 dxdyyxlyxf)sincos(),(, (1)

which is called a projection, is usually obtained from physical measurements.
From mathematical point of view the problem of reconstruction from projection data is to
find an unknown function f(x,y) by means of a given set of projections Lp for all L.
Theoretically it is possible to reconstruct the function f(x,y) from the set of projections Lp by
means of the Radon inversion formula (Radon, 1917). The classical inversion formula of
Radon requires information of all the line integrals in order to recover the function f(x,y) in
each point. Unfortunately, this mathematical problem represents only an idealized
abstraction of problems which occur in real practical applications. In practice there is given

only a discrete set of projection data that estimate p for a finite number of rays. Since
projection data are obtained by physical measurements with limited precision, they are
given with some errors. Therefore all these restrictions do not allow to use the Radon
inversion formula directly.
The projection data for computerized tomography is said to be complete if they are obtained
from every aspect of view angle. In many practical applications projections are often not
available at each direction and may be very limited in number. Moreover, because of the
large size of objects it is not possible to obtain the complete set of the required projection
data. In these cases one says that there is a problem of image reconstruction from incomplete
projection data. In particular, such kind of problems arise in mineral industries and
engineering geophysics connected with acid drainage, the stability of mine workers, mineral
exploration and others (Patella, 1997), (Williams, et al., 2004).
There exist two fundamentally different approaches for solving the image reconstruction
problem. In the first approach the problem is formulated for continuous functions f and p
and the inversion formula is derived in this continuous model. This method is called the
transform method approach (Censor & Zenios, 1997). The second approach is connected
with the discretization of functions f and p at the outset. So the object f and measurements p
become the vectors in the finite dimensional Euclidean space. In this case the methods of
linear algebra and optimization theory are used for solving the problem of image
reconstruction. This approach is called the fully discretized model (Censor & Zenios, 1997).
If the projection data can be obtained from every aspect of view angle and their number can
be obtained large enough (in medicine, for example), then it is more preferred to use the
transform method approach, e.g. the convolution back projection (CBP) algorithm
(Ramachandran & Lakhshminarayanan, 1970) or direct Fourier technique.
In dependence on the obtaining system of projections there are many image reconstruction
schemes, the main of them are parallel and beam schemes in the two-dimensional space.
Both of them are represented in Figure 1.

Fig. 1. Parallel and beam schemes of obtaining projection data in image reconstruction. 1-
sources; 2- detectors; 3 – projections; 4 – a research object

In some practical problems, in engineering for example, it is impossible to obtain projections
from all directions because of the existence of some important reasons (such as situation,

Algebraic Algorithms for Image Tomographic Reconstruction from Incomplete Projection Data 233

One of the most perspective areas of parallel computations is an elaboration of
asynchronous realizations of iterative algorithms. The main characteristic of the
organization of asynchronous computations is that the solution is obtained during a non-
synchronous interaction of processor elements of a parallel structure. Each processor of this
PCS updates the values of corresponding components of the solution using available
information about other components of the solution, and it obtains this information from
local processors or shared memory without waiting their full update. The researches
showed that the asynchronous realizations of parallel algorithms are more efficient from the
point of view of their speed of convergence in many important cases (Kung, 1976);
(Bertsekas & Tsitsiklis, 1989; 1991); (Savari & Bertsekas, 1996). Note that the convergence of
asynchronous algorithms and their synchronous prototypes may be different. Some models
of asynchronous iterative methods for image reconstruction are considered in (Baudet,
1978); (Chazan & Miranker, 1969); (Bru et al., 1988); (Elsner et al., 1990); (Kaszkurewicz et al.,
1990). Some generalization of these models for image reconstruction were considered in
(Baran et al., 1996); (Gubareni et al., 1997b); (Gubareni, 1999).
This chapter is devoted to consider the problem of image reconstruction from incomplete
projection data for particular reconstruction systems which arise in engineering geophysics
and mineral industry. Besides the well-known algorithms such as ART and MART their
chaotic, parallel and block-parallel implementations are considered in this chapter. The use
of these algorithms to reconstruct high-contrast objects from incomplete data is examined.
The influence of various parameters of these algorithms, such as the relaxation coefficients,
the number of iterations, the number of projections, and noise in projection data on the
reconstruction quality for different schemes of reconstruction are investigated.
Numerical results of image reconstruction from incomplete projection data for some
modeling objects, comparing evaluations of errors and the rate of convergence of these
algorithms are presented and discussed. It is shown that for some choice of parameters one
can obtain a good quality of reconstruction with these algorithms under the noise and
incomplete data.

2. Problem of incomplete projection data

The main goal of computerized tomography is to recover an unknown density function
from its line integrals. Let f(x,y) be a density function which represents the spatial
distribution of a physical parameter. If sincos: yxlL is a line (ray) in the plane then
the line integral

L

L dLyxfp),(=

 dxdyyxlyxf)sincos(),(, (1)

which is called a projection, is usually obtained from physical measurements.
From mathematical point of view the problem of reconstruction from projection data is to
find an unknown function f(x,y) by means of a given set of projections Lp for all L.
Theoretically it is possible to reconstruct the function f(x,y) from the set of projections Lp by
means of the Radon inversion formula (Radon, 1917). The classical inversion formula of
Radon requires information of all the line integrals in order to recover the function f(x,y) in
each point. Unfortunately, this mathematical problem represents only an idealized
abstraction of problems which occur in real practical applications. In practice there is given

only a discrete set of projection data that estimate p for a finite number of rays. Since
projection data are obtained by physical measurements with limited precision, they are
given with some errors. Therefore all these restrictions do not allow to use the Radon
inversion formula directly.
The projection data for computerized tomography is said to be complete if they are obtained
from every aspect of view angle. In many practical applications projections are often not
available at each direction and may be very limited in number. Moreover, because of the
large size of objects it is not possible to obtain the complete set of the required projection
data. In these cases one says that there is a problem of image reconstruction from incomplete
projection data. In particular, such kind of problems arise in mineral industries and
engineering geophysics connected with acid drainage, the stability of mine workers, mineral
exploration and others (Patella, 1997), (Williams, et al., 2004).
There exist two fundamentally different approaches for solving the image reconstruction
problem. In the first approach the problem is formulated for continuous functions f and p
and the inversion formula is derived in this continuous model. This method is called the
transform method approach (Censor & Zenios, 1997). The second approach is connected
with the discretization of functions f and p at the outset. So the object f and measurements p
become the vectors in the finite dimensional Euclidean space. In this case the methods of
linear algebra and optimization theory are used for solving the problem of image
reconstruction. This approach is called the fully discretized model (Censor & Zenios, 1997).
If the projection data can be obtained from every aspect of view angle and their number can
be obtained large enough (in medicine, for example), then it is more preferred to use the
transform method approach, e.g. the convolution back projection (CBP) algorithm
(Ramachandran & Lakhshminarayanan, 1970) or direct Fourier technique.
In dependence on the obtaining system of projections there are many image reconstruction
schemes, the main of them are parallel and beam schemes in the two-dimensional space.
Both of them are represented in Figure 1.

Fig. 1. Parallel and beam schemes of obtaining projection data in image reconstruction. 1-
sources; 2- detectors; 3 – projections; 4 – a research object

In some practical problems, in engineering for example, it is impossible to obtain projections
from all directions because of the existence of some important reasons (such as situation,

Engineering the Computer Science and IT234

size or impossibility of an access to a research object). This situation arises, for example, in
the coal bed working. During the preparing process for working in this coal bed the access
to longwalls may be very difficult or impossible at all in dependence on the scheme of
obtaining projection data. Sometimes it is impossible to access to one or two sides of
longwalls, and sometimes it is impossible only to access to the basis but all the longwalls are
accessible. Each this situation has its own scheme of obtaining information.
Some examples of the schemes for obtaining projection data is shown in Figure 2. In the first
case there is an access to a research object from only two opposite sides. Therefore the sources
of rays can be situated only on one side and the detectors are situated on the opposite side of
the research part of a coal bed. This scheme will be called the system (1 1). And in the second
case there is an access to all four sides of an object. Therefore the sources can be situated, for
example, onto two neighboring sides, and the detectors can be situated on the opposite sides.
So the projections can be obtained from two pairs of the opposite sides.

.

.

1

2

3

4

.
.
.
.

.

.

.

.

.

1

1
2

3

4

4

Fig. 2. Schemes for obtaining projections data. 1 – sources of rays; 2- a research object; 3 –
rays; 4 – detectors.

3. Algebraic iterative algorithms

The numerical solution of equation (1) using ART requires the discretization of the cross-
section of an object. To construct a discretized model, a reconstructed domain D R2 is
included into a rectangle E and divided into n small elements (pixels). The full discrete
model of the problem of image reconstruction is based on the main principal that a research
object has the constant distribution inside each pixel. So for any i-th pixel one can
correspond an unknown xi. Secondly, one can assume that sources and detectors are points
and the rays between them are lines. Denote by aij the length of the intersection of the i-th
ray with j-th pixel. The length aij represents the contribution of the j-th pixel to the total
attenuation along the i-th ray. Thus, the discretized model of the problem of image
reconstruction is reduced to a system of linear algebraic equations:

pxA , (2)
where:

nm
ija ,)(RA is the matrix of coefficients,

nT
nxxx Rx),,,(21 is the image vector,

 mT
mppp Rp),,,(21 is the measurement vector of projection data.

This system has a few characteristics: it is a rectangular as a rule and it has a very large
dimension. For solving this system it is often used different kinds of algebraic iterative
algorithms the most well-known of which are the additive algorithm ART (Herman, el. al.,
1973), (Herman, 1975), (Herman, 1980), (Eggermont, el. al., 1981). These algorithms are very
flexible and allow to apply different a priory information about object before its
reconstruction that is especially very important when we have incomplete projection data.
Denote

,),()(2
i

i
i

i

i
p a

a

xaxxP
 (3)

,)1(ii PIP (4)

where ia is the i-th row of the matrix A, and is a relaxation parameter.

Algorithm 1 (ART-1).
1. nRx)0(is an arbitrary vector;
2. The k-th iteration is calculated in accordance with the following scheme:

),,...,2,1()(1 mik
i

)(k k xCPx (5)

where k
i
P are operators defined by (4), k are relaxation parameters, C is a constraining

operator, and .1)(mod)(mkki

This algorithm was proposed by Kaczmarz (Kaczmarz, 1937) and independently discovered
and investigated by G.T.Herman, A.Lent, S.Rowland in (Herman, el. al., 1973). It was used
successfully in application of computerized tomography in medicine. This algorithm runs
through all equations cyclically with modification of the present estimate x(k) in such a way
that the present equation with index i is fulfilled.
The multiplicative variant of ART, the algorithm MART, is given by the following form.

Algorithm 2 (MART).
1. nRx)0(is an arbitrary vector and x(0)>0.
2. The k+1-th iteration is calculated by the following way:

)(
)()(

)1(

),(
k

j

a

kki
ik

j xpx
ij

i
k

xa
 (6)

where
 ai is the i-th row of the matrix A,
 i

k is a relaxation parameter,
 pi is the i-th coordinate of the projection vector p,
 i(k) = k (mod m) +1.

Algebraic Algorithms for Image Tomographic Reconstruction from Incomplete Projection Data 235

size or impossibility of an access to a research object). This situation arises, for example, in
the coal bed working. During the preparing process for working in this coal bed the access
to longwalls may be very difficult or impossible at all in dependence on the scheme of
obtaining projection data. Sometimes it is impossible to access to one or two sides of
longwalls, and sometimes it is impossible only to access to the basis but all the longwalls are
accessible. Each this situation has its own scheme of obtaining information.
Some examples of the schemes for obtaining projection data is shown in Figure 2. In the first
case there is an access to a research object from only two opposite sides. Therefore the sources
of rays can be situated only on one side and the detectors are situated on the opposite side of
the research part of a coal bed. This scheme will be called the system (1 1). And in the second
case there is an access to all four sides of an object. Therefore the sources can be situated, for
example, onto two neighboring sides, and the detectors can be situated on the opposite sides.
So the projections can be obtained from two pairs of the opposite sides.

.

.

1

2

3

4

.
.
.
.

.

.

.

.

.

1

1
2

3

4

4

Fig. 2. Schemes for obtaining projections data. 1 – sources of rays; 2- a research object; 3 –
rays; 4 – detectors.

3. Algebraic iterative algorithms

The numerical solution of equation (1) using ART requires the discretization of the cross-
section of an object. To construct a discretized model, a reconstructed domain D R2 is
included into a rectangle E and divided into n small elements (pixels). The full discrete
model of the problem of image reconstruction is based on the main principal that a research
object has the constant distribution inside each pixel. So for any i-th pixel one can
correspond an unknown xi. Secondly, one can assume that sources and detectors are points
and the rays between them are lines. Denote by aij the length of the intersection of the i-th
ray with j-th pixel. The length aij represents the contribution of the j-th pixel to the total
attenuation along the i-th ray. Thus, the discretized model of the problem of image
reconstruction is reduced to a system of linear algebraic equations:

pxA , (2)
where:

nm
ija ,)(RA is the matrix of coefficients,

nT
nxxx Rx),,,(21 is the image vector,

 mT
mppp Rp),,,(21 is the measurement vector of projection data.

This system has a few characteristics: it is a rectangular as a rule and it has a very large
dimension. For solving this system it is often used different kinds of algebraic iterative
algorithms the most well-known of which are the additive algorithm ART (Herman, el. al.,
1973), (Herman, 1975), (Herman, 1980), (Eggermont, el. al., 1981). These algorithms are very
flexible and allow to apply different a priory information about object before its
reconstruction that is especially very important when we have incomplete projection data.
Denote

,),()(2
i

i
i

i

i
p a

a

xaxxP
 (3)

,)1(ii PIP (4)

where ia is the i-th row of the matrix A, and is a relaxation parameter.

Algorithm 1 (ART-1).
1. nRx)0(is an arbitrary vector;
2. The k-th iteration is calculated in accordance with the following scheme:

),,...,2,1()(1 mik
i

)(k k xCPx (5)

where k
i
P are operators defined by (4), k are relaxation parameters, C is a constraining

operator, and .1)(mod)(mkki

This algorithm was proposed by Kaczmarz (Kaczmarz, 1937) and independently discovered
and investigated by G.T.Herman, A.Lent, S.Rowland in (Herman, el. al., 1973). It was used
successfully in application of computerized tomography in medicine. This algorithm runs
through all equations cyclically with modification of the present estimate x(k) in such a way
that the present equation with index i is fulfilled.
The multiplicative variant of ART, the algorithm MART, is given by the following form.

Algorithm 2 (MART).
1. nRx)0(is an arbitrary vector and x(0)>0.
2. The k+1-th iteration is calculated by the following way:

)(
)()(

)1(

),(
k

j

a

kki
ik

j xpx
ij

i
k

xa
 (6)

where
 ai is the i-th row of the matrix A,
 i

k is a relaxation parameter,
 pi is the i-th coordinate of the projection vector p,
 i(k) = k (mod m) +1.

Engineering the Computer Science and IT236

This algorithm was invented and reinvented in several fields. It was shown that it is
convergent if 0 < i

k ija < 1 for all i, k, j, and its solution gives the solution of the linearly
constrained entropy optimization problem (Lent, 1977), (De Pierro, 1990), (Censor & Zenios,
1997).
In practice the vector of projection data is given as a rule with some error. Therefore instead
of a system of linear equations (2) there results a system of linear inequalities:

epxAep (7)

where e = {ε1, ε2, …, εm } is a non-negative vector. And one can consider that the vector e is
given a priory and defines the errors of projection data.
Introduce the following projection operator:

 ,)),(()),(()(2
i

i

i
iiii

i

i
pp a

a

xaxaxxP

 (8)

where

otherwise,0
;0if, ss

s

and
,)1(ii PIP (9)

where ia is the i-th row of a matrix A, and is a relaxation parameter.
In this case there results the following additive algorithm which is analogous to the algorithm 1.

Algorithm 3 (ART-3).
1. nRx)0(is an arbitrary vector.
2. The k+1-th iteration is calculated by the following way:

),,...,2,1()(1 mik

i
)(k k xCPx (10)

where k
i
P are operators defined by (8) and (9), k are relaxation parameters,

1)(mod)(mkki , and C is a constraining operator.

This algorithm was investigated by G.T. Herman (Herman, 1975), and it was used
successfully in medicine.

4. Block-parallel iterative algorithms

The convergence rate of algebraic iterative algorithms considered in the previous section is
very slow and a lot of iterations should be made to obtain a good reconstruction. It is more
efficient to apply the algorithms which use simultaneously all equations (or inequalities) of
system (2) (or (3)) at each step of iteration process. The examples of these algorithms are the
generalized algorithms of the Cimmino type (Censor, 1988) which can be related to the class

of parallel algorithms. Following Y. Censor (Censor, 1988), the iterative algorithm is
considered to be parallel if it can be represented in the following form:

),,()(,
i

ik
i

ik paxRy (11)

 Ji
ikk

 ,)1(ySx (12)

where Ri is an operator of the row type, S is an algorithmic operator which uses
simultaneously information obtained while solving all equations (inequalities) of system (2)
(or (7)) and generalizes them, J={1,2,…,m}, k is the number of iteration.
Consider the operator S from Rn to Rn in the following form:

 ikm

i

k
iJi

ik ,

1

, yByS

 (13)

where k
iB are nn -matrices with real nonnegative elements and EB

m

i

k
i

1
(E is the

identity matrix).
Consider the following class of parallel iterative algorithms.

Algorithm 4 (PART).
1. nRx)0(is an arbitrary vector;
2. The k+1-th iteration is calculated in accordance with the following scheme:

),,...,2,1()(, mik
i

ik k xPy (14)

 ,,

1

1 ikm

i

k
i

)(k yBCx

 (15)

where k
i
P are operators defined by (9), k are relaxation parameters, C is a constraining

operator and k
iB are matrices of dimension nn with real nonnegative elements and

 ,1||||,
11

m

i

k
i

m

i

k
i BEB (16)

for all k N.

Remark 1. Let n

j
i
jj

k
i 1)(B be a diagonal matrix with elements 10 i

jj . If i
i
jj for

each j J, i I, 1k , C = I, then there results the Cimmino algorithm (Censor, 1978). If

mi
jj /1 for each j J, i I, 1k , C = I, then there results the von Neumann algorithm

(Censor, 1978).
The study of different variants of this class of parallel algorithms by analyzing their
convergence was conducted by many authors, e.g. (Censor, 1978), (De Pierro & Iusem,
1985a, 1985b), (Censor & Zenious, 1997), (Gubareni, 1997).

Algebraic Algorithms for Image Tomographic Reconstruction from Incomplete Projection Data 237

This algorithm was invented and reinvented in several fields. It was shown that it is
convergent if 0 < i

k ija < 1 for all i, k, j, and its solution gives the solution of the linearly
constrained entropy optimization problem (Lent, 1977), (De Pierro, 1990), (Censor & Zenios,
1997).
In practice the vector of projection data is given as a rule with some error. Therefore instead
of a system of linear equations (2) there results a system of linear inequalities:

epxAep (7)

where e = {ε1, ε2, …, εm } is a non-negative vector. And one can consider that the vector e is
given a priory and defines the errors of projection data.
Introduce the following projection operator:

 ,)),(()),(()(2
i

i

i
iiii

i

i
pp a

a

xaxaxxP

 (8)

where

otherwise,0
;0if, ss

s

and
,)1(ii PIP (9)

where ia is the i-th row of a matrix A, and is a relaxation parameter.
In this case there results the following additive algorithm which is analogous to the algorithm 1.

Algorithm 3 (ART-3).
1. nRx)0(is an arbitrary vector.
2. The k+1-th iteration is calculated by the following way:

),,...,2,1()(1 mik

i
)(k k xCPx (10)

where k
i
P are operators defined by (8) and (9), k are relaxation parameters,

1)(mod)(mkki , and C is a constraining operator.

This algorithm was investigated by G.T. Herman (Herman, 1975), and it was used
successfully in medicine.

4. Block-parallel iterative algorithms

The convergence rate of algebraic iterative algorithms considered in the previous section is
very slow and a lot of iterations should be made to obtain a good reconstruction. It is more
efficient to apply the algorithms which use simultaneously all equations (or inequalities) of
system (2) (or (3)) at each step of iteration process. The examples of these algorithms are the
generalized algorithms of the Cimmino type (Censor, 1988) which can be related to the class

of parallel algorithms. Following Y. Censor (Censor, 1988), the iterative algorithm is
considered to be parallel if it can be represented in the following form:

),,()(,
i

ik
i

ik paxRy (11)

 Ji
ikk

 ,)1(ySx (12)

where Ri is an operator of the row type, S is an algorithmic operator which uses
simultaneously information obtained while solving all equations (inequalities) of system (2)
(or (7)) and generalizes them, J={1,2,…,m}, k is the number of iteration.
Consider the operator S from Rn to Rn in the following form:

 ikm

i

k
iJi

ik ,

1

, yByS

 (13)

where k
iB are nn -matrices with real nonnegative elements and EB

m

i

k
i

1
(E is the

identity matrix).
Consider the following class of parallel iterative algorithms.

Algorithm 4 (PART).
1. nRx)0(is an arbitrary vector;
2. The k+1-th iteration is calculated in accordance with the following scheme:

),,...,2,1()(, mik
i

ik k xPy (14)

 ,,

1

1 ikm

i

k
i

)(k yBCx

 (15)

where k
i
P are operators defined by (9), k are relaxation parameters, C is a constraining

operator and k
iB are matrices of dimension nn with real nonnegative elements and

 ,1||||,
11

m

i

k
i

m

i

k
i BEB (16)

for all k N.

Remark 1. Let n

j
i
jj

k
i 1)(B be a diagonal matrix with elements 10 i

jj . If i
i
jj for

each j J, i I, 1k , C = I, then there results the Cimmino algorithm (Censor, 1978). If

mi
jj /1 for each j J, i I, 1k , C = I, then there results the von Neumann algorithm

(Censor, 1978).
The study of different variants of this class of parallel algorithms by analyzing their
convergence was conducted by many authors, e.g. (Censor, 1978), (De Pierro & Iusem,
1985a, 1985b), (Censor & Zenious, 1997), (Gubareni, 1997).

Engineering the Computer Science and IT238

For many practical applications x 0, the elements of a matrix A= (aij) are nonnegative real
numbers and pi > 0 for all i I. In this case one may consider the following parallel
multiplicative algorithm for solving system of linear inequalities (7) (Censor, 1974), (De
Pierro, 1990).

Algorithm 5 (MARTP).
1. nRx)0(and x(0) > 0.
2. The k+1-th iteration is calculated in accordance with the following scheme:

 ,
1

,)()1(

m

i

ik
j

k
j

k
j yxx (17)

where

 ,
),()(

,
ij

k
ij a

ki
iik

j
py

xa
 (18)

(i=1,2,..., m; j=1,2,..., n), k
ij are positive real numbers for every j, k.

These algorithms may be realized on parallel computing structure consisted of m elementary
processors and one central processor. On each (k+1)-th step of iteration every i-th
elementary processor computes the coordinates of the vector yk,i in accordance with formula
(14) or (18) and then the central processor computes the (k+1)-th iteration of the image
vector x in accordance with formula (15) or (17).
The main defect of parallel algorithms considered above is their practical realization on
parallel computational structures because it needs a lot of local processors in an MPCS. In
order to reduce the number of required local processors consider block-iterative additive
and multiplicative algorithms considered in (Elfving, 1980), (Eggermont et al. 1981),
(Censor, 1988), (Gubareni, 1997).
For this purpose decompose the matrix A and the projection vector p into M subsets in
accordance with a decomposition

 MHHHm ...},...,2,1{ 21 , (19)
where

Ht = {mt-1+1, mt-1+2, …, mt }, (20)
0=m0<m1<…< mM=m, 1t M.

Algorithm 6 (BPART).
1. nRx)0(is an arbitrary vector;
2. The k+1-th iteration is calculated in accordance with the following scheme:

 1

()

(k) k ik
i i

i Ht k

 x C B P y , (21)

where t(k) = k(mod M) +1, k
i
P are operators defined by (9), 20 k are relaxation

parameters, C is a constraining operator and k
iB are matrices of dimension nn with real

nonnegative elements and

 ,1||||,
)()(

m

Hi

k
i

m

Hi

k
i

ktkt

BEB (22)

for all k N.

The parallel implementation of this algorithm can be described as follows:

),()(
)(,

kt
k

i
ik Hik xPy

,,1

)(

ikm

Hi

k
i

)(k

kt

yBCx

The block-iterative algorithms represent examples of sequential-parallel algorithms. They
may be considered as intermediate version between sequential algorithms and full parallel
ones. In each step of an iterative process the block-iterative algorithm uses simultaneously
information about all equations concerning to a given block.
Block-iterative algorithms may be also considered in the case of multiplicative algorithms.
In this case there results the following algorithm.

Algorithm 7 (BMART).
 1. nRx)0(and x(0) > 0.
 2. The k+1-th iteration is calculated in accordance with the following scheme:

 ,
),(

:
)(

)()1(
ij

k
ij

kt

a

Hi
ki

ik
j

k
j

pxx

xa
 (23)

where k
ij are positive real numbers such that

10
)(

 ktHi

k
ijija (24)

for every j, k; Ht(k) are defined in accordance with (20) and t(k) is almost cycle control
sequence.

If i
k
ij for all k,j and 0 aij 1, 1

)(

 ktHi

i , then there results the block-iterative

multiplicative algorithm proposed in (De Pierro & Iusem, 1985).

Algebraic Algorithms for Image Tomographic Reconstruction from Incomplete Projection Data 239

For many practical applications x 0, the elements of a matrix A= (aij) are nonnegative real
numbers and pi > 0 for all i I. In this case one may consider the following parallel
multiplicative algorithm for solving system of linear inequalities (7) (Censor, 1974), (De
Pierro, 1990).

Algorithm 5 (MARTP).
1. nRx)0(and x(0) > 0.
2. The k+1-th iteration is calculated in accordance with the following scheme:

 ,
1

,)()1(

m

i

ik
j

k
j

k
j yxx (17)

where

 ,
),()(

,
ij

k
ij a

ki
iik

j
py

xa
 (18)

(i=1,2,..., m; j=1,2,..., n), k
ij are positive real numbers for every j, k.

These algorithms may be realized on parallel computing structure consisted of m elementary
processors and one central processor. On each (k+1)-th step of iteration every i-th
elementary processor computes the coordinates of the vector yk,i in accordance with formula
(14) or (18) and then the central processor computes the (k+1)-th iteration of the image
vector x in accordance with formula (15) or (17).
The main defect of parallel algorithms considered above is their practical realization on
parallel computational structures because it needs a lot of local processors in an MPCS. In
order to reduce the number of required local processors consider block-iterative additive
and multiplicative algorithms considered in (Elfving, 1980), (Eggermont et al. 1981),
(Censor, 1988), (Gubareni, 1997).
For this purpose decompose the matrix A and the projection vector p into M subsets in
accordance with a decomposition

 MHHHm ...},...,2,1{ 21 , (19)
where

Ht = {mt-1+1, mt-1+2, …, mt }, (20)
0=m0<m1<…< mM=m, 1t M.

Algorithm 6 (BPART).
1. nRx)0(is an arbitrary vector;
2. The k+1-th iteration is calculated in accordance with the following scheme:

 1

()

(k) k ik
i i

i Ht k

 x C B P y , (21)

where t(k) = k(mod M) +1, k
i
P are operators defined by (9), 20 k are relaxation

parameters, C is a constraining operator and k
iB are matrices of dimension nn with real

nonnegative elements and

 ,1||||,
)()(

m

Hi

k
i

m

Hi

k
i

ktkt

BEB (22)

for all k N.

The parallel implementation of this algorithm can be described as follows:

),()(
)(,

kt
k

i
ik Hik xPy

,,1

)(

ikm

Hi

k
i

)(k

kt

yBCx

The block-iterative algorithms represent examples of sequential-parallel algorithms. They
may be considered as intermediate version between sequential algorithms and full parallel
ones. In each step of an iterative process the block-iterative algorithm uses simultaneously
information about all equations concerning to a given block.
Block-iterative algorithms may be also considered in the case of multiplicative algorithms.
In this case there results the following algorithm.

Algorithm 7 (BMART).
 1. nRx)0(and x(0) > 0.
 2. The k+1-th iteration is calculated in accordance with the following scheme:

 ,
),(

:
)(

)()1(
ij

k
ij

kt

a

Hi
ki

ik
j

k
j

pxx

xa
 (23)

where k
ij are positive real numbers such that

10
)(

 ktHi

k
ijija (24)

for every j, k; Ht(k) are defined in accordance with (20) and t(k) is almost cycle control
sequence.

If i
k
ij for all k,j and 0 aij 1, 1

)(

 ktHi

i , then there results the block-iterative

multiplicative algorithm proposed in (De Pierro & Iusem, 1985).

Engineering the Computer Science and IT240

5. Chaotic and asynchronous algorithms

First chaotic and asynchronous algorithms for image reconstruction were proposed and
studied in (Bru et al., 1988), (Elsner et al., 1990). These algorithms are based on the methods
of asynchronous iterations introduced first by Chasan and Miranker (Chazan & Miranker,
1969). The further development of these methods and their generalizations for the case of
non-linear operators was obtained by Baudet (Baudet, 1978).
Recall some important notions of the theory of chaotic and asynchronous iterations (Chazan
& Miranker, 1969), (Baudet, 1978), Bertsekas D.P. (1983), (Bertsekas & Tsitsiklis, 1989),
(Bertsekas & Tsitsiklis, 1991).

Definition 1. A sequence of nonempty subsets 0kkII of the set {1,2…, m} is a sequence
of chaotic sets if

},...,2,1{suplim mIk
k

 (25)

(another words, if each integer },...,2,1{ mj appears in this sequence an infinite number of
times).
For the first time such sequences were used by Baudet (Baudet, 1978).

Definition 2. If any subset of a sequence of chaotic sets I has the form }{ kk jI , where

},...,2,1{ mjk (i.e. each set consists of only one element), then the sequence I is called
acceptable (or admissible).

Suppose that PCS (Parallel Computing System) consists of m processors working local
independently. In this case the notion of the sequence of chaotic sets has a simple
interpretation: it sets the time diagram of work of each processor during non-synchronous
work of PCS. So the subset Ik is the set of the numbers of those processors which access the
central processor at the same time.
Note, that the definition of the sequence of chaotic sets can be given in the following
equivalent form:

Lemma 1. Let 0kkII be a sequence of nonempty subsets of the set {1,2..., m}. Then the
following conditions are equivalent:
1) },...,2,1{suplim mIk

k

2) the set { k | i I k } is unlimited for each i = 1,2..., m.
3) for each Nj there exists N)(jp such that the following condition satisfies:

)(

1
},...,2,1{

jpj

ji
i mI

 . (26)

For any sequence of chaotic sets the numbers)(jp depends on a number j. In practice and
for researching the convergence of asynchronous implementations of iterative processes

there are more important sequences of chaotic sets, for which these numbers do not depend
on number j.
Definition 3. If for a sequence of chaotic sets 0kkII the numbers)(jp defined by (26)
do not depend on the choice of number j, i.e. const)(Tjp for each Nj , then this
sequence is called regular, and the number T is called the number of regularity of the
sequence I.

Note, that this definition coincides with a concept of a regular sequence, introduced in (El
Tarazi, 1984) for the case of an admissible sequence. In this work El Tarazi obtained
important results introducing the obvious model for the class of a synchronous algorithms
and giving the first correct conditions of convergence in the non-linear case of contraining
operators.
Other important concept in the theory of an asynchronous iterations is the concept of a
sequence of delays.

Definition 4. A sequence 1)(kkJ of m-dimensional vectors)}(),...,(),({)(21 kkkk m
with integer coordinates, satisfying the following conditions:

1) 1)(0 kki ; (27)
2) ,)(lim

ki

k
 (28)

for each i = 1,2...,m and Nk , is called a sequence of delays.
In the case, when instead of condition 2) it holds the following condition:

2’) there exists a fixed number NL such that

Lkk i)((29)
for each Nk and i = 1,2...,m, the sequence is called a sequence with limited delays and
the number L is called a delay, or an asynchronous measure.

The sequence of delays determines the numbers of using iterations by each fixed processor,
and the number L shows a depth of used iterations and actually reflects possibilities of the
concrete computing system. For synchronous implementation of the iterative process the
difference)(kk i is equal to 0 for i = 1,2..., m and Nk .
Consider the definition of some generalized model of asynchronous computational process
(Robert, et al., 1975), (Baran et al., 1996), (Gubareni et al., 1997b).

Definition 5. Let there exist a set of nonlinear operators Ti: Rn Rn, },...,2,1{ mi and an

initial value nRx)0(. A generalized model of asynchronous iterations with limited
delays for the set of operators iT , i=1,2,...,m is called a method of building the sequence of

vectors 0
)(

k
kx , which is given recursively by the following scheme:

Algebraic Algorithms for Image Tomographic Reconstruction from Incomplete Projection Data 241

5. Chaotic and asynchronous algorithms

First chaotic and asynchronous algorithms for image reconstruction were proposed and
studied in (Bru et al., 1988), (Elsner et al., 1990). These algorithms are based on the methods
of asynchronous iterations introduced first by Chasan and Miranker (Chazan & Miranker,
1969). The further development of these methods and their generalizations for the case of
non-linear operators was obtained by Baudet (Baudet, 1978).
Recall some important notions of the theory of chaotic and asynchronous iterations (Chazan
& Miranker, 1969), (Baudet, 1978), Bertsekas D.P. (1983), (Bertsekas & Tsitsiklis, 1989),
(Bertsekas & Tsitsiklis, 1991).

Definition 1. A sequence of nonempty subsets 0kkII of the set {1,2…, m} is a sequence
of chaotic sets if

},...,2,1{suplim mIk
k

 (25)

(another words, if each integer },...,2,1{ mj appears in this sequence an infinite number of
times).
For the first time such sequences were used by Baudet (Baudet, 1978).

Definition 2. If any subset of a sequence of chaotic sets I has the form }{ kk jI , where

},...,2,1{ mjk (i.e. each set consists of only one element), then the sequence I is called
acceptable (or admissible).

Suppose that PCS (Parallel Computing System) consists of m processors working local
independently. In this case the notion of the sequence of chaotic sets has a simple
interpretation: it sets the time diagram of work of each processor during non-synchronous
work of PCS. So the subset Ik is the set of the numbers of those processors which access the
central processor at the same time.
Note, that the definition of the sequence of chaotic sets can be given in the following
equivalent form:

Lemma 1. Let 0kkII be a sequence of nonempty subsets of the set {1,2..., m}. Then the
following conditions are equivalent:
1) },...,2,1{suplim mIk

k

2) the set { k | i I k } is unlimited for each i = 1,2..., m.
3) for each Nj there exists N)(jp such that the following condition satisfies:

)(

1
},...,2,1{

jpj

ji
i mI

 . (26)

For any sequence of chaotic sets the numbers)(jp depends on a number j. In practice and
for researching the convergence of asynchronous implementations of iterative processes

there are more important sequences of chaotic sets, for which these numbers do not depend
on number j.
Definition 3. If for a sequence of chaotic sets 0kkII the numbers)(jp defined by (26)
do not depend on the choice of number j, i.e. const)(Tjp for each Nj , then this
sequence is called regular, and the number T is called the number of regularity of the
sequence I.

Note, that this definition coincides with a concept of a regular sequence, introduced in (El
Tarazi, 1984) for the case of an admissible sequence. In this work El Tarazi obtained
important results introducing the obvious model for the class of a synchronous algorithms
and giving the first correct conditions of convergence in the non-linear case of contraining
operators.
Other important concept in the theory of an asynchronous iterations is the concept of a
sequence of delays.

Definition 4. A sequence 1)(kkJ of m-dimensional vectors)}(),...,(),({)(21 kkkk m
with integer coordinates, satisfying the following conditions:

1) 1)(0 kki ; (27)
2) ,)(lim

ki

k
 (28)

for each i = 1,2...,m and Nk , is called a sequence of delays.
In the case, when instead of condition 2) it holds the following condition:

2’) there exists a fixed number NL such that

Lkk i)((29)
for each Nk and i = 1,2...,m, the sequence is called a sequence with limited delays and
the number L is called a delay, or an asynchronous measure.

The sequence of delays determines the numbers of using iterations by each fixed processor,
and the number L shows a depth of used iterations and actually reflects possibilities of the
concrete computing system. For synchronous implementation of the iterative process the
difference)(kk i is equal to 0 for i = 1,2..., m and Nk .
Consider the definition of some generalized model of asynchronous computational process
(Robert, et al., 1975), (Baran et al., 1996), (Gubareni et al., 1997b).

Definition 5. Let there exist a set of nonlinear operators Ti: Rn Rn, },...,2,1{ mi and an

initial value nRx)0(. A generalized model of asynchronous iterations with limited
delays for the set of operators iT , i=1,2,...,m is called a method of building the sequence of

vectors 0
)(

k
kx , which is given recursively by the following scheme:

Engineering the Computer Science and IT242

 ,,

otherwise,

if,

,)1()(

,1

)(
,

k

i

Ii
ikkk

ik
k

k
iik Ii

yxSx

y

xTy

 (30)

where 1kkII is a sequence of chaotic sets such that },...,2,1{ mIk and 1)(k
i

i kJ
are sequences of limited delays (i=1,2,...,m).

Apply the generalized model of asynchronous iterations for an implementation of the ART
algorithm on a non-synchronous computer structure. In this case there results the following
asynchronous algorithm, where the numbers of operators are chosen by a chaotic way.

Algorithm 8.
1. nRx)0(is an arbitrary vector;
2. The k+1-th iteration is calculated in accordance with the following scheme:

),,...,2,1(,

otherwise,

if,

,1)1(

,

)(
,1

mi

Ii

ik

Ii

k
i

k

ik
k

k
iik

k

i
k

 yx

y

xPy

 (31)

where k
i
P are operators defined by (9), k are relaxation parameters, k

i are positive real

numbers for each Nk , 1kkII is a sequence of chaotic sets such that },...,2,1{ mIk ,

 1)(k
i

i kJ are sequences of delays.

The convergence of this algorithm is given by the following theorem:

Theorem 1. Let system (2) be consistent, 1kkII a regular sequence of chaotic sets

},...,2,1{ mIk with a number of regularity T, 1)(k
i k sequences with limited delays and

)()(kk i
i
j , and let a delay be equal to T. If 0< k <2, k

i are positive real numbers with

property 1
 kIi

i
k , then for every point nRx)0(the sequence 0k

kx defined by the

algorithm 8 converges to some point H* x , which is a fixed point of orthogonal projection
operators Pi (i=1,2,...,m).

Consider the particular case of the algorithm 8 when there are no delays and the sequence of
chaotic sets is acceptable.

Algorithm 9 (CHART).
1. nRx)0(is an arbitrary vector;
2. The k+1-th iteration is calculated in accordance with the following scheme:

),,...,2,1(,

otherwise,

if,

,)(

,1

1
,

mi

Ii

ik

Ii

k
i

k

ik
k

k
iik

k

k

yCx

y

xP
y

 (32)

where k
i
P are operators defined by (9), k are relaxation parameters, k

i are positive real

numbers for each Nk , 1kkII is an acceptable sequence of chaotic sets such that
},...,2,1{ mIk and C is a constraining operator.

The convergence of the algorithm 9 is given by the following theorem.

Theorem 2. Let system (2) be consistent, 1kkII be an acceptable sequence of chaotic sets

},...,2,1{ mIk . If 0< k <2, k
i are positive real numbers with property 1

 kIi

i
k , then for

every point nRx)0(the sequence 0k
kx defined by the algorithm 9 converges to some

solution of this system.

6. Block-parallel asynchronous algorithms for computer tomography

Block-parallel asynchronous algorithms with application to tomographic reconstruction
from incomplete data were studied by Elsner, Koltracht and Neumann in (Elsner et al. 1990).
In this section the generalized model of asynchronous iterations is applied for an
implementation of the algorithm BPART on a non-synchronous computer structure. In this
case there results the following algorithm, where the numbers of operators are chosen by the
chaotic way:

Algorithm 10.
1. nRx)0(is an arbitrary vector;
2. The k+1-th iteration is calculated in accordance with the following scheme:

))((,1

)(

k

Hi
i

k
i

ik i

kt

k xPBCx

 , (33)

where k
i
P are operators defined by (9), k are relaxation parameters, C is a constraining

operator, t(k) = Ik, 0kkII is a sequence of chaotic sets such that },...,2,1{ MIk and k
iB

are matrices of dimension nn with real nonnegative elements which satisfy conditions

(22), 1)(k
i

i kJ are sequences of delays.

Theorem 3. Let system (2) be consistent, 0kkII a regular sequence of chaotic sets

},...,2,1{ MIk with a number of regularity T, 1)(k
i

i kJ sequences with limited delays

Algebraic Algorithms for Image Tomographic Reconstruction from Incomplete Projection Data 243

 ,,

otherwise,

if,

,)1()(

,1

)(
,

k

i

Ii
ikkk

ik
k

k
iik Ii

yxSx

y

xTy

 (30)

where 1kkII is a sequence of chaotic sets such that },...,2,1{ mIk and 1)(k
i

i kJ
are sequences of limited delays (i=1,2,...,m).

Apply the generalized model of asynchronous iterations for an implementation of the ART
algorithm on a non-synchronous computer structure. In this case there results the following
asynchronous algorithm, where the numbers of operators are chosen by a chaotic way.

Algorithm 8.
1. nRx)0(is an arbitrary vector;
2. The k+1-th iteration is calculated in accordance with the following scheme:

),,...,2,1(,

otherwise,

if,

,1)1(

,

)(
,1

mi

Ii

ik

Ii

k
i

k

ik
k

k
iik

k

i
k

 yx

y

xPy

 (31)

where k
i
P are operators defined by (9), k are relaxation parameters, k

i are positive real

numbers for each Nk , 1kkII is a sequence of chaotic sets such that },...,2,1{ mIk ,

 1)(k
i

i kJ are sequences of delays.

The convergence of this algorithm is given by the following theorem:

Theorem 1. Let system (2) be consistent, 1kkII a regular sequence of chaotic sets

},...,2,1{ mIk with a number of regularity T, 1)(k
i k sequences with limited delays and

)()(kk i
i
j , and let a delay be equal to T. If 0< k <2, k

i are positive real numbers with

property 1
 kIi

i
k , then for every point nRx)0(the sequence 0k

kx defined by the

algorithm 8 converges to some point H* x , which is a fixed point of orthogonal projection
operators Pi (i=1,2,...,m).

Consider the particular case of the algorithm 8 when there are no delays and the sequence of
chaotic sets is acceptable.

Algorithm 9 (CHART).
1. nRx)0(is an arbitrary vector;
2. The k+1-th iteration is calculated in accordance with the following scheme:

),,...,2,1(,

otherwise,

if,

,)(

,1

1
,

mi

Ii

ik

Ii

k
i

k

ik
k

k
iik

k

k

yCx

y

xP
y

 (32)

where k
i
P are operators defined by (9), k are relaxation parameters, k

i are positive real

numbers for each Nk , 1kkII is an acceptable sequence of chaotic sets such that
},...,2,1{ mIk and C is a constraining operator.

The convergence of the algorithm 9 is given by the following theorem.

Theorem 2. Let system (2) be consistent, 1kkII be an acceptable sequence of chaotic sets

},...,2,1{ mIk . If 0< k <2, k
i are positive real numbers with property 1

 kIi

i
k , then for

every point nRx)0(the sequence 0k
kx defined by the algorithm 9 converges to some

solution of this system.

6. Block-parallel asynchronous algorithms for computer tomography

Block-parallel asynchronous algorithms with application to tomographic reconstruction
from incomplete data were studied by Elsner, Koltracht and Neumann in (Elsner et al. 1990).
In this section the generalized model of asynchronous iterations is applied for an
implementation of the algorithm BPART on a non-synchronous computer structure. In this
case there results the following algorithm, where the numbers of operators are chosen by the
chaotic way:

Algorithm 10.
1. nRx)0(is an arbitrary vector;
2. The k+1-th iteration is calculated in accordance with the following scheme:

))((,1

)(

k

Hi
i

k
i

ik i

kt

k xPBCx

 , (33)

where k
i
P are operators defined by (9), k are relaxation parameters, C is a constraining

operator, t(k) = Ik, 0kkII is a sequence of chaotic sets such that },...,2,1{ MIk and k
iB

are matrices of dimension nn with real nonnegative elements which satisfy conditions

(22), 1)(k
i

i kJ are sequences of delays.

Theorem 3. Let system (2) be consistent, 0kkII a regular sequence of chaotic sets

},...,2,1{ MIk with a number of regularity T, 1)(k
i

i kJ sequences with limited delays

Engineering the Computer Science and IT244

and)()(kk i
i
j , and let the number of delay be equal to T. Then for every point nRx)0(

the sequence
1

)(}{ k
kx defined by the algorithm 10 converges to some point x* H, which is

a fixed point of orthogonal projection operators Pi (i = 1,2,..., M).
Let the particular case of algorithm 10 when there are no delays and the sequence of chaotic
sets is acceptable. Decompose the matrix A and the projection vector p into M subsets in
accordance with decomposition (13) and (20). Consider 1 tttt mmHs be the
cardinality of tH .

Algorithm 11 (CHBP).
1. nRx)0(is an arbitrary vector;
2. The k+1-th iteration is calculated in accordance with the following scheme:

ikM

i

k
i

k y),1(

1

1

 BCx , (34)

where

,,

,...
,

)(
1

,

1,1,,

),1(

ji
M

i

k
ijji

isisii

k
i

ik

Ij

y

ii

BPP

PPPQ
xQ

iP are operators defined by (9), is a relaxation parameter, C is a constraining operator,

1)(kkiII is a sequence of chaotic sets such that)(kiI {mi-1+1, mi-1+2,…, mi }=Hi and k

iB

are matrices of dimension nn with real nonnegative elements which satisfy conditions
(22) for each k N.

Remark 2. If operator Pi is defined by (3), algorithm CHART, PART, BPART, CHBP will be
called CHART-1, PART-1, BPART-1, CHBP-1 respectively, and if Pi is defined by (8) these
algorithms will be called by CHART-3, PART-3, BPART-3, CHBP-3 respectively.

7. Computer simulation and numerical results

In this section there are presented some numerical results of applying the different
algorithms considered in the previous sections for reconstruction of high contrast objects
from incomplete projection data in the case when they are not available at each angle of
view and they are a few-number limited. There are also studied the influence of various
parameters of these algorithms such as a pixel initialization, relaxation parameters, number
of iterations and noise in the projection data on reconstruction quality and convergence of
these algorithms (Gubareni, 1998a), (Gubareni & Pleszczynski, 2007), (Gubareni &
Pleszczynski, 2008).

In order to evaluate the goodness of the computer reconstruction of a high-construct image
there were tested different kinds of geometric figures and reconstruction schemes. In this

chapter the results of image reconstruction are presented for two different schemes of
obtaining projection data (1 1) and (1 1, 1 1), which are described above.
An important factor in the simulation process of image reconstruction is the choice of
modeling objects which describe the density distribution of research objects. In a coal bed,
where one searches the reservoirs of compressed gas or interlayers of a barren rock, the
density distribution may be considered discrete and the density difference of three
environments (coal, compressed gas and barren rock) is significant. Therefore for illustration
of the implementation of the algorithms working with incomplete data there were chosen
the discrete functions with a high contrast.
The first discrete function),(1 yxf is given in the following form:

otherwise,0
,),(,1),(

2

1
REDyxyxf (35)

where E is a square }1,1:),{(yxyxE , and D is a subset of E of the following form:

D=[-0.4,-0.2] × [-0.5,0.5] [-0.2,0.2] ×[0.3,0.5] [-0.2,0.2] ×[-0.1,0.1] [0,0.2] × [0.1,0.3]. (36)

The second discrete function),(2 yxf is given in the following form:

otherwise,0
,),(,4

,),(,3

,),(,2

,),(,1

),(
2

4

2
3

2
2

2
1

2

R

R

R

R

EDyx

EDyx

EDyx

EDyx

yxf (37)

where E is a square }1,1:),{(yxyxE , and Di are subsets of E of the following form:

D1 = [-0.7,-0.4] × [-0.5,0.2], D2= [-0.2,0.2] × [-0.1,0.1],

D3 = [-0.2,0.2] × [0.3,0.5], D4 = [0.4,0.7] × [0.4,0.7].
The three-dimensional view of the plots of these functions are given in Figure 3.

5

10

15

20

5

10

15

20

0

0.25

0.5

0.75

1

5

10

15

5

10

15

20

5

10

15

20

0

1

2

3

4

5

10

15

Fig. 3. The original functions),(1 yxf (on the left side) and),(2 yxf (on the right side).

Algebraic Algorithms for Image Tomographic Reconstruction from Incomplete Projection Data 245

and)()(kk i
i
j , and let the number of delay be equal to T. Then for every point nRx)0(

the sequence
1

)(}{ k
kx defined by the algorithm 10 converges to some point x* H, which is

a fixed point of orthogonal projection operators Pi (i = 1,2,..., M).
Let the particular case of algorithm 10 when there are no delays and the sequence of chaotic
sets is acceptable. Decompose the matrix A and the projection vector p into M subsets in
accordance with decomposition (13) and (20). Consider 1 tttt mmHs be the
cardinality of tH .

Algorithm 11 (CHBP).
1. nRx)0(is an arbitrary vector;
2. The k+1-th iteration is calculated in accordance with the following scheme:

ikM

i

k
i

k y),1(

1

1

 BCx , (34)

where

,,

,...
,

)(
1

,

1,1,,

),1(

ji
M

i

k
ijji

isisii

k
i

ik

Ij

y

ii

BPP

PPPQ
xQ

iP are operators defined by (9), is a relaxation parameter, C is a constraining operator,

1)(kkiII is a sequence of chaotic sets such that)(kiI {mi-1+1, mi-1+2,…, mi }=Hi and k

iB

are matrices of dimension nn with real nonnegative elements which satisfy conditions
(22) for each k N.

Remark 2. If operator Pi is defined by (3), algorithm CHART, PART, BPART, CHBP will be
called CHART-1, PART-1, BPART-1, CHBP-1 respectively, and if Pi is defined by (8) these
algorithms will be called by CHART-3, PART-3, BPART-3, CHBP-3 respectively.

7. Computer simulation and numerical results

In this section there are presented some numerical results of applying the different
algorithms considered in the previous sections for reconstruction of high contrast objects
from incomplete projection data in the case when they are not available at each angle of
view and they are a few-number limited. There are also studied the influence of various
parameters of these algorithms such as a pixel initialization, relaxation parameters, number
of iterations and noise in the projection data on reconstruction quality and convergence of
these algorithms (Gubareni, 1998a), (Gubareni & Pleszczynski, 2007), (Gubareni &
Pleszczynski, 2008).

In order to evaluate the goodness of the computer reconstruction of a high-construct image
there were tested different kinds of geometric figures and reconstruction schemes. In this

chapter the results of image reconstruction are presented for two different schemes of
obtaining projection data (1 1) and (1 1, 1 1), which are described above.
An important factor in the simulation process of image reconstruction is the choice of
modeling objects which describe the density distribution of research objects. In a coal bed,
where one searches the reservoirs of compressed gas or interlayers of a barren rock, the
density distribution may be considered discrete and the density difference of three
environments (coal, compressed gas and barren rock) is significant. Therefore for illustration
of the implementation of the algorithms working with incomplete data there were chosen
the discrete functions with a high contrast.
The first discrete function),(1 yxf is given in the following form:

otherwise,0
,),(,1),(

2

1
REDyxyxf (35)

where E is a square }1,1:),{(yxyxE , and D is a subset of E of the following form:

D=[-0.4,-0.2] × [-0.5,0.5] [-0.2,0.2] ×[0.3,0.5] [-0.2,0.2] ×[-0.1,0.1] [0,0.2] × [0.1,0.3]. (36)

The second discrete function),(2 yxf is given in the following form:

otherwise,0
,),(,4

,),(,3

,),(,2

,),(,1

),(
2

4

2
3

2
2

2
1

2

R

R

R

R

EDyx

EDyx

EDyx

EDyx

yxf (37)

where E is a square }1,1:),{(yxyxE , and Di are subsets of E of the following form:

D1 = [-0.7,-0.4] × [-0.5,0.2], D2= [-0.2,0.2] × [-0.1,0.1],

D3 = [-0.2,0.2] × [0.3,0.5], D4 = [0.4,0.7] × [0.4,0.7].
The three-dimensional view of the plots of these functions are given in Figure 3.

5

10

15

20

5

10

15

20

0

0.25

0.5

0.75

1

5

10

15

5

10

15

20

5

10

15

20

0

1

2

3

4

5

10

15

Fig. 3. The original functions),(1 yxf (on the left side) and),(2 yxf (on the right side).

Engineering the Computer Science and IT246

As was shown earlier (see, e.g. (Eggermont, el. al., 1981), (Herman, 1980)), the image
reconstruction of such objects from complete data gives a good enough results after 6-7 full
iterations.
The main criteria which are used to evaluate the quality of reconstruction are the following
reconstruction errors: the maximal absolute error, the mean root square error, the maximum
relative error, the mean absolute error, the absolute error.
In this paper the convergence characteristics of image reconstruction are presented in a view
of plots for the following measures of errors:

 the absolute error:
|),(

~
),(|),(yxfyxfyx

 the maximal absolute error:
|

~
|max ffi

i

 the maximal relative error

%100
||max

~
max

1

i

i

ii
i

f

ff
 ,

 the mean absolute error

i

ii ff
n

~1
2

where fi is the value of a given modeling function in the center of the i-th pixel and if
~

 is the
value of the reconstructed function in the i-th pixel.
In all considered computer simulations it was assumed that C= C1 C2, where

;if,
;if,

;if,
][1

bxb
bxax

axa
C

i

ii

i

ix (38)

otherwise,

;0and0if,0
][2

j

iji
j x

ap
C x (39)

From the conducted research it follows that the optimal value of a relaxation parameter is
equal to 1.1 for the system (1 ×1, 1 ×1) and it is equal to 1.3 for the system (1 × 1) in the case
where there is no noise in projections. In the case when there is a noise in the projection data
the optimal value of is changed in dependence on the value of the noise.
In all presented numerical results it was assumed, that

 n - is the number of pixels, i.e. the number of variables,
 m - is the number of rays, i.e. the number of equations,
 M - is the number of blocks,
 iter - is the number of full iterations.

In all experiments it was also assumes that

 M is equal to the number of detectors;
 the sequence of chaotic sets Ik has the form { k }, where k is an integer random

variable in the interval [1,m] with uniform distribution.

 the reconstruction domain }1,1:),{(yxyxE was divided into n = 20 20
pixels.

 the number of projections m in the system (1 1) is equal to 788, and in the system
(1 1, 1 1) the number m= 644.

7.1 Reconstruction with algorithms ART-3 and MART-3
The reconstruction of),(1 yxf with ART-3 after 15 iterations in the scheme (1 1, 1 1) is
presented in Figure 4. The plot of the reconstruction function is shown on the left side, and
the plot of the absolute errors for this image reconstruction is shown on the right side.

5

10

15

20

5

10

15

20

0

0.25

0.5

0.75

1

5

10

15

5

10

15

20

5

10

15

20

0

0.0001

0.0002

5

10

15

Fig. 4. Reconstruction and the the absolute error (x,y) of),(1 yxf with ART-3 for n=20 20,
m= 644, iter=15 in the scheme (1 1, 1 1).

For comparison this function),(1 yxf was reconstructed with the multiplicative algorithm
MART-3 for the same parameters and ω=6.9 and the plots, which are presented in Figure 5,
illustrate the dependence of the maximum relative error 1 and the mean absolute error 2
on number of iterations with ART-3 and MART-3 in the system (1 1, 1 1).

Fig. 5. Dependence of the maximum relative error 1 (on the left side) and the mean absolute
error 2 (on the right side) on the number of iterations for image reconstruction of),(1 yxf
with ART-3 and MART-3 for n=400, m= 644 in the system (1 1, 1 1).

Algebraic Algorithms for Image Tomographic Reconstruction from Incomplete Projection Data 247

As was shown earlier (see, e.g. (Eggermont, el. al., 1981), (Herman, 1980)), the image
reconstruction of such objects from complete data gives a good enough results after 6-7 full
iterations.
The main criteria which are used to evaluate the quality of reconstruction are the following
reconstruction errors: the maximal absolute error, the mean root square error, the maximum
relative error, the mean absolute error, the absolute error.
In this paper the convergence characteristics of image reconstruction are presented in a view
of plots for the following measures of errors:

 the absolute error:
|),(

~
),(|),(yxfyxfyx

 the maximal absolute error:
|

~
|max ffi

i

 the maximal relative error

%100
||max

~
max

1

i

i

ii
i

f

ff
 ,

 the mean absolute error

i

ii ff
n

~1
2

where fi is the value of a given modeling function in the center of the i-th pixel and if
~

 is the
value of the reconstructed function in the i-th pixel.
In all considered computer simulations it was assumed that C= C1 C2, where

;if,
;if,

;if,
][1

bxb
bxax

axa
C

i

ii

i

ix (38)

otherwise,

;0and0if,0
][2

j

iji
j x

ap
C x (39)

From the conducted research it follows that the optimal value of a relaxation parameter is
equal to 1.1 for the system (1 ×1, 1 ×1) and it is equal to 1.3 for the system (1 × 1) in the case
where there is no noise in projections. In the case when there is a noise in the projection data
the optimal value of is changed in dependence on the value of the noise.
In all presented numerical results it was assumed, that

 n - is the number of pixels, i.e. the number of variables,
 m - is the number of rays, i.e. the number of equations,
 M - is the number of blocks,
 iter - is the number of full iterations.

In all experiments it was also assumes that

 M is equal to the number of detectors;
 the sequence of chaotic sets Ik has the form { k }, where k is an integer random

variable in the interval [1,m] with uniform distribution.

 the reconstruction domain }1,1:),{(yxyxE was divided into n = 20 20
pixels.

 the number of projections m in the system (1 1) is equal to 788, and in the system
(1 1, 1 1) the number m= 644.

7.1 Reconstruction with algorithms ART-3 and MART-3
The reconstruction of),(1 yxf with ART-3 after 15 iterations in the scheme (1 1, 1 1) is
presented in Figure 4. The plot of the reconstruction function is shown on the left side, and
the plot of the absolute errors for this image reconstruction is shown on the right side.

5

10

15

20

5

10

15

20

0

0.25

0.5

0.75

1

5

10

15

5

10

15

20

5

10

15

20

0

0.0001

0.0002

5

10

15

Fig. 4. Reconstruction and the the absolute error (x,y) of),(1 yxf with ART-3 for n=20 20,
m= 644, iter=15 in the scheme (1 1, 1 1).

For comparison this function),(1 yxf was reconstructed with the multiplicative algorithm
MART-3 for the same parameters and ω=6.9 and the plots, which are presented in Figure 5,
illustrate the dependence of the maximum relative error 1 and the mean absolute error 2
on number of iterations with ART-3 and MART-3 in the system (1 1, 1 1).

Fig. 5. Dependence of the maximum relative error 1 (on the left side) and the mean absolute
error 2 (on the right side) on the number of iterations for image reconstruction of),(1 yxf
with ART-3 and MART-3 for n=400, m= 644 in the system (1 1, 1 1).

Engineering the Computer Science and IT248

The same function),(1 yxf was also reconstructed in the system (1 1). The result of this
reconstruction with ART-3 for n = 400, m = 788 and 100 iterations is shown in Figure 6.

5

10

15

20

5

10

15

20

0

0.25

0.5

0.75

1

5

10

15

5

10

15

20

5

10

15

20

0

0.01

0.02

0.03

5

10

15

Fig. 6. Reconstruction of),(1 yxf and the absolute error (x,y) obtained with algorithm ART
for n=400, m=788, iter=100 in the system (1 1).

The plots, which are presented in Figure 7, illustrate the dependence of the maximum
relative error 1 and the mean absolute error 2 on the number of iterations of image
reconstruction of),(1 yxf with ART-3 in the systems (1 1, 1 1) and (1 1).

Fig. 7. Dependence of the maximum relative error 1 (on the left side) and the mean absolute
error 2 (on the right side) on the number of iterations of image reconstruction of),(1 yxf in
the systems (1 1, 1 1) and (1 1).

The analogous reconstructions were obtained for the function),(2 yxf . The result of
reconstruction of the function),(2 yxf in the system (1 1) is shown in Figure 8.

5

10

15

20

5

10

15

20

0
1

2

3

4

5

10

15

5

10

15

20

5

10

15

20

0

0.25

0.5

0.75

5

10

15

Fig. 8. Reconstruction and the absolute error (x,y) of),(2 yxf obtained with algorithm
ART-3 for n=400, m=788, iter=25 in the system (1 1).

The plots presented in Figure 9 illustrate the dependence of the maximum relative error 1
and the mean absolute error 2 on the number of iterations of image reconstruction
of),(2 yxf with ART-3 in the systems (1 1, 1 1) and (1 1).

Fig. 9. The dependence of the maximum relative error 1 (on the left side) and the mean
absolute error 2 (on the right side) of image reconstruction of),(2 yxf in the systems (1 1,
1 1) and (1 1).

Note that the analogous results were obtained for ART-1, MART-1 and MART-3. For the
multiplicative algorithms MART-1 and MART-3 the velocity of convergence is considerably
less by comparison with the additive algorithms ART-1 and ART-3.

7.2 Reconstruction with chaotic algorithm CHART-1
In this section there are represented some numerical results of reconstructions of the
function),(1 yxf with the chaotic algorithm CHART-1 using the same parameters as in the
case of ART-3. The reconstruction result of the function),(1 yxf with CHART-1 after 100
iterations in the system (1 1, 1 1) is shown in Figure 10.

Algebraic Algorithms for Image Tomographic Reconstruction from Incomplete Projection Data 249

The same function),(1 yxf was also reconstructed in the system (1 1). The result of this
reconstruction with ART-3 for n = 400, m = 788 and 100 iterations is shown in Figure 6.

5

10

15

20

5

10

15

20

0

0.25

0.5

0.75

1

5

10

15

5

10

15

20

5

10

15

20

0

0.01

0.02

0.03

5

10

15

Fig. 6. Reconstruction of),(1 yxf and the absolute error (x,y) obtained with algorithm ART
for n=400, m=788, iter=100 in the system (1 1).

The plots, which are presented in Figure 7, illustrate the dependence of the maximum
relative error 1 and the mean absolute error 2 on the number of iterations of image
reconstruction of),(1 yxf with ART-3 in the systems (1 1, 1 1) and (1 1).

Fig. 7. Dependence of the maximum relative error 1 (on the left side) and the mean absolute
error 2 (on the right side) on the number of iterations of image reconstruction of),(1 yxf in
the systems (1 1, 1 1) and (1 1).

The analogous reconstructions were obtained for the function),(2 yxf . The result of
reconstruction of the function),(2 yxf in the system (1 1) is shown in Figure 8.

5

10

15

20

5

10

15

20

0
1

2

3

4

5

10

15

5

10

15

20

5

10

15

20

0

0.25

0.5

0.75

5

10

15

Fig. 8. Reconstruction and the absolute error (x,y) of),(2 yxf obtained with algorithm
ART-3 for n=400, m=788, iter=25 in the system (1 1).

The plots presented in Figure 9 illustrate the dependence of the maximum relative error 1
and the mean absolute error 2 on the number of iterations of image reconstruction
of),(2 yxf with ART-3 in the systems (1 1, 1 1) and (1 1).

Fig. 9. The dependence of the maximum relative error 1 (on the left side) and the mean
absolute error 2 (on the right side) of image reconstruction of),(2 yxf in the systems (1 1,
1 1) and (1 1).

Note that the analogous results were obtained for ART-1, MART-1 and MART-3. For the
multiplicative algorithms MART-1 and MART-3 the velocity of convergence is considerably
less by comparison with the additive algorithms ART-1 and ART-3.

7.2 Reconstruction with chaotic algorithm CHART-1
In this section there are represented some numerical results of reconstructions of the
function),(1 yxf with the chaotic algorithm CHART-1 using the same parameters as in the
case of ART-3. The reconstruction result of the function),(1 yxf with CHART-1 after 100
iterations in the system (1 1, 1 1) is shown in Figure 10.

Engineering the Computer Science and IT250

5

10

15

20

5

10

15

20

0

0.25

0.5

0.75

1

5

10

15

5

10

15

20

5

10

15

20

0

0.002

0.004

5

10

15

Fig. 10. Reconstruction and the absolute error (x,y) of),(1 yxf obtained with CHART-1 for
n=20 20, m= 788, iter=100 in the system (1 1).

The plots, which are presented in Figure 11, illustrate the dependence of the mean absolute
error 2 on the number of iterations for image reconstruction of),(1 yxf with ART-1 and
CHART-1 in the systems (1 1, 1 1) and (1 1).

Fig. 11. Dependence of the mean absolute error 2 on the number of iterations for image
reconstruction of),(1 yxf with ART-1 and CHART-1 in the system (1 1, 1 1) (on the left
side) and in the system (1 1) (on the right side).

The result of image reconstruction of the function),(2 yxf with CHART-1 after 25 iterations
in the system (1 1) is shown in Figure 12.

5

10

15

20

5

10

15

20

0

1

2

3

4

5

10

15

5

10

15

20

5

10

15

20

0

0.05

0.1

0.15

5

10

15

Fig. 12. Reconstruction and the absolute error (x,y) of),(2 yxf obtained with chaotic
algorithm CHART-1 for n=20 20, m= 788, iter=25 in the system (1 1).

Table 1 (resp. Table 2) shows the dependence of the maximum absolute error on the
number of iterations for ART-1 and CHART-1 for the system (1 1) (resp., the system (1 1,
1 1)) and the same set of parameters which were chosen above.

iter ART-1 CHART-1
100 0.0306 0.0073
200 0.00201 0.0001
500 1.209 10-6 4.098 10-9
1000 6.435 10-12 6.328 10-15
2000 5.44 10-15 6.106 10-15

Table 1. The dependence of the maximum absolute error on the number of iterations for
ART-1 and CHART-1 in the system (1 1).

iter ART-1 CHART-1
10 0.0077 0.00002
20 9.83 10-6 3.568 10-9
40 3.12 10-11 1.221 10-15
50 3.98 10-14 1.11 10-15
100 8.88 10-16 8.88 10-16

Table 2. The dependence of the maximum absolute error on the number of iterations for
ART-1 and CHART-1 in the system (1 1, 1 1).

The plots, which are presented in Figure 13, illustrates the dependence of the mean absolute
error on the number of iterations of image reconstruction of),(2 yxf with ART-1 and
CHART-1 in the system (1 1).

Algebraic Algorithms for Image Tomographic Reconstruction from Incomplete Projection Data 251

5

10

15

20

5

10

15

20

0

0.25

0.5

0.75

1

5

10

15

5

10

15

20

5

10

15

20

0

0.002

0.004

5

10

15

Fig. 10. Reconstruction and the absolute error (x,y) of),(1 yxf obtained with CHART-1 for
n=20 20, m= 788, iter=100 in the system (1 1).

The plots, which are presented in Figure 11, illustrate the dependence of the mean absolute
error 2 on the number of iterations for image reconstruction of),(1 yxf with ART-1 and
CHART-1 in the systems (1 1, 1 1) and (1 1).

Fig. 11. Dependence of the mean absolute error 2 on the number of iterations for image
reconstruction of),(1 yxf with ART-1 and CHART-1 in the system (1 1, 1 1) (on the left
side) and in the system (1 1) (on the right side).

The result of image reconstruction of the function),(2 yxf with CHART-1 after 25 iterations
in the system (1 1) is shown in Figure 12.

5

10

15

20

5

10

15

20

0

1

2

3

4

5

10

15

5

10

15

20

5

10

15

20

0

0.05

0.1

0.15

5

10

15

Fig. 12. Reconstruction and the absolute error (x,y) of),(2 yxf obtained with chaotic
algorithm CHART-1 for n=20 20, m= 788, iter=25 in the system (1 1).

Table 1 (resp. Table 2) shows the dependence of the maximum absolute error on the
number of iterations for ART-1 and CHART-1 for the system (1 1) (resp., the system (1 1,
1 1)) and the same set of parameters which were chosen above.

iter ART-1 CHART-1
100 0.0306 0.0073
200 0.00201 0.0001
500 1.209 10-6 4.098 10-9
1000 6.435 10-12 6.328 10-15
2000 5.44 10-15 6.106 10-15

Table 1. The dependence of the maximum absolute error on the number of iterations for
ART-1 and CHART-1 in the system (1 1).

iter ART-1 CHART-1
10 0.0077 0.00002
20 9.83 10-6 3.568 10-9
40 3.12 10-11 1.221 10-15
50 3.98 10-14 1.11 10-15
100 8.88 10-16 8.88 10-16

Table 2. The dependence of the maximum absolute error on the number of iterations for
ART-1 and CHART-1 in the system (1 1, 1 1).

The plots, which are presented in Figure 13, illustrates the dependence of the mean absolute
error on the number of iterations of image reconstruction of),(2 yxf with ART-1 and
CHART-1 in the system (1 1).

Engineering the Computer Science and IT252

Fig. 13. Comparison between the mean absolute error 2 for image reconstruction of

),(2 yxf with ART-1 and CHART-1 in the system (1 1).

7.3 Reconstruction with block-parallel algorithms
In this section there are represented some numerical results of reconstructions of the
function),(2 yxf with the block-parallel algorithm BPART-3 and the chaotic block-parallel
algorithm CHBP-3. The reconstruction result of the function 2(,)f x y with BPART-3 and
CHBP-3 after 75 iterations in the system (1 1, 1 1) is shown in Figure 14 and Figure 15,
respectively.

5

10

15

20

5

10

15

20

0

1

2

3

4

5

10

15

5

10

15

20

5

10

15

20

0
0.002
0.004
0.006

0.008

5

10

15

Fig. 14. Reconstruction and the absolute error (x,y) of f2(x,y) obtained with algorithm
BPART-3 for n =20 20, m=644, M=36, iter=75 in the system (1 1, 1 1).

5

10

15

20

5

10

15

20

0

1

2

3

4

5

10

15

5

10

15

20

5

10

15

20

0
0.001
0.002
0.003

0.004

5

10

15

Fig. 15. Reconstruction and the absolute error (x,y) of f2(x,y) obtained with CHBP-3 for
n =20 20, m=644, M=36, iter=75 in the system (1 1, 1 1).

The plots, which are presented in Figure 16, illustrate the dependence of the maximum
relative error and the mean absolute error on the number of iterations of image
reconstruction of f2(x,y) with BPART-3 and CHBP-3 in the system (1 1, 1 1):

Fig. 16. Dependence of the maximum relative error 1 and the mean absolute error 2 on the
number of iterations for image reconstruction of f2(x,y) with BPART-3 and CHBP-3 in the
system (1 1, 1 1).

Table 3 shows the dependence of the maximum absolute error on the number of iterations
for BPART-3 and CHBP-3 in the system (1 1, 1 1).

iter BPART-3 CHBP-3
10 0.4640 0.2112
20 0.1973 0.0478
40 0.0293 0.0054
50 0.0113 0.0018
100 0.0001 0.000001

Table 3. Dependence of the maximum absolute error on the number of iterations for
BPART-3 and CHBP-3 in the system (1 1, 1 1).

Algebraic Algorithms for Image Tomographic Reconstruction from Incomplete Projection Data 253

Fig. 13. Comparison between the mean absolute error 2 for image reconstruction of

),(2 yxf with ART-1 and CHART-1 in the system (1 1).

7.3 Reconstruction with block-parallel algorithms
In this section there are represented some numerical results of reconstructions of the
function),(2 yxf with the block-parallel algorithm BPART-3 and the chaotic block-parallel
algorithm CHBP-3. The reconstruction result of the function 2(,)f x y with BPART-3 and
CHBP-3 after 75 iterations in the system (1 1, 1 1) is shown in Figure 14 and Figure 15,
respectively.

5

10

15

20

5

10

15

20

0

1

2

3

4

5

10

15

5

10

15

20

5

10

15

20

0
0.002
0.004
0.006

0.008

5

10

15

Fig. 14. Reconstruction and the absolute error (x,y) of f2(x,y) obtained with algorithm
BPART-3 for n =20 20, m=644, M=36, iter=75 in the system (1 1, 1 1).

5

10

15

20

5

10

15

20

0

1

2

3

4

5

10

15

5

10

15

20

5

10

15

20

0
0.001
0.002
0.003

0.004

5

10

15

Fig. 15. Reconstruction and the absolute error (x,y) of f2(x,y) obtained with CHBP-3 for
n =20 20, m=644, M=36, iter=75 in the system (1 1, 1 1).

The plots, which are presented in Figure 16, illustrate the dependence of the maximum
relative error and the mean absolute error on the number of iterations of image
reconstruction of f2(x,y) with BPART-3 and CHBP-3 in the system (1 1, 1 1):

Fig. 16. Dependence of the maximum relative error 1 and the mean absolute error 2 on the
number of iterations for image reconstruction of f2(x,y) with BPART-3 and CHBP-3 in the
system (1 1, 1 1).

Table 3 shows the dependence of the maximum absolute error on the number of iterations
for BPART-3 and CHBP-3 in the system (1 1, 1 1).

iter BPART-3 CHBP-3
10 0.4640 0.2112
20 0.1973 0.0478
40 0.0293 0.0054
50 0.0113 0.0018
100 0.0001 0.000001

Table 3. Dependence of the maximum absolute error on the number of iterations for
BPART-3 and CHBP-3 in the system (1 1, 1 1).

Engineering the Computer Science and IT254

The analogous results were obtained for reconstruction of the function f2(x,y) with BPART-3
and CHBP-3 in the system (1 1). The plots presented in Figure 17 illustrate the dependence
of the maximum relative error and the mean absolute error on the number of iterations of
image reconstruction of f2(x,y) with BPART-3 and CHBP-3 in the system (1 1):

Fig. 17. Dependence of the maximum relative error 1 and the mean absolute error 2 on the
number of iterations for image reconstruction of f2(x,y) with BPART-3 and CHBP-3 in the
system (1 1).

Remark 3. The parallel reconstruction algorithms BPART and CHBP were implemented in a
simulated parallel environment on a sequential machine. Calculations of all elementary
processors that could be run in parallel were times together and the results were stored in
temporary arrays. The results of all such calculations were updated into global arrays while
all computations were completed.

7.4 Reconstruction with noisy projection data
It is very important for the research of reconstruction quality to consider the effect of noise
in projection data on a reconstructed image. For this purpose the various levels of Gaussian
(normal) noise are added to projections. The noise model was proposed by Herman
(Herman, 1975). In this model the noisy data are simulated by the addition of Gaussian
noise. Here each projection is multiplied by a Gaussian distributed random number with
mean 1.0 and standard deviation s. Usually the noise level is taken less that 10% in
computed tomography for non-medical imaging application. In considered experiments the
noise level was in the interval from 1% to 5%.
The plots of image reconstruction of the function),(1 yxf with ART-1 after 10 iterations in
the system (1 1, 1 1) and the normal noise of projection data s=2% and s=5% are given in
Figure 18.

5

10

15

20

5

10

15

20

0
0.25

0.5

0.75

1

5

10

15

5

10

15

20

5

10

15

20

0
0.25
0.5

0.75

1

5

10

15

Fig. 18. Reconstruction of),(1 yxf obtained with ART-1 after 10 iterations in the system (1
1, 1 1) and the normal noise of projection data s= 2% (on the left side) and s=5% (on the
right side).

Analogous results were obtained for the algorithm CHART-1. The plots of image
reconstruction of the function),(1 yxf with CHART-1 after 10 iterations in the system (1 1,
1 1) and the normal noise of projection data s=2% and s=5% are given in Figure 19.

5

10

15

20

5

10

15

20

0
0.25

0.5

0.75

1

5

10

15

5

10

15

20

5

10

15

20

0
0.25
0.5

0.75
1

5

10

15

Fig. 19. Reconstruction of),(1 yxf obtained with CHART-1 after 10 iterations in the system
(1 1, 1 1) and the normal noise of projection data s= 2% (on the left side) and s=5% (on
the right side).

The plots, which are represented in Figure 20, show dependence of the mean absolute error
2 on the number of iterations for image reconstruction of),(1 yxf with ART-1 (on the left
side) and algorithm CHART-1 (on the right side) in the system (1 1, 1 1) and the normal
noise in projections s= 0% and s= 2%. These results show that both algorithms are stable
with regard to noise in projections and they have the same robustness.

Algebraic Algorithms for Image Tomographic Reconstruction from Incomplete Projection Data 255

The analogous results were obtained for reconstruction of the function f2(x,y) with BPART-3
and CHBP-3 in the system (1 1). The plots presented in Figure 17 illustrate the dependence
of the maximum relative error and the mean absolute error on the number of iterations of
image reconstruction of f2(x,y) with BPART-3 and CHBP-3 in the system (1 1):

Fig. 17. Dependence of the maximum relative error 1 and the mean absolute error 2 on the
number of iterations for image reconstruction of f2(x,y) with BPART-3 and CHBP-3 in the
system (1 1).

Remark 3. The parallel reconstruction algorithms BPART and CHBP were implemented in a
simulated parallel environment on a sequential machine. Calculations of all elementary
processors that could be run in parallel were times together and the results were stored in
temporary arrays. The results of all such calculations were updated into global arrays while
all computations were completed.

7.4 Reconstruction with noisy projection data
It is very important for the research of reconstruction quality to consider the effect of noise
in projection data on a reconstructed image. For this purpose the various levels of Gaussian
(normal) noise are added to projections. The noise model was proposed by Herman
(Herman, 1975). In this model the noisy data are simulated by the addition of Gaussian
noise. Here each projection is multiplied by a Gaussian distributed random number with
mean 1.0 and standard deviation s. Usually the noise level is taken less that 10% in
computed tomography for non-medical imaging application. In considered experiments the
noise level was in the interval from 1% to 5%.
The plots of image reconstruction of the function),(1 yxf with ART-1 after 10 iterations in
the system (1 1, 1 1) and the normal noise of projection data s=2% and s=5% are given in
Figure 18.

5

10

15

20

5

10

15

20

0
0.25

0.5

0.75

1

5

10

15

5

10

15

20

5

10

15

20

0
0.25
0.5

0.75

1

5

10

15

Fig. 18. Reconstruction of),(1 yxf obtained with ART-1 after 10 iterations in the system (1
1, 1 1) and the normal noise of projection data s= 2% (on the left side) and s=5% (on the
right side).

Analogous results were obtained for the algorithm CHART-1. The plots of image
reconstruction of the function),(1 yxf with CHART-1 after 10 iterations in the system (1 1,
1 1) and the normal noise of projection data s=2% and s=5% are given in Figure 19.

5

10

15

20

5

10

15

20

0
0.25

0.5

0.75

1

5

10

15

5

10

15

20

5

10

15

20

0
0.25
0.5

0.75
1

5

10

15

Fig. 19. Reconstruction of),(1 yxf obtained with CHART-1 after 10 iterations in the system
(1 1, 1 1) and the normal noise of projection data s= 2% (on the left side) and s=5% (on
the right side).

The plots, which are represented in Figure 20, show dependence of the mean absolute error
2 on the number of iterations for image reconstruction of),(1 yxf with ART-1 (on the left
side) and algorithm CHART-1 (on the right side) in the system (1 1, 1 1) and the normal
noise in projections s= 0% and s= 2%. These results show that both algorithms are stable
with regard to noise in projections and they have the same robustness.

Engineering the Computer Science and IT256

Fig. 20. Dependence of the mean absolute error 2 on the number of iterations for image
reconstruction of),(1 yxf with ART-1 (on the left side) and CHART-1 (on the right side) in
the system (1 1, 1 1) and the normal noise of projection data s = 0% and s= 2%.

Remark 4. All algorithms were implemented on IBM/PC (procesor AMD Duron XP, 1600
MHz) by means of C++ and MATHEMATICA 5.1. For reconstruction of examples with
small number of pixels (n=20 20 and m < 800) one iteration by means of Mathematica 5.1
was implemented approximately 0.5s for all algorithms, and in C++ one iteration for all
algorithms is implemented in a real time (< 0.1s).

8. Conclusion

The aim of this paper was to represent and study the different iterative algebraic algorithms
for reconstruction of high-contrast objects from incomplete projection data. There were
studied the quality and convergence of these algorithms by simulation on a sequential
computer.
For each considered system of reconstruction there exist the parameters which allow to
obtain a good quality of reconstruction after some number of iterations but this number is
considerably larger than for reconstruction with the complete projection data. This number
of iterations is approximately 10 times more for the scheme (1 1, 1 1) by comparison with
the case of the complete data.
The obtained results show also that for obtaining the good reconstruction quality (with 1 <
1% and 2 < 0.001) by means of the chaotic algorithm CHART-1 it suffices 4-6 iterations in
the system (1 1, 1 1) and 20-30 iterations in the system (1 1). These results are much
better by comparison with algorithm ART-1. The results of reconstruction also show that the
chaotic algorithm CHBP-3 gives better results with comparing the block-parallel algorithm
BPART-3.
All experimental results show that the errors of reconstruction of considered objects from
limited projection data with all considered algorithms are constantly reduced with
increasing the number of iterations. It was also shown that all considered algorithms are
stable with regard to noise (< 5%) in projections.
It should be note that the parallel and block-parallel algorithms were implemented only on
simulated parallel environment on sequential machine. Their implementation on real
parallel structure may give some other results. So it will be very interesting to conduct the
simulation of these algorithms on such parallel structures.

9. References

Baran, B.; Kaszkurewicz, E. Bhaya, A. (1996). Parallel Asynchronous Team Algorithms:
Convergence and Performance Analysis. IEEE Trans. on Parallel and Distributive
Systems, Vol. 7, No. 7, (1996) pp. 677-688, ISSN: 1045-9219.

Baudet, G.M. (1978). Asynchronous iterative methods for multiprocessors. J. Assoc. Comput.
Mach. Vol. 25, (1978) pp. 226-244, ISSN: 0004-5411.

Bertsekas D.P. (1983). Distributed asynchronous computation of fixed points. Math.
Program., Vol. 27, (1983) pp. 107-120, ISSN: 0025-5610.

Bertsekas D.P., Tsitsiklis J.N. (1989). Parallel and Distributed Computation: Numerical Methods,
Prentice-hall, Englewood Cliffs, ISBN: 0-13-648700-9, New York.

Bertsekas D.P., Tsitsiklis J.N. (1991). Some aspects of parallel and distributed algorithms – a
survey. Automatica, Vol. 27, No. 1, (1991) pp. 3-21, ISSN: 0005-1098.

Bru R.; Elsner L. & Neumann M. (1988). Models of Parallel Chaotic Iteration Methods. Linear
Algebra and its Appl., Vol. 103, (1991) pp. 175-192, ISSN: 0024-3795.

Censor, Y. (1988). Parallel application of block-iterative methods in medical imaging and
radiation therapy. Math. Programming, Vol. 42, (1988) pp. 307-325, ISSN: 0025-5610.

Censor, Y.; Zenios S.A. (1997). Parallel Optimization. Theory, Algorithms, and Applications,
Oxford University Press, ISBN 0-19-510062-X, New York.

Chazan, D.; W.Miranker, W. (1969). Chaotic relaxation. Linear Alg. its Appl., Vol. 2, (1969) pp.
199-222, ISSN: 0024-3795.

Chen, C.M.; Lee, S. Cho, Z. (1990). A parallel implementation of a 3-D CT image
reconstruction on hypercube multiprocessor. IEEE Trans. on Nuclear Science, Vol. 37,
(1990) pp. 1333-1346, ISSN: 0018-9499.

Chen, C.M.; Lee, S.Y. (1994). On paralleling the EM algorithm for image reconstruction. IEEE
Transactions on Parallel and Distributive Systems, Vol. 5, No. 8, (1994) pp. 860-873,
ISSN: 1045-9219.

De Pierro, A.R. Iusem, A.N. (1985b). A parallel projection method of finding a common
point of a family of convex sets. Pesquisa Oper., Vol.5, No.1, (1985) pp. 1-20, ISSN:
0101-7438.

De Pierro, A.R. Iusem, A.N. (1990). On the Asymptotic Behavior of Some Alternate
Smoothing Series Expansion Iterative Methods. Linear Algebra and its Appl.,
Vol. 130, (1990) pp. 3-24, ISSN: 0024-3795.

De Pierro, A.R. (1990). Multiplicative iterative methods in computed tomography. Lecture
Notes in Mathematics, Vol. 1497, (1990) pp. 133-140, ISSN: 0075-8434.

De Pierro, A.R.& Iusem, A.N. (1985a). A simultaneous projections method for linear
inequalities. Linear Algebra and its Appl., Vol. 64, (1985) pp. 243-253, ISSN: 0024-3795.

Eggermont, P.P.B.; Herman, G.T. Lent, A. (1981). Iterative algorithms for large partitioned
linear systems with applications to image reconstruction. Linear Algebra and Its
Appl. Vol.40, (1981) pp. 37-67, ISSN: 0024-3795.

El Tarazi, M. (1984). Algorithmes mixtes asynchrones. Etude de convergence monotone.
Numer. Math., Vol. 44, (1984) pp. 363-369, ISSN: 0006-3835.

Elfving, T. (1980). Block-iterative methods for consistent and inconsistent linear equations.
Numerische Mathematik, Vol.35, (1980), pp. 1-12, ISSN: 0029-599X.

Elsner, L.; Koltracht, I. & Neumann, M. (1990). On the Convergence of Asynchronous
Paracontractions with Application to Tomographic Reconstruction from

Algebraic Algorithms for Image Tomographic Reconstruction from Incomplete Projection Data 257

Fig. 20. Dependence of the mean absolute error 2 on the number of iterations for image
reconstruction of),(1 yxf with ART-1 (on the left side) and CHART-1 (on the right side) in
the system (1 1, 1 1) and the normal noise of projection data s = 0% and s= 2%.

Remark 4. All algorithms were implemented on IBM/PC (procesor AMD Duron XP, 1600
MHz) by means of C++ and MATHEMATICA 5.1. For reconstruction of examples with
small number of pixels (n=20 20 and m < 800) one iteration by means of Mathematica 5.1
was implemented approximately 0.5s for all algorithms, and in C++ one iteration for all
algorithms is implemented in a real time (< 0.1s).

8. Conclusion

The aim of this paper was to represent and study the different iterative algebraic algorithms
for reconstruction of high-contrast objects from incomplete projection data. There were
studied the quality and convergence of these algorithms by simulation on a sequential
computer.
For each considered system of reconstruction there exist the parameters which allow to
obtain a good quality of reconstruction after some number of iterations but this number is
considerably larger than for reconstruction with the complete projection data. This number
of iterations is approximately 10 times more for the scheme (1 1, 1 1) by comparison with
the case of the complete data.
The obtained results show also that for obtaining the good reconstruction quality (with 1 <
1% and 2 < 0.001) by means of the chaotic algorithm CHART-1 it suffices 4-6 iterations in
the system (1 1, 1 1) and 20-30 iterations in the system (1 1). These results are much
better by comparison with algorithm ART-1. The results of reconstruction also show that the
chaotic algorithm CHBP-3 gives better results with comparing the block-parallel algorithm
BPART-3.
All experimental results show that the errors of reconstruction of considered objects from
limited projection data with all considered algorithms are constantly reduced with
increasing the number of iterations. It was also shown that all considered algorithms are
stable with regard to noise (< 5%) in projections.
It should be note that the parallel and block-parallel algorithms were implemented only on
simulated parallel environment on sequential machine. Their implementation on real
parallel structure may give some other results. So it will be very interesting to conduct the
simulation of these algorithms on such parallel structures.

9. References

Baran, B.; Kaszkurewicz, E. Bhaya, A. (1996). Parallel Asynchronous Team Algorithms:
Convergence and Performance Analysis. IEEE Trans. on Parallel and Distributive
Systems, Vol. 7, No. 7, (1996) pp. 677-688, ISSN: 1045-9219.

Baudet, G.M. (1978). Asynchronous iterative methods for multiprocessors. J. Assoc. Comput.
Mach. Vol. 25, (1978) pp. 226-244, ISSN: 0004-5411.

Bertsekas D.P. (1983). Distributed asynchronous computation of fixed points. Math.
Program., Vol. 27, (1983) pp. 107-120, ISSN: 0025-5610.

Bertsekas D.P., Tsitsiklis J.N. (1989). Parallel and Distributed Computation: Numerical Methods,
Prentice-hall, Englewood Cliffs, ISBN: 0-13-648700-9, New York.

Bertsekas D.P., Tsitsiklis J.N. (1991). Some aspects of parallel and distributed algorithms – a
survey. Automatica, Vol. 27, No. 1, (1991) pp. 3-21, ISSN: 0005-1098.

Bru R.; Elsner L. & Neumann M. (1988). Models of Parallel Chaotic Iteration Methods. Linear
Algebra and its Appl., Vol. 103, (1991) pp. 175-192, ISSN: 0024-3795.

Censor, Y. (1988). Parallel application of block-iterative methods in medical imaging and
radiation therapy. Math. Programming, Vol. 42, (1988) pp. 307-325, ISSN: 0025-5610.

Censor, Y.; Zenios S.A. (1997). Parallel Optimization. Theory, Algorithms, and Applications,
Oxford University Press, ISBN 0-19-510062-X, New York.

Chazan, D.; W.Miranker, W. (1969). Chaotic relaxation. Linear Alg. its Appl., Vol. 2, (1969) pp.
199-222, ISSN: 0024-3795.

Chen, C.M.; Lee, S. Cho, Z. (1990). A parallel implementation of a 3-D CT image
reconstruction on hypercube multiprocessor. IEEE Trans. on Nuclear Science, Vol. 37,
(1990) pp. 1333-1346, ISSN: 0018-9499.

Chen, C.M.; Lee, S.Y. (1994). On paralleling the EM algorithm for image reconstruction. IEEE
Transactions on Parallel and Distributive Systems, Vol. 5, No. 8, (1994) pp. 860-873,
ISSN: 1045-9219.

De Pierro, A.R. Iusem, A.N. (1985b). A parallel projection method of finding a common
point of a family of convex sets. Pesquisa Oper., Vol.5, No.1, (1985) pp. 1-20, ISSN:
0101-7438.

De Pierro, A.R. Iusem, A.N. (1990). On the Asymptotic Behavior of Some Alternate
Smoothing Series Expansion Iterative Methods. Linear Algebra and its Appl.,
Vol. 130, (1990) pp. 3-24, ISSN: 0024-3795.

De Pierro, A.R. (1990). Multiplicative iterative methods in computed tomography. Lecture
Notes in Mathematics, Vol. 1497, (1990) pp. 133-140, ISSN: 0075-8434.

De Pierro, A.R.& Iusem, A.N. (1985a). A simultaneous projections method for linear
inequalities. Linear Algebra and its Appl., Vol. 64, (1985) pp. 243-253, ISSN: 0024-3795.

Eggermont, P.P.B.; Herman, G.T. Lent, A. (1981). Iterative algorithms for large partitioned
linear systems with applications to image reconstruction. Linear Algebra and Its
Appl. Vol.40, (1981) pp. 37-67, ISSN: 0024-3795.

El Tarazi, M. (1984). Algorithmes mixtes asynchrones. Etude de convergence monotone.
Numer. Math., Vol. 44, (1984) pp. 363-369, ISSN: 0006-3835.

Elfving, T. (1980). Block-iterative methods for consistent and inconsistent linear equations.
Numerische Mathematik, Vol.35, (1980), pp. 1-12, ISSN: 0029-599X.

Elsner, L.; Koltracht, I. & Neumann, M. (1990). On the Convergence of Asynchronous
Paracontractions with Application to Tomographic Reconstruction from

Engineering the Computer Science and IT258

Incomplete Data. Linear Algebra and its Appl., Vol. 130, (1990) pp. 83-98, ISSN: 0024-
3795.

Gordon, R.; Bender, R. Herman, G.T. (1970). Algebraic reconstruction techniques (ART)
for three-dimensional electron microscopy and X-ray photography. J. Theoretical
Biology, Vol.29, (1970) pp. 471-481, ISSN: 0022-5193.

Gubareni, N. & Katkov, A. (1998b). Simulation of parallel algorithms for computer
tomography, Proceedings of the 12-th European Simulation Multiconference, pp. 324-
328, Manchester, United Kingdom, June 16-19, 1998, SCS Publ., ISBN: 1-56555-148-
6, Delft.

Gubareni, N. & Pleszczynski, M. (2007). Image reconstruction from incomplete projection
data by means of iterative algebraic algorithms, Proceedings of the Internat.
Multiconference on Computer Science and Information Technology, pp. 503-515, ISSN
1896-7094, Wisla, Poland, 2007.

Gubareni, N. & Pleszczynski, M. (2008). Chaotic Iterative Algorithms for Image
Reconstruction from Incomplete Projection Data. Electron. Model., Vol. 30, No. 3,
2008, pp. 29-43, ISSN 0204-3572.

Gubareni, N. (1997a). Computed Methods and Algorithms for Computer Tomography with limited
number of projection data, Naukova Dumka, ISBN 966-00-0136-3, Kiev. (in Russian)

Gubareni, N. (1999). Generalized Model of Asynchronous Iterations for Image
Reconstruction, Proceedings of the 3-d Int. Conf. on Parallel Processing and Applied
Mathematics PPAM'99, pp. 266-275, ISBN 83-911994-0-1, Kazimierz Dolny, Poland,
September 14-17, 1999, Technical Univ. of Częstochowa, Częstochowa.

Gubareni, N.; Katkov, A. Szopa, J. (1997b). Parallel asynchronous Team Algorithm for
Image Reconstruction. Proceedings of the 15-th IMACS World Congress on Scientistic
Computation, Modelling and Applied Mathematics. Berlin, Germany, 1997,
Computational Mathematics, Vol. I (A.Sydow, ed.), pp. 553-558, Achim.
Wessenschaft & Technik Verlag, ISBN: 3-89685-551-4, Berlin.

Gubareni, N.M. (1998a). Parallel Iterative Algorithms of Computer Tomography. Engineering
Simulation, Vol. 15, (1998) pp. 467-478, ISSN: 1063-1100.

Gubareni, N.M. (2001). Asynchronous algorithms for problem of reconstruction from total
image, In: Parallel Computing: Advances and Current Issues, Joubert, G.R.; Murli, A.;
Peters, F.J.; Vanneschi, M. (eds.), pp. 149-156, Imperial College Press, ISBN 1-86094-
315-2, London.

Harshbarger, T.B. Twieg, D.B. (1999). Iterative reconstruction of single-shot spiral MRI
with off resonance. IEEE Trans. Med. Imag., Vol. 18, (1999) pp. 196-205, ISSN: 0278-
0062.

Herman, G.T. (1975). A relaxation method for reconstructing objects from noisy x-rays.
Math. Programming, Vol. 8, (1975) pp. 1-19, ISSN: 0025-5610.

Herman, G.T. (1980). Image Reconstruction from Projections. The Fundamentals of Computerized
Tomography, Academic Press, ISBN: 978-354-0094-173, New York.

Herman, G.T.; Lent, A. & Rowland, S. (1973). ART: Mathematics and application (a report
on the mathematical foundations and on the applicability to real data of the
Algebraic Reconstruction Techniques). Journal of Theoretical Biology, Vol. 43, (1973)
pp. 1-32, ISSN: 0022-5193.

Kaczmarz, S. (1937). Angenäherte auflösung von systemn linearer gleichungen. Bull. Int.
Acad. Polon. Sci. Lett. Ser. A, Vol. 35, (1937) pp. 335-357.

Kak, A. & Slaney, M. (1988). Principles of Computerized Tomographic Imaging, IEEE Press,
ISBN-13: 978-089-871494-4, New York.

Kaszkurewicz, E.; Bhaya, A. Siljak, D.D. (1990). On the Convergence of Parallel
Asynchronous Block-Iterative Computations. Linear Alg. and Its Appl., Vol. 131,
(1990) pp. 139-160, ISSN: 0024-3795.

Kudo, H. & Saito, T. (2007). Tomographic image reconstruction from incomplete projection
data by the method of convex projections. Systems and Computers in Japan, Vol. 22,
No. 2 (2007) pp. 66-75, ISSN: 0882-1666.

Kung, H.T. (1976). Synchronized and asynchronous parallel algorithms for multiprocessors,
In: Algorithms and Complexity (J. Traub, ed.), pp. 153-200, Acad. Press, ISBN-13: 978-
0126975505, New York.

Laurent, C.; Calvin, C.; Chassery, J.M. & Peyrin, F. (1996). Efficient Implementation of
Parallel Image Reconstruction Algorithms for 3-D X-Ray Tomography. In: Parallel
Computing: State-of-the-Art and Perspectives, E.H. D'Hollander, G.R. Joubert, F.J.
Peters (Eds.), pp. 109-117, Elsevier Sci. Inc., ISBN: 0444-824-901, New York.

Lent, A., (1977). A convergent algorithm for maximum entropy image restoration with a
medical X-ray application. In: Image Analisys and Evaluation, R. Shaw (Ed.), pp. 249-
257, SPSE, Washington, D.C.

Liang, Z.-P. Lauterbur, P.C. (2000). Principles of Magnetic Resonance Imaging, Piscataway,
IEEE Press, ISBN-13: 978-078-034-7236, New York.

Mueller, K.; Yagel, R. & Cornhill, J.F. (1997). The weighted distance scheme: a globally
optimizing projection ordering method for the Algebraic Reconstruction Technique
(ART). IEEE Transactions on Medical Imaging, Vol. 16, No. 2, pp. 223-230, ISSN: 0278-
0062.

Natterer F. (1986). The Mathematics of Computerized Tomography, John Wiley & Sons, ISBN-13:
978-047-190-9590, New York.

Patella, D. (1997). Introduction to ground surface self-potential tomography. Geophysical
Prospecting, Vol.45, (1997) pp. 653-681, ISSN: 0016-8025.

Quinto, E.T. (1988) Tomographic reconstructions from incomplete data – numerical
inversion of the exterior Radon transform. Inverse problems, Vol. 4, (1988), pp. 867-
876, ISSN: 0266-5611.

Radon, J. (1917). Über die Bestimmung von Funktionen durch ihre Integralwerte längs
gewisser Mannigfaltigkeiten. Berichte Sächsische Akademie der Wissenschaften,
Leipzig, Math.-Phys. Kl., 69, 1917, pp. 262-267.

Ramachandran, G.N. & Lakhshminarayanan A.V. (1970). Three-dimensional reconstruction
from radiographs and electron micrographs: Application of convolution instead of
Fourier transforms. Proc. Nat. Sci. Acad. USA, Vol. 68, 1970, ISSN: 1091-6490, pp.
2236-2240.

Robert , F., Charnay, M. & Musy F. (1975). Iterations chaotiques serie-parallete pour des
equations non lineaires de point fixe. Aplikace Matematiky, Vol. 20, (1975) pp. 1-38,
ISSN: 0862-7940.

Savari, S.A. & Bertsekas, D.P. (1996). Finite termination of asynchronous iterative
algorithms. Parallel Computing, Vol. 22, pp. 39-56, ISSN: 0167-8191.

Singh, S.; Muralindhar K. & Munshi P. (2002). Image reconstruction from incomplete
projection data using combined ART-CBP algorithm. Defence Science Journal,
Vol. 52, No. 3, (2002) pp. 303-316, ISSN: 0011-748X.

Algebraic Algorithms for Image Tomographic Reconstruction from Incomplete Projection Data 259

Incomplete Data. Linear Algebra and its Appl., Vol. 130, (1990) pp. 83-98, ISSN: 0024-
3795.

Gordon, R.; Bender, R. Herman, G.T. (1970). Algebraic reconstruction techniques (ART)
for three-dimensional electron microscopy and X-ray photography. J. Theoretical
Biology, Vol.29, (1970) pp. 471-481, ISSN: 0022-5193.

Gubareni, N. & Katkov, A. (1998b). Simulation of parallel algorithms for computer
tomography, Proceedings of the 12-th European Simulation Multiconference, pp. 324-
328, Manchester, United Kingdom, June 16-19, 1998, SCS Publ., ISBN: 1-56555-148-
6, Delft.

Gubareni, N. & Pleszczynski, M. (2007). Image reconstruction from incomplete projection
data by means of iterative algebraic algorithms, Proceedings of the Internat.
Multiconference on Computer Science and Information Technology, pp. 503-515, ISSN
1896-7094, Wisla, Poland, 2007.

Gubareni, N. & Pleszczynski, M. (2008). Chaotic Iterative Algorithms for Image
Reconstruction from Incomplete Projection Data. Electron. Model., Vol. 30, No. 3,
2008, pp. 29-43, ISSN 0204-3572.

Gubareni, N. (1997a). Computed Methods and Algorithms for Computer Tomography with limited
number of projection data, Naukova Dumka, ISBN 966-00-0136-3, Kiev. (in Russian)

Gubareni, N. (1999). Generalized Model of Asynchronous Iterations for Image
Reconstruction, Proceedings of the 3-d Int. Conf. on Parallel Processing and Applied
Mathematics PPAM'99, pp. 266-275, ISBN 83-911994-0-1, Kazimierz Dolny, Poland,
September 14-17, 1999, Technical Univ. of Częstochowa, Częstochowa.

Gubareni, N.; Katkov, A. Szopa, J. (1997b). Parallel asynchronous Team Algorithm for
Image Reconstruction. Proceedings of the 15-th IMACS World Congress on Scientistic
Computation, Modelling and Applied Mathematics. Berlin, Germany, 1997,
Computational Mathematics, Vol. I (A.Sydow, ed.), pp. 553-558, Achim.
Wessenschaft & Technik Verlag, ISBN: 3-89685-551-4, Berlin.

Gubareni, N.M. (1998a). Parallel Iterative Algorithms of Computer Tomography. Engineering
Simulation, Vol. 15, (1998) pp. 467-478, ISSN: 1063-1100.

Gubareni, N.M. (2001). Asynchronous algorithms for problem of reconstruction from total
image, In: Parallel Computing: Advances and Current Issues, Joubert, G.R.; Murli, A.;
Peters, F.J.; Vanneschi, M. (eds.), pp. 149-156, Imperial College Press, ISBN 1-86094-
315-2, London.

Harshbarger, T.B. Twieg, D.B. (1999). Iterative reconstruction of single-shot spiral MRI
with off resonance. IEEE Trans. Med. Imag., Vol. 18, (1999) pp. 196-205, ISSN: 0278-
0062.

Herman, G.T. (1975). A relaxation method for reconstructing objects from noisy x-rays.
Math. Programming, Vol. 8, (1975) pp. 1-19, ISSN: 0025-5610.

Herman, G.T. (1980). Image Reconstruction from Projections. The Fundamentals of Computerized
Tomography, Academic Press, ISBN: 978-354-0094-173, New York.

Herman, G.T.; Lent, A. & Rowland, S. (1973). ART: Mathematics and application (a report
on the mathematical foundations and on the applicability to real data of the
Algebraic Reconstruction Techniques). Journal of Theoretical Biology, Vol. 43, (1973)
pp. 1-32, ISSN: 0022-5193.

Kaczmarz, S. (1937). Angenäherte auflösung von systemn linearer gleichungen. Bull. Int.
Acad. Polon. Sci. Lett. Ser. A, Vol. 35, (1937) pp. 335-357.

Kak, A. & Slaney, M. (1988). Principles of Computerized Tomographic Imaging, IEEE Press,
ISBN-13: 978-089-871494-4, New York.

Kaszkurewicz, E.; Bhaya, A. Siljak, D.D. (1990). On the Convergence of Parallel
Asynchronous Block-Iterative Computations. Linear Alg. and Its Appl., Vol. 131,
(1990) pp. 139-160, ISSN: 0024-3795.

Kudo, H. & Saito, T. (2007). Tomographic image reconstruction from incomplete projection
data by the method of convex projections. Systems and Computers in Japan, Vol. 22,
No. 2 (2007) pp. 66-75, ISSN: 0882-1666.

Kung, H.T. (1976). Synchronized and asynchronous parallel algorithms for multiprocessors,
In: Algorithms and Complexity (J. Traub, ed.), pp. 153-200, Acad. Press, ISBN-13: 978-
0126975505, New York.

Laurent, C.; Calvin, C.; Chassery, J.M. & Peyrin, F. (1996). Efficient Implementation of
Parallel Image Reconstruction Algorithms for 3-D X-Ray Tomography. In: Parallel
Computing: State-of-the-Art and Perspectives, E.H. D'Hollander, G.R. Joubert, F.J.
Peters (Eds.), pp. 109-117, Elsevier Sci. Inc., ISBN: 0444-824-901, New York.

Lent, A., (1977). A convergent algorithm for maximum entropy image restoration with a
medical X-ray application. In: Image Analisys and Evaluation, R. Shaw (Ed.), pp. 249-
257, SPSE, Washington, D.C.

Liang, Z.-P. Lauterbur, P.C. (2000). Principles of Magnetic Resonance Imaging, Piscataway,
IEEE Press, ISBN-13: 978-078-034-7236, New York.

Mueller, K.; Yagel, R. & Cornhill, J.F. (1997). The weighted distance scheme: a globally
optimizing projection ordering method for the Algebraic Reconstruction Technique
(ART). IEEE Transactions on Medical Imaging, Vol. 16, No. 2, pp. 223-230, ISSN: 0278-
0062.

Natterer F. (1986). The Mathematics of Computerized Tomography, John Wiley & Sons, ISBN-13:
978-047-190-9590, New York.

Patella, D. (1997). Introduction to ground surface self-potential tomography. Geophysical
Prospecting, Vol.45, (1997) pp. 653-681, ISSN: 0016-8025.

Quinto, E.T. (1988) Tomographic reconstructions from incomplete data – numerical
inversion of the exterior Radon transform. Inverse problems, Vol. 4, (1988), pp. 867-
876, ISSN: 0266-5611.

Radon, J. (1917). Über die Bestimmung von Funktionen durch ihre Integralwerte längs
gewisser Mannigfaltigkeiten. Berichte Sächsische Akademie der Wissenschaften,
Leipzig, Math.-Phys. Kl., 69, 1917, pp. 262-267.

Ramachandran, G.N. & Lakhshminarayanan A.V. (1970). Three-dimensional reconstruction
from radiographs and electron micrographs: Application of convolution instead of
Fourier transforms. Proc. Nat. Sci. Acad. USA, Vol. 68, 1970, ISSN: 1091-6490, pp.
2236-2240.

Robert , F., Charnay, M. & Musy F. (1975). Iterations chaotiques serie-parallete pour des
equations non lineaires de point fixe. Aplikace Matematiky, Vol. 20, (1975) pp. 1-38,
ISSN: 0862-7940.

Savari, S.A. & Bertsekas, D.P. (1996). Finite termination of asynchronous iterative
algorithms. Parallel Computing, Vol. 22, pp. 39-56, ISSN: 0167-8191.

Singh, S.; Muralindhar K. & Munshi P. (2002). Image reconstruction from incomplete
projection data using combined ART-CBP algorithm. Defence Science Journal,
Vol. 52, No. 3, (2002) pp. 303-316, ISSN: 0011-748X.

Engineering the Computer Science and IT260

Smith, B. (1990). Cone-beam tomography: recent advances and a tutorial review. Optical
Engineering, Vol. 29, (1990) No. 5, pp. 524-534, ISSN: 0091-3286.

Williams, R.A.; Atkinson, K.; Luke, S.P.; Barlow, R.K.; Dyer, B.C.; Smith, J. & Manning, M.
(2004). Applications for Tomographic Technology in Mining, Minerals and Food
Engineering. Particle and Particle Systems Characterization, Vol. 12, No. 2, (2004) pp.
105-111, ISSN: 0934-0866.

Templates for Communicating Information
about Software Requirements and Software Problems 261

Templates for Communicating Information about Software Requirements
and Software Problems

Mira Kajko-Mattsson

X

Templates for Communicating Information
about Software Requirements

and Software Problems

Mira Kajko-Mattsson
Department of Computer and Systems Sciences,

Stockholm University/Royal Institute of Technology
Sweden

1. Introduction

For years, the need and scope of software system and process documentation has been
heavily debated. Questions that have often been raised are whether one should document,
what one should document, how much and when. This debate has lasted for more than 30
years. Still, however, we do not have any clear answers. What we claim and what we have
always claimed is that both software system and software process documentation are very
important for allowing the software systems to live a long life. (Bauer and Parnas, 1995;
Briand, 2003; Card et. Al. 1987; Carnegie 1994; Clark et.al., 1989; Connwell, 2000; Cook and
Visconti, 1994, El Elman et.al., 1998; Hogan, 2002; Holt, 1993; Kajko-Mattsson, 2005; Kantner,
1997; Kantner, 2002; Martin and McCluer, 1983; Parnas, 2000; Pence and Hon III, 1993;
Rombach and Basili, 1987; Saunders, 1989; van Schouwen and Parnas, 1993, Visaggio, 2001;
Visconti and Cook, 2000; Visconti and Cook, 2002)

Recently, the debate regarding documentation has intensified. This is because “agile” voices
have been raised against extensive documentation (Beck, 2004; Cohn, 2006; Nawrocki, J et.al,
Jasinski, M., 2002). These voices advocate its sparse use and production. According to them,
documentation should be brief, however, precise enough to be useful within software
production. It should be limited to the core parts of the system. In its extreme case, it should
encompass only source code and a set of user stories. The remaining system structure may
be communicated informally, mainly orally. There may be no requirement specifications nor
design documents, or if there are any, then for the purpose of supporting the coding
activity.

The agilists’ standpoint with respect to documentation has created confusion within the
software community. Right now, the software community has a problem of determining the
amount and scope of required documentation. Still, it cannot agree on issues such as (1)
what one should document, (2) how much, (3) when, and (4) for what purpose. Today, we
do not have any concrete answers. We only claim that we should document just enough
information for supporting the communication. But, how much enough is enough?

14

Engineering the Computer Science and IT262

In this chapter, we present two templates of information required for describing and
managing software requirements and software problems. We call them Software
Requirements Management Template (SRMT) and Problem Management Template (PMT). These
templates record information about the system to be developed or maintained and the
process managing the development or maintenance effort. The templates have been
evaluated within the industry in various parts of the world. Our goal is to establish
information that is needed for communicating information about software requirements and
software problems and the information required for their realization within a software
lifecycle.

The chapter is going to be structured in the following. Section 2 motivates why we need to
document. Section 3 describes the method taken to evaluate the SRMT and PMT templates.
Section 4 presents the SRMT template covering information required for communicating
requirements and their realization. Finally, Section 5 provides concluding remarks.

2. Why Do We Need Document?

Documentation, if correct, complete and consistent, has been regarded as a powerful tool for
software engineers to gain success. Its purpose is to describe software systems and
processes.

Good system documentation thoroughly describes a software system, its components and
relationships. It facilitates the understanding and communication of the software system,
eases the learning and relearning process, makes software systems more maintainable, and
consequently improves the engineer’s productivity and work quality (Bauer, 1995; Briand,
2003; Card, 1987; Conwell, 2000; Parnas 2000, Visconti, 2002).

Poor system documentation, on the other hand, is regarded to be the primary reason for
quick software system quality degradation and aging (Parnas, 2000; Sousa, 1998; Visconti,
2002). It is a major contributor to the high cost of software evolution and maintenance and to
the distaste for software maintenance work. Outdated documentation of a software system
misleads the engineer in her work thus leading to confusion in the already very complex
evolution and maintenance task.

The purpose of documentation however, is not only to describe a software system but also
to record a process. Process documentation is extremely important for achieving (1) insight
and visibility into the processes, (2) meaningful process measurement and thereby (3) high
process maturity. It should be pervasive in and throughout all the types of lifecycle chores.
Proper control and management of development, evolution and maintenance can only be
achieved if we have obtained sufficient visibility into the process, its stages and tasks,
executing roles, their decisions and motivations, and the results of individual process tasks.

Irrespective of whether documentation supports systems or processes, it constitutes a
collective knowledge of the organization. It supports communication and collaboration
amongst various groups within the organization such as project managers, quality
managers, product managers, support technicians, testers, developers, and other roles
(Arthur, 1995). It enhances knowledge transfer, preserves historical information, assists
ongoing product evolution and maintenance, and fulfills regulatory and legal requirements.

It provides an efficient vehicle for communication serving a variety of needs. We distinguish
between two types of documentation:

• Self to self: Software professionals make personal notes. The goal is to remember what
they have done, plan for future actions and analyze the results of their own personal
processes.

• Software professional to software professional: Different roles communicate with one
another, such as developers to developers, developers to testers, developers to
maintainers, developers and/or maintainers to management, management to
developers and/or maintainers, developer and/or maintainer to support personnel,
and the like. The goal is to provide feedback to one another.

3. Method

In this section, we present the method taken to create the PMT and SRMT templates. First, in
Section 3.1, we present our method steps. We then in Section 3.2 present the companies
involved in creating and evaluating the templates.

3.1 Steps
Our work consisted of two major consecutive phases, starting as early as in 1998. These
phases are: (1) Creation and Evaluation of Problem Management Template (PMT) and (2) Creation
and Evaluation of Software Requirements and Management Template (SRMT). Below, we briefly
describe these steps.

In the years of 1998 – 2001, we did research on problem management within corrective
maintenance. This research resulted in a problem management process model, called
Corrective Maintenance Maturity Model (CM3): Problem Management. It covered the process
activities and information required for managing software problems. It is the problem
management information that is put into the PMT template. CM3: Problem Management was
created within ABB (Kajko-Mattsson, 2001). The model and the template were then
evaluated within fifteen software companies.

PMT is a specialized form of SRMT. Problem reports are requirements for change within
corrective maintenance. They are generated due to specific software problems and defects.
For this reason, we decided to adapt it to the SRMT template managing overall software
requirements. The SRMT template was then evaluated in three consecutive different studies.

First, we evaluated the SRMT template within one Canadian company which practiced both
traditional and agile development approach (Kajko-Mattsson, Nyfjord, 2008). We then
continued evaluating it within six Chinese companies (Kajko-Mattsson, 2009). Finally, we
evaluated it within one major Swedish company together with 60 software engineers. The
evaluation was conducted in form of three consecutive workshops.

Due to space restrictions, we cannot describe the evaluation results in this chapter.
However, we cordially invite our readers to study our publications in which we report on

Templates for Communicating Information
about Software Requirements and Software Problems 263

In this chapter, we present two templates of information required for describing and
managing software requirements and software problems. We call them Software
Requirements Management Template (SRMT) and Problem Management Template (PMT). These
templates record information about the system to be developed or maintained and the
process managing the development or maintenance effort. The templates have been
evaluated within the industry in various parts of the world. Our goal is to establish
information that is needed for communicating information about software requirements and
software problems and the information required for their realization within a software
lifecycle.

The chapter is going to be structured in the following. Section 2 motivates why we need to
document. Section 3 describes the method taken to evaluate the SRMT and PMT templates.
Section 4 presents the SRMT template covering information required for communicating
requirements and their realization. Finally, Section 5 provides concluding remarks.

2. Why Do We Need Document?

Documentation, if correct, complete and consistent, has been regarded as a powerful tool for
software engineers to gain success. Its purpose is to describe software systems and
processes.

Good system documentation thoroughly describes a software system, its components and
relationships. It facilitates the understanding and communication of the software system,
eases the learning and relearning process, makes software systems more maintainable, and
consequently improves the engineer’s productivity and work quality (Bauer, 1995; Briand,
2003; Card, 1987; Conwell, 2000; Parnas 2000, Visconti, 2002).

Poor system documentation, on the other hand, is regarded to be the primary reason for
quick software system quality degradation and aging (Parnas, 2000; Sousa, 1998; Visconti,
2002). It is a major contributor to the high cost of software evolution and maintenance and to
the distaste for software maintenance work. Outdated documentation of a software system
misleads the engineer in her work thus leading to confusion in the already very complex
evolution and maintenance task.

The purpose of documentation however, is not only to describe a software system but also
to record a process. Process documentation is extremely important for achieving (1) insight
and visibility into the processes, (2) meaningful process measurement and thereby (3) high
process maturity. It should be pervasive in and throughout all the types of lifecycle chores.
Proper control and management of development, evolution and maintenance can only be
achieved if we have obtained sufficient visibility into the process, its stages and tasks,
executing roles, their decisions and motivations, and the results of individual process tasks.

Irrespective of whether documentation supports systems or processes, it constitutes a
collective knowledge of the organization. It supports communication and collaboration
amongst various groups within the organization such as project managers, quality
managers, product managers, support technicians, testers, developers, and other roles
(Arthur, 1995). It enhances knowledge transfer, preserves historical information, assists
ongoing product evolution and maintenance, and fulfills regulatory and legal requirements.

It provides an efficient vehicle for communication serving a variety of needs. We distinguish
between two types of documentation:

• Self to self: Software professionals make personal notes. The goal is to remember what
they have done, plan for future actions and analyze the results of their own personal
processes.

• Software professional to software professional: Different roles communicate with one
another, such as developers to developers, developers to testers, developers to
maintainers, developers and/or maintainers to management, management to
developers and/or maintainers, developer and/or maintainer to support personnel,
and the like. The goal is to provide feedback to one another.

3. Method

In this section, we present the method taken to create the PMT and SRMT templates. First, in
Section 3.1, we present our method steps. We then in Section 3.2 present the companies
involved in creating and evaluating the templates.

3.1 Steps
Our work consisted of two major consecutive phases, starting as early as in 1998. These
phases are: (1) Creation and Evaluation of Problem Management Template (PMT) and (2) Creation
and Evaluation of Software Requirements and Management Template (SRMT). Below, we briefly
describe these steps.

In the years of 1998 – 2001, we did research on problem management within corrective
maintenance. This research resulted in a problem management process model, called
Corrective Maintenance Maturity Model (CM3): Problem Management. It covered the process
activities and information required for managing software problems. It is the problem
management information that is put into the PMT template. CM3: Problem Management was
created within ABB (Kajko-Mattsson, 2001). The model and the template were then
evaluated within fifteen software companies.

PMT is a specialized form of SRMT. Problem reports are requirements for change within
corrective maintenance. They are generated due to specific software problems and defects.
For this reason, we decided to adapt it to the SRMT template managing overall software
requirements. The SRMT template was then evaluated in three consecutive different studies.

First, we evaluated the SRMT template within one Canadian company which practiced both
traditional and agile development approach (Kajko-Mattsson, Nyfjord, 2008). We then
continued evaluating it within six Chinese companies (Kajko-Mattsson, 2009). Finally, we
evaluated it within one major Swedish company together with 60 software engineers. The
evaluation was conducted in form of three consecutive workshops.

Due to space restrictions, we cannot describe the evaluation results in this chapter.
However, we cordially invite our readers to study our publications in which we report on

Engineering the Computer Science and IT264

the documentation status within the industry today (Kajko-Mattsson, 2000; Kajko-Mattsson,
2002, Kajko-Mattsson, 2005, Kajko-Mattsson & Nyfjord, 2008, Kajko-Mattsson, 2009).

3.2 Companies involved in the Evaluation Phase
Two ABB organizations supported us in creating CM3: Problem Management. These were ABB
Automation Products and ABB Robotics. In addition, we received scientific support from ABB
Corporate Research. (ABB, 2009)

Within ABB, we explored the process of problem management within corrective
maintenance and the information managed within this process. Here, we interacted with all
the possible roles involved within the process such as maintainers, team leaders, testers,
support technicians, change control boards, and the like.

CM3: Problem Management and the PMT were then evaluated within fifteen non-ABB
organisations in 2001. When choosing them, we attempted to cover a wide spectrum of the
today’s IT state. Deliberately, we chose different sizes and different types of software
organisations. Our smallest organisation was a one-person consulting company. Our largest
organisation was one major organization having 14 000 employees. The types of products
maintained by these organisations varied from financial systems, business systems,
embedded real-time systems, consulting services, administrative systems, and different
types of support systems.

Regarding the SRMT, we first evaluated it within one Canadian organization. We did it in
2007. Here, we interviewed one representative (a process owner). The company develops
products ranging from ground stations for satellite radar systems to e-commerce
applications. We studied one small and one middle-sized project evolving data transaction
systems with high quality and performance requirements.

We then continued to evaluate the SRMT template in a Chinese software development
context. When visiting Fudan University as a guest professor in fall 2007, we took the
opportunity to study the requirements management practice within some Chinese
organizations (Kajko-Mattsson, 2009). For this purpose, we used students attending our
course on advanced software engineering. The students chose the organizations according
to the convenience sampling method (Walker, 1985). These companies practiced both
traditional and agile development methods.

Finally, we evaluated the SRMT together with 60 software engineers within one big
software development company. Due to the fact that the company wishes to stay
anonymous, we call it IT Exchange. The evaluation was made in form of three consecutive
workshops. As illustrated in Figure 1, 65,57% of the workshop participants were involved in
programming activities. The remaining 34,43% were involved in other non-programming
activities.

Fig. 1. Distribution of roles at IT Exchange by programmer and non-programmer roles

Figure 2 shows a more detailed distribution of roles involved. Here, we may see that the
range of roles involved in the three workshops spanned from programmers, to testers,
project managers, technical staff, architects and managers. These individuals were involved
both in traditional and agile development and maintenance.

Fig. 2. Roles involved in the workshops at IT Exchange

Templates for Communicating Information
about Software Requirements and Software Problems 265

the documentation status within the industry today (Kajko-Mattsson, 2000; Kajko-Mattsson,
2002, Kajko-Mattsson, 2005, Kajko-Mattsson & Nyfjord, 2008, Kajko-Mattsson, 2009).

3.2 Companies involved in the Evaluation Phase
Two ABB organizations supported us in creating CM3: Problem Management. These were ABB
Automation Products and ABB Robotics. In addition, we received scientific support from ABB
Corporate Research. (ABB, 2009)

Within ABB, we explored the process of problem management within corrective
maintenance and the information managed within this process. Here, we interacted with all
the possible roles involved within the process such as maintainers, team leaders, testers,
support technicians, change control boards, and the like.

CM3: Problem Management and the PMT were then evaluated within fifteen non-ABB
organisations in 2001. When choosing them, we attempted to cover a wide spectrum of the
today’s IT state. Deliberately, we chose different sizes and different types of software
organisations. Our smallest organisation was a one-person consulting company. Our largest
organisation was one major organization having 14 000 employees. The types of products
maintained by these organisations varied from financial systems, business systems,
embedded real-time systems, consulting services, administrative systems, and different
types of support systems.

Regarding the SRMT, we first evaluated it within one Canadian organization. We did it in
2007. Here, we interviewed one representative (a process owner). The company develops
products ranging from ground stations for satellite radar systems to e-commerce
applications. We studied one small and one middle-sized project evolving data transaction
systems with high quality and performance requirements.

We then continued to evaluate the SRMT template in a Chinese software development
context. When visiting Fudan University as a guest professor in fall 2007, we took the
opportunity to study the requirements management practice within some Chinese
organizations (Kajko-Mattsson, 2009). For this purpose, we used students attending our
course on advanced software engineering. The students chose the organizations according
to the convenience sampling method (Walker, 1985). These companies practiced both
traditional and agile development methods.

Finally, we evaluated the SRMT together with 60 software engineers within one big
software development company. Due to the fact that the company wishes to stay
anonymous, we call it IT Exchange. The evaluation was made in form of three consecutive
workshops. As illustrated in Figure 1, 65,57% of the workshop participants were involved in
programming activities. The remaining 34,43% were involved in other non-programming
activities.

Fig. 1. Distribution of roles at IT Exchange by programmer and non-programmer roles

Figure 2 shows a more detailed distribution of roles involved. Here, we may see that the
range of roles involved in the three workshops spanned from programmers, to testers,
project managers, technical staff, architects and managers. These individuals were involved
both in traditional and agile development and maintenance.

Fig. 2. Roles involved in the workshops at IT Exchange

Engineering the Computer Science and IT266

4. Templates

This section presents and motivates the SRMT and PMT templates. It first gives an overall
view and motivation of the templates in Section 5.1. It then describes the two templates in
Section 5.2.

4.1 Overall Presentation of the Templates
The SRMT and PMT are similar, however, they vary in their contents. Both describe the
information about either new requirements or software problems and their management
throughout the software lifecycle. However, they require different types of information.
This is because the SRMT describes new functionality that is going to be created whereas the
PMT describes old functionality that is going to be changed.

It is difficult to provide a good and clear description of new requirements and software
problems. They may be described in several ways using different terms. They can be
depicted in different environments and on different system levels (Wedde et.al, 1995).

A proper requirement and problem description is the most important prerequisite for
effective implementation. A poor, sketchy, or misleading description may lead to
misinterpretation, and thereby, to misimplementation (Kajko-Mattsson, 2000). For this
reason, a description of a requirement and a problem should be clear, complete and correct.
It has to be communicated in a structured and disciplined way.

To aid in minimising the reporting time for the submitters and in maximising the quality of
the reported data, the software organisation should give guidance on how to provide and
structure requirement and problem description data. This can be done in form of templates.

The templates should document essential information about all additions and changes made
to a system. Since the templates are used to document and communicate information to a
wide variety of roles, it is important to include enough information to meet the needs of
those roles. At minimum, the information should answer the following questions:
• What is to be implemented/changed?
• Why is it going to be implemented/changed?
• How is it going to be implemented/changed?
• What is the budget?
• Where is it going to be implemented/changed?
• Who is going to make the implementation/change?
• Is the description clear and concise? Are all clues and leads adequately described to

allow impact analysis to begin?
• If not, is the submitter available for clarification?
• What information is extraneous to the request?

Fig. 3. Software Requirement Management Template

Fig. 4. Problem Management Template

The SRMT and PMT consist of two main sections; one dedicated to system documentation
and the other one dedicated to process documentation. As listed in Figure 3 and Figure 4,
each section covers a set of attributes bearing on coherent information. The attributes
concerning the system documentation are (1) General Requirement/Problem Description, (2)
Requirement/Problem Evaluation Data, and (3) Other Description Data. The attributes
concerning the process documentation are (1) Requirement/Problem Reporting Data, (2)
Requirement/Problem Management Data, (3) Requirement/Problem Management Progress, (4)
Requirement/Problem Completion Data, and (5) Post Implementation Data.

4.2 System Documentation
In this section, we describe the tree clusters used for documenting the system. Just because
the descriptions of new requirements and problems somewhat differ, we first describe and

Templates for Communicating Information
about Software Requirements and Software Problems 267

4. Templates

This section presents and motivates the SRMT and PMT templates. It first gives an overall
view and motivation of the templates in Section 5.1. It then describes the two templates in
Section 5.2.

4.1 Overall Presentation of the Templates
The SRMT and PMT are similar, however, they vary in their contents. Both describe the
information about either new requirements or software problems and their management
throughout the software lifecycle. However, they require different types of information.
This is because the SRMT describes new functionality that is going to be created whereas the
PMT describes old functionality that is going to be changed.

It is difficult to provide a good and clear description of new requirements and software
problems. They may be described in several ways using different terms. They can be
depicted in different environments and on different system levels (Wedde et.al, 1995).

A proper requirement and problem description is the most important prerequisite for
effective implementation. A poor, sketchy, or misleading description may lead to
misinterpretation, and thereby, to misimplementation (Kajko-Mattsson, 2000). For this
reason, a description of a requirement and a problem should be clear, complete and correct.
It has to be communicated in a structured and disciplined way.

To aid in minimising the reporting time for the submitters and in maximising the quality of
the reported data, the software organisation should give guidance on how to provide and
structure requirement and problem description data. This can be done in form of templates.

The templates should document essential information about all additions and changes made
to a system. Since the templates are used to document and communicate information to a
wide variety of roles, it is important to include enough information to meet the needs of
those roles. At minimum, the information should answer the following questions:
• What is to be implemented/changed?
• Why is it going to be implemented/changed?
• How is it going to be implemented/changed?
• What is the budget?
• Where is it going to be implemented/changed?
• Who is going to make the implementation/change?
• Is the description clear and concise? Are all clues and leads adequately described to

allow impact analysis to begin?
• If not, is the submitter available for clarification?
• What information is extraneous to the request?

Fig. 3. Software Requirement Management Template

Fig. 4. Problem Management Template

The SRMT and PMT consist of two main sections; one dedicated to system documentation
and the other one dedicated to process documentation. As listed in Figure 3 and Figure 4,
each section covers a set of attributes bearing on coherent information. The attributes
concerning the system documentation are (1) General Requirement/Problem Description, (2)
Requirement/Problem Evaluation Data, and (3) Other Description Data. The attributes
concerning the process documentation are (1) Requirement/Problem Reporting Data, (2)
Requirement/Problem Management Data, (3) Requirement/Problem Management Progress, (4)
Requirement/Problem Completion Data, and (5) Post Implementation Data.

4.2 System Documentation
In this section, we describe the tree clusters used for documenting the system. Just because
the descriptions of new requirements and problems somewhat differ, we first describe and

Engineering the Computer Science and IT268

explain the attributes used for describing the new requirements in the SRMT template. For
each of the clusters in the SRMT, we then describe their correspondences in the PMT
template.

General Requirement/Problem Description

The General Requirement Description describes basic requirement information needed for
identifying, understanding, and classifying requirements (Atlantic, 2007; Higgins, 2002). It
covers the following attributes:
• Requirement ID: Each requirement should be uniquely identified. This allows the

requirement to be traced throughout the whole lifecycle process. Usually, its ID
corresponds to a numerical value. Some of the requirements may however be identified
with an alphanumerical value.

• Requirement Title: A title is a short name of a requirement. However, it is not an
identifier. It rather corresponds to a mnemonic problem identification. It usually consists
of several keywords. It is very helpful in communicating on requirements and in doing
manual searches in the tool recording the requirements. It allows one to quickly browse
through a requirements list without having to read the whole requirement description.

• Requirement Desciption: General information describing the requirement in free text. The
requirement orginator describes his own needs and motivates them. This description
may be quite comprehensive. Usually, there is no space limit for this field.

• Requirement Type: Specification of whether the requirement concerns some new or some
existing behavior of the system or whether it concerns some non-functional requirement
specifying the characteristics of some functinality.

• Internal/External Requirement: Specification of whether the requiement was requested
externally by the customer or internally within the development organization. This
specification enables priority assignement to the software requirement. Usually, all
external requests get higher priority than the internal ones.

• Rationale: Motivation of the requirement d'être, that is, the rationale behind the
requirement to help the developers understand the requirement and the reason behind
it. This helps the developer understand the application domain. Rationale is of great
importance in monitoring requirement‘s evolution during its lifecycle. It disambiguates
unclear requirements, and thereby, it prevents from changes leading to unexpected
effects.

• Event/Use Case ID: List of events and/or use cases descripting the requirement. The use
cases, if any, should always be identified. They provide a basis for specifying the
requirements.

• Related To Requirement(s): Link to other requirements related to the requirement at hand.
By following this link, one may achieve an overall picture of groups of requirements and
their relationships. In this way, one may discover inconsistencies and duplications
among the requirements. One may also record the hierarchies among the major and
minor requirements, like the ones presented in Figure 5.

Fig. 5. Hierarchies among the requirements and problems

• Conflicting Requirements: Links to conflicting requirements. This information is used for

future measures such as negotiations with the customers or provision of extra resources
to create an appropriate design that matches these requirements.

• Non-Functional Requirement(s): A link to non-functional requirements specifying the
criteria to be used when developing the requirement.

• Constraints: List of restrictions imposed on resources, budget, technical or solution
constraints. These restrictions may lead to a modification of a requirement, and thereby,
limit the range of its solutions.

• Intended User: Identification of all types of users of the requirement.

• Customer Satisfaction: Specification of the degree of satisfaction of how the requirement
will meet the customer’s needs and expectations.

• Customer Dissatisfaction: Degree of customer dissatisfaction, if the requirement is not
successfully implemented.

• Assumptions: The software system is intrinsically incomplete. The gap between the
system and its operational domain is bridged by assumptions, explicit and implicit
(Lehman, 2000). These assumptions fill in the gaps between the system and the
documented and validated requirements of the operational domain.

• Reference Document(s): Links to the documentation further describing the requirements.

In the General Problem Description cluster, the attributes ProblemID, ProblemTitle,
ProblemDescription, Problem Type, Internal/External Problem, Related to Problem(s), and Reference
Documents have their correspondences in Requirements ID, Requirements Title, Requirements

Templates for Communicating Information
about Software Requirements and Software Problems 269

explain the attributes used for describing the new requirements in the SRMT template. For
each of the clusters in the SRMT, we then describe their correspondences in the PMT
template.

General Requirement/Problem Description

The General Requirement Description describes basic requirement information needed for
identifying, understanding, and classifying requirements (Atlantic, 2007; Higgins, 2002). It
covers the following attributes:
• Requirement ID: Each requirement should be uniquely identified. This allows the

requirement to be traced throughout the whole lifecycle process. Usually, its ID
corresponds to a numerical value. Some of the requirements may however be identified
with an alphanumerical value.

• Requirement Title: A title is a short name of a requirement. However, it is not an
identifier. It rather corresponds to a mnemonic problem identification. It usually consists
of several keywords. It is very helpful in communicating on requirements and in doing
manual searches in the tool recording the requirements. It allows one to quickly browse
through a requirements list without having to read the whole requirement description.

• Requirement Desciption: General information describing the requirement in free text. The
requirement orginator describes his own needs and motivates them. This description
may be quite comprehensive. Usually, there is no space limit for this field.

• Requirement Type: Specification of whether the requirement concerns some new or some
existing behavior of the system or whether it concerns some non-functional requirement
specifying the characteristics of some functinality.

• Internal/External Requirement: Specification of whether the requiement was requested
externally by the customer or internally within the development organization. This
specification enables priority assignement to the software requirement. Usually, all
external requests get higher priority than the internal ones.

• Rationale: Motivation of the requirement d'être, that is, the rationale behind the
requirement to help the developers understand the requirement and the reason behind
it. This helps the developer understand the application domain. Rationale is of great
importance in monitoring requirement‘s evolution during its lifecycle. It disambiguates
unclear requirements, and thereby, it prevents from changes leading to unexpected
effects.

• Event/Use Case ID: List of events and/or use cases descripting the requirement. The use
cases, if any, should always be identified. They provide a basis for specifying the
requirements.

• Related To Requirement(s): Link to other requirements related to the requirement at hand.
By following this link, one may achieve an overall picture of groups of requirements and
their relationships. In this way, one may discover inconsistencies and duplications
among the requirements. One may also record the hierarchies among the major and
minor requirements, like the ones presented in Figure 5.

Fig. 5. Hierarchies among the requirements and problems

• Conflicting Requirements: Links to conflicting requirements. This information is used for

future measures such as negotiations with the customers or provision of extra resources
to create an appropriate design that matches these requirements.

• Non-Functional Requirement(s): A link to non-functional requirements specifying the
criteria to be used when developing the requirement.

• Constraints: List of restrictions imposed on resources, budget, technical or solution
constraints. These restrictions may lead to a modification of a requirement, and thereby,
limit the range of its solutions.

• Intended User: Identification of all types of users of the requirement.

• Customer Satisfaction: Specification of the degree of satisfaction of how the requirement
will meet the customer’s needs and expectations.

• Customer Dissatisfaction: Degree of customer dissatisfaction, if the requirement is not
successfully implemented.

• Assumptions: The software system is intrinsically incomplete. The gap between the
system and its operational domain is bridged by assumptions, explicit and implicit
(Lehman, 2000). These assumptions fill in the gaps between the system and the
documented and validated requirements of the operational domain.

• Reference Document(s): Links to the documentation further describing the requirements.

In the General Problem Description cluster, the attributes ProblemID, ProblemTitle,
ProblemDescription, Problem Type, Internal/External Problem, Related to Problem(s), and Reference
Documents have their correspondences in Requirements ID, Requirements Title, Requirements

Engineering the Computer Science and IT270

Description, Requirements Type, Internal/External Requirement and Related Requirements,
respectively. Except for Problem Type and Requirement Type, these attributes connote the
same meaning. While Requirement Type implies either functional or non-functional
requirement, Problem Type refers to a specific type of a problem, such as design problem,
problem with manuals, and the like.

In addition to the above-mentioned information, one needs to record information that is
specific to problem management. This concerns the following attributes:
• Problem Effect(s) and Consequence(s): Description of the effects and consequences of the

problem. This information is pivotal for assessing the severity and priority of a software
problem. Problems implying severe consequences should be attended to as soon as
possible.

• Problem Symptom(s): A description of an observed manifestation of a problem.
Compared to a consequence of a software problem, a symptom may merely indicate a
minor system misbehaviour. It does not always directly lead to system failure. This
information may greatly help maintenance engineers understand the software problem
and localise its cause.

• Problem Conditions: Descriptions of the conditions under which a software problem has
been encountered. This information must be specified, if deemed relevant. Otherwise,
the maintainer will not be able to reproduce the problem.

• Problem Reproducibility: a clear description of how to get a software program into a
particular erroneous state. It specifies a series of steps that can be taken to make the
problem occur. This greatly facilitates the problem investigation process.

• Alternative Execution Paths: An identification of all the paths leading to the reproduction
of the software problem. This information is pivotal for understanding and resolving
the problem.

Requirement/Problem Evaluation Data

The Requirement Evaluation Data cluster describes the data essential for evaluating and
prioritizing the requirements. It covers the following attributes:
• Business Value: Business value is defined for the purpose of meeting some business

objectives by implementing the requirement. It is used for prioritizing the requirements.
• Other Value: Other values may be specified. Among them are the values of stepping into

a new market, attracting new customers, and other opportunities.
• Requirement Priority: Evaluation of the urgency of implementing the requirement.

Usually, the budget does not allow the companies to implement all requirements.
Hence, one needs to prioritize them. The higher the priority, the more urgent it is to
implement the requirement.

• Fit Criterion/Criteria: A fit criterion describes a condition that a software product must
fulfill in order to meet the requirement (Sampayo do Prado Leite 2009). Its purpose is to
provide a contextual information so that the requirement will be testable.

• Risk(s): Identification of risks related to the requirement. Requirements risks may have
major impacts on the success of software projects (Appukkutty et.al, 2005). They may
drown the software projects, if they are not properly managed,

In the Problem Evaluation Data cluster, the value of Problem Priority and Risk(s) connotes the
same meaning as Requirements Priority and Risk(s) in the Requireents Evaluation cluster.
Regarding the attributes such as Business Value, Acceptance Criteria and Fit Criteria, they are
not relevant in the context of problem management. In addition, a new value is added. It is
Problem Severity measuring the effect of the disruption caused by a software problem.

Other Description Data

The Other Description Data cluster provides the context of the requirement and the problem.
It covers the attributes identifying the system(s) and its(their) environment and the like. It
includes the following attributes:

• System Data: To avoid confusion where the requirement/problem must be

implemented/resolved, one needs to identify the system, subsystem and component. It
is especially imperative in cases when the organizations manage several products with
similar functionality.

• Interfacing System ID: Identification of the adjacent systems that are or may be impacted
by the requirement/problem at hand.

• Environment: Specification of the environment in which the requirement/problem will
be implemented/resolved. They concern hardware, software, and data environments in
which the requirement must function.

4.3 Process Documentation
In this section, we describe the clusters used for documenting the system. Just because the
information describing the management of new requirements and software problems does
not differ much, we describe and explain the SRMT and PMT together.

Requirement/Problem Reporting Data

The Requirement/Problem Reporting Data cluster records when and by whom the requirement
or software problem has been identified and to whom it has been assigned (Kajko-Mattsson,
2001). It covers the following attributes:
• Requirement/Problem Reporting Date: The date when the requirement or problem was

stated/reported. This date is used for determining the age of a requirement or software
problem. In the context of a requirement, a high age is an indicator that the requirement
must be revisited so that it does not imply risks to the project. In the context of a
software problem, a high age indicates that the software organization has probably
neglected its resolution.

• Requirement/Problem Originator: The originator of the requirement or problem must be
identified. This information is needed for tracking and clarification purposes.

• Reported By: Name of the role who reported on the requirement or problem. This
individual may be some engineer who reported on the requirement or problem on the
Requirement/Problem Originator’s account.

Templates for Communicating Information
about Software Requirements and Software Problems 271

Description, Requirements Type, Internal/External Requirement and Related Requirements,
respectively. Except for Problem Type and Requirement Type, these attributes connote the
same meaning. While Requirement Type implies either functional or non-functional
requirement, Problem Type refers to a specific type of a problem, such as design problem,
problem with manuals, and the like.

In addition to the above-mentioned information, one needs to record information that is
specific to problem management. This concerns the following attributes:
• Problem Effect(s) and Consequence(s): Description of the effects and consequences of the

problem. This information is pivotal for assessing the severity and priority of a software
problem. Problems implying severe consequences should be attended to as soon as
possible.

• Problem Symptom(s): A description of an observed manifestation of a problem.
Compared to a consequence of a software problem, a symptom may merely indicate a
minor system misbehaviour. It does not always directly lead to system failure. This
information may greatly help maintenance engineers understand the software problem
and localise its cause.

• Problem Conditions: Descriptions of the conditions under which a software problem has
been encountered. This information must be specified, if deemed relevant. Otherwise,
the maintainer will not be able to reproduce the problem.

• Problem Reproducibility: a clear description of how to get a software program into a
particular erroneous state. It specifies a series of steps that can be taken to make the
problem occur. This greatly facilitates the problem investigation process.

• Alternative Execution Paths: An identification of all the paths leading to the reproduction
of the software problem. This information is pivotal for understanding and resolving
the problem.

Requirement/Problem Evaluation Data

The Requirement Evaluation Data cluster describes the data essential for evaluating and
prioritizing the requirements. It covers the following attributes:
• Business Value: Business value is defined for the purpose of meeting some business

objectives by implementing the requirement. It is used for prioritizing the requirements.
• Other Value: Other values may be specified. Among them are the values of stepping into

a new market, attracting new customers, and other opportunities.
• Requirement Priority: Evaluation of the urgency of implementing the requirement.

Usually, the budget does not allow the companies to implement all requirements.
Hence, one needs to prioritize them. The higher the priority, the more urgent it is to
implement the requirement.

• Fit Criterion/Criteria: A fit criterion describes a condition that a software product must
fulfill in order to meet the requirement (Sampayo do Prado Leite 2009). Its purpose is to
provide a contextual information so that the requirement will be testable.

• Risk(s): Identification of risks related to the requirement. Requirements risks may have
major impacts on the success of software projects (Appukkutty et.al, 2005). They may
drown the software projects, if they are not properly managed,

In the Problem Evaluation Data cluster, the value of Problem Priority and Risk(s) connotes the
same meaning as Requirements Priority and Risk(s) in the Requireents Evaluation cluster.
Regarding the attributes such as Business Value, Acceptance Criteria and Fit Criteria, they are
not relevant in the context of problem management. In addition, a new value is added. It is
Problem Severity measuring the effect of the disruption caused by a software problem.

Other Description Data

The Other Description Data cluster provides the context of the requirement and the problem.
It covers the attributes identifying the system(s) and its(their) environment and the like. It
includes the following attributes:

• System Data: To avoid confusion where the requirement/problem must be

implemented/resolved, one needs to identify the system, subsystem and component. It
is especially imperative in cases when the organizations manage several products with
similar functionality.

• Interfacing System ID: Identification of the adjacent systems that are or may be impacted
by the requirement/problem at hand.

• Environment: Specification of the environment in which the requirement/problem will
be implemented/resolved. They concern hardware, software, and data environments in
which the requirement must function.

4.3 Process Documentation
In this section, we describe the clusters used for documenting the system. Just because the
information describing the management of new requirements and software problems does
not differ much, we describe and explain the SRMT and PMT together.

Requirement/Problem Reporting Data

The Requirement/Problem Reporting Data cluster records when and by whom the requirement
or software problem has been identified and to whom it has been assigned (Kajko-Mattsson,
2001). It covers the following attributes:
• Requirement/Problem Reporting Date: The date when the requirement or problem was

stated/reported. This date is used for determining the age of a requirement or software
problem. In the context of a requirement, a high age is an indicator that the requirement
must be revisited so that it does not imply risks to the project. In the context of a
software problem, a high age indicates that the software organization has probably
neglected its resolution.

• Requirement/Problem Originator: The originator of the requirement or problem must be
identified. This information is needed for tracking and clarification purposes.

• Reported By: Name of the role who reported on the requirement or problem. This
individual may be some engineer who reported on the requirement or problem on the
Requirement/Problem Originator’s account.

Engineering the Computer Science and IT272

• Requirement/Problem Owner: Role or group of roles (team) responsible for managing the
requirement or solving the software problem. The owner makes decisions on the
requirement implementation or problem resolution throughout the whole
implementation/resolution process. Usually, the owner is the role who originally
entered the requirement.

• Date required: Date when the requirement must be implemented or the software
problem must be resolved.

Requirement/Problem Management Data

The Requirement Management Data cluster communicates information about the requirement
or problem management process. It covers both planned and actual actions taken to
implement the requirement or to resolve the problem, identifies the roles involved in these
actions, records the effort required for implementing the requirement or resolvning the
problem, and the effectiveness of the implementation activities (Higgins, 2002). The cluster
covers the following attributes:
• Implementation Plan: The preliminary outline of the activities to be taken to implement

the requirement or to resolve the problem.
• Planned and actual activities: The activities and their estimated/actual effort and cost. It

covers the following information:
• Activity Description: Identification and description of the activity.
• Activity Start Date: Date when the activity started.
• Activity End Date: Date when the activity ended.
• Expected/Actual Result: Description of the expected/actual results of the activity.
• Activity Conducted By: Name of the role responsible for performing the activity.
• Activity Approved By: Name of the role who approved the activity and its results.
• Effort Spent on Activity: Estimated/actual effort spend on the activity.
• Cost of Activity: Estimated/actual cost of the activity.

Requirement/Problem Management Progress

The Requirement Management Progress cluster tracks the status of the requirement
implementation or problem resolution process. This status is essential for monitoring and
controlling the requirement or problem. It records the status value, the date when the
requirement/problem changed status values, the overall requirement implementation or
problem resolution progress, and the requirement/problem age. The following attributes
are suggested for descring the progress:
• Requirement/Problem Management Status: Status value indicating the progress of

implementing the requirement or resolving the problem.

• Requirement/Problem Management Status Date: Date when the requirement/problem
stepped into the particular status state.

• Requirement/Problem Age: Time period elapsed from the date when the
requirement/problem was recognized and reported. This value is used for assuring that
high priority requirements/problems get attended to as soon as possible.

• Requirement/Problem Change(s): Link to change requests concerning the
requirement/problem at hand.

Requirements Completion Data

The Requirement Completion Data cluster covers information about the completion of the
requirement implementation or problem resolution process. It records planned and actual
completion date, roles involved in approving and signing off the completion, and the total
effort spent on requirement implementation or problem resolution. The cluster includes the
following attributes:
• Planned/Actual Completion Date: Date when the requirement/problem was or was

planned to be completed and tested.
• Relation to Test(s): Identification of tests to be used for testing the requirement or

problem solution.
• Released In: Identification of the release(s) in which the requirement/problem was

implemented/resolved.
• Requirement Completion Approved By: Name of the role who approved the requirement

implementation or problem resolution. Usually, it is the owner.
• Sign Off Date: Date when the requirement/problem was signed off by the

organizational authority.
• Signed Off By: Identification of the roles involved in signing off the

requirement/problem completion.
• Estimated/Actual Total Effort: Total effort spent/to be spent on implementing/resolving

the requirement/problem.
• Estimated/Actual Total Cost: Total cost spent/to be spent on implementing/resolving the

requirement/problem.

Post-Implementation Data

The Post Implementation Data cluster holds the information about the post-mortem analysis
of the requirement implementation or problem resolution process. The analysis results
should provide an important feedback for improving the future requirements management
or problem resolution. The attributes belonging to this cluster are the following:
• Analysis of the Requirement/Problem Implementation/Resolution Process: Evaluation of the

process used for implementing the requirement.
• Lessons Learned: List of experiences as encountered during the implementation/

resolution of the requirement/problem.

5. Final Conclusions

In this chapter, we have presented two templates: the SRMT template used for
communicating software requirements within development and evolution and the PMT

Templates for Communicating Information
about Software Requirements and Software Problems 273

• Requirement/Problem Owner: Role or group of roles (team) responsible for managing the
requirement or solving the software problem. The owner makes decisions on the
requirement implementation or problem resolution throughout the whole
implementation/resolution process. Usually, the owner is the role who originally
entered the requirement.

• Date required: Date when the requirement must be implemented or the software
problem must be resolved.

Requirement/Problem Management Data

The Requirement Management Data cluster communicates information about the requirement
or problem management process. It covers both planned and actual actions taken to
implement the requirement or to resolve the problem, identifies the roles involved in these
actions, records the effort required for implementing the requirement or resolvning the
problem, and the effectiveness of the implementation activities (Higgins, 2002). The cluster
covers the following attributes:
• Implementation Plan: The preliminary outline of the activities to be taken to implement

the requirement or to resolve the problem.
• Planned and actual activities: The activities and their estimated/actual effort and cost. It

covers the following information:
• Activity Description: Identification and description of the activity.
• Activity Start Date: Date when the activity started.
• Activity End Date: Date when the activity ended.
• Expected/Actual Result: Description of the expected/actual results of the activity.
• Activity Conducted By: Name of the role responsible for performing the activity.
• Activity Approved By: Name of the role who approved the activity and its results.
• Effort Spent on Activity: Estimated/actual effort spend on the activity.
• Cost of Activity: Estimated/actual cost of the activity.

Requirement/Problem Management Progress

The Requirement Management Progress cluster tracks the status of the requirement
implementation or problem resolution process. This status is essential for monitoring and
controlling the requirement or problem. It records the status value, the date when the
requirement/problem changed status values, the overall requirement implementation or
problem resolution progress, and the requirement/problem age. The following attributes
are suggested for descring the progress:
• Requirement/Problem Management Status: Status value indicating the progress of

implementing the requirement or resolving the problem.

• Requirement/Problem Management Status Date: Date when the requirement/problem
stepped into the particular status state.

• Requirement/Problem Age: Time period elapsed from the date when the
requirement/problem was recognized and reported. This value is used for assuring that
high priority requirements/problems get attended to as soon as possible.

• Requirement/Problem Change(s): Link to change requests concerning the
requirement/problem at hand.

Requirements Completion Data

The Requirement Completion Data cluster covers information about the completion of the
requirement implementation or problem resolution process. It records planned and actual
completion date, roles involved in approving and signing off the completion, and the total
effort spent on requirement implementation or problem resolution. The cluster includes the
following attributes:
• Planned/Actual Completion Date: Date when the requirement/problem was or was

planned to be completed and tested.
• Relation to Test(s): Identification of tests to be used for testing the requirement or

problem solution.
• Released In: Identification of the release(s) in which the requirement/problem was

implemented/resolved.
• Requirement Completion Approved By: Name of the role who approved the requirement

implementation or problem resolution. Usually, it is the owner.
• Sign Off Date: Date when the requirement/problem was signed off by the

organizational authority.
• Signed Off By: Identification of the roles involved in signing off the

requirement/problem completion.
• Estimated/Actual Total Effort: Total effort spent/to be spent on implementing/resolving

the requirement/problem.
• Estimated/Actual Total Cost: Total cost spent/to be spent on implementing/resolving the

requirement/problem.

Post-Implementation Data

The Post Implementation Data cluster holds the information about the post-mortem analysis
of the requirement implementation or problem resolution process. The analysis results
should provide an important feedback for improving the future requirements management
or problem resolution. The attributes belonging to this cluster are the following:
• Analysis of the Requirement/Problem Implementation/Resolution Process: Evaluation of the

process used for implementing the requirement.
• Lessons Learned: List of experiences as encountered during the implementation/

resolution of the requirement/problem.

5. Final Conclusions

In this chapter, we have presented two templates: the SRMT template used for
communicating software requirements within development and evolution and the PMT

Engineering the Computer Science and IT274

template used for communication software problems within corrective maintenance. We
then evaluated these two templates within more than 20 software organizations. Due to
space restrictions, we cannot describe the evaluation results. However, we cordially invite
our readers to study (Kajko-Mattson, 2000; Kajko-Mattson, 2001; Kajko-Mattson, 2002;
Kajko-Mattson, 2005; Kajko-Mattson & Nyfjord, 2008; Kajko-Mattson, 2009).

The attributes as suggested in both templates are highly relevant both within heavyweight
and lightweight software development. Many of them however, are not explicitly
documented. They may however be communicated in an oral form. The rigidity of the
documentation is dependent on the type of software systems being developed or
maintained. In cases when the software system is not a safety critical or business critical and
it is not expected to live a long life, one may compromise on the amount and scope of the
information to be documented in favor of oral communication. In case of critical systems,
one should not compromise on even one single attribute in both the SRMT and PMT
template. For instance, the engineers within IT Exchange claim that they would not be able to
survive for long without the information that is listed in the two templates.

So far, very little research has been done on documentation. To our knowledge, there are
only a few publications reporting on this subject. Hence, we claim that this domain is
strongly under-explored. More research is required for agreeing upon the scope and extent
of documentation so that the short-term and long-term benefits may be gained in both the
heavyweight and lightweight contexts.

6. References

ABB. (2009) ABB Group Sweden, http://www.abb.com/secrc, Accessed in July 2009.
Atlantic Systems Guild. (2007). Volare Requirements Specification Template, available at:

http://www.systemsguild.com/GuildSite/Robs/Template.html, Accessed in
December 2007.

Antoniol, G.; Canfora, G.; Casazza, G.; De Lucia. A,. (2000). Information Retrieval models for
Recovering Traceability links between code and documentation, Proceedings of IEEE
International Conference on Software Maintenance, pp. 40-49.

Appukkutty, K.; Ammar, H.H.; Popstajanova, K.G. (2005). Software requirement risk
assessment using UML, Proceedings of International Conference on Computer Systems
and Applications, p. 112.

Arthur, L.J. (1995). Software Evolution: The Software Maintenance Challenge, John Wiley &
Sons.

Bauer, B.J. & Parnas, D.L. (1995). Applying mathematical software documentation: An
Experience Report, Proceedings of 10th Annual Conference on Computer Assurance, pp.
273-284.

Beck K. (2004). Extreme Programming Explained: Embrace Change, 2nd Edition. Upper Sadle
River, NJ, Addison-Wesley.

Boehm, B.W. (1981). Software Engineering Economics, Prentice-Hall.
Briand, L.C. (2003). Software Documentation: How Much is Enough?, Proceedings of IEEE

International Conference on Software Maintenance and Reengineering, pp. 13-15.

Card, D.; McGarry, F.; Page, G. (1987). Evaluating Software Engineering Technologies,
Journal of IEEE Transactions on Software Engineering, Vol. 13, No. 7, pp. 845-851.

Carnegie Mellon University and Software Engineering Institute. (1994). The Capability
Maturity Model: Guidelines for Improving the Software Process, Addison-Wesley.

Chapin, N. (1985). Software maintenance: a different view, Proceedings of National Computer
Conference, AFIPS Press, Reston, Virginia, Volume 54, pp. 508-513.

Clark, P.G.; Lobsitz, R.M.; Shields, J.D. (1989). Documenting the Evolution of an Information
System, Proceedings of IEEE National Aerospace and Electronic Conference, pp. 1819-
1826.

Cohn M. (2006). Agile Estimating and Planning, Pearson Education, Upper Saddle River, NJ.
Conwell, C. L. (2000). Capability maturity models support of modeling and simulation

verification, validation, and accreditation. Proceedings of IEEE Winter Simulation
Conference, pp. 819– 828.

Cook, C. & Visconti, M. (1994), Documentation Is Important, Journal of CrossTalk, Vol. 7, No.
11, pp. 26-30.

Delanghe, S. (2000), Using Learning Styles in Software Documentation, Proceedings of IEEE,
Transactions of Professional Communication, pp. 201-205.

Higgins S.A et. al, (2002). Managing Product Requirements for Medical IT Products.
Proceedings of Joint International Conference on Requirements Engineering, pp 341-349.

Hofmann, P. (1998). Away with Words! How to create Wordless Documentation, Proceedings
of IEEE International Professional Communication Conference, pp. 437-438.

Holt, P.O. (1993). System Documentation and System Design: A Good Reason for Designing
the Manual First, Proceedings of IEEE Colloquium on Issues in Computer Support for
Documentation and Manuals, pp. 1/1-1/3.

IEEE Standards Collection. (1999). Software Engineering, The Institute of Electrical and
Electronics Engineers, Inc.

Kajko-Mattsson, M.; Forssander, S.; Andersson, G. (2000). Software Problem Reporting and
Resolution Process at ABB Robotics AB: State of Practice, Journal of Software
Maintenance and Evolution, Research and Practice, Vol. 12, No. 5, pp. 255-285.

Kajko-Mattsson, M. (2001). Corrective Maintenance Maturity Model: Problem Management,
(2001). PhD thesis, ISBN Nr 91-7265-311-6, ISSN 1101-8526, ISRN SU-KTH/DSV/R-
-01/15, Department of Computer and Systems Sciences (DSV), Stockholm
University and Royal Institute of Technology.

Kajko-Mattsson M. (2002). Evaluating CM3: Problem Management, (2002). Lecture Notes in
Computer Science, Proceedings of Conference on Software Advanced Information Systems
Engineering, Springer-Verlag, Volume 2348, pp. 436-451.

Kajko-Mattsson, M. (2005). A Survey of Documentation Practice within Corrective
Maintenance, Journal of Empirical Software Engineering Journal, Kluwer, Volume 10,
Issue 1, January, pp. 31 – 55.

Kajko-Mattsson M. & Nyfjord, J., (2008). A Template for Communicating Information about
Requirements and their Realization, Proceedings of IAENG International Conference on
Software Engineering, BrownWalker Press: Boca Raton, USA.

Kajko-Mattsson, M. (2009). Status of Requirements Management in Six Chinese Software
Companies, Proceedings of International Conference on Industrial Engineering, IAENG
International Conference on Software Engineering, BrownWalker Press: Boca Raton,
USA.

Templates for Communicating Information
about Software Requirements and Software Problems 275

template used for communication software problems within corrective maintenance. We
then evaluated these two templates within more than 20 software organizations. Due to
space restrictions, we cannot describe the evaluation results. However, we cordially invite
our readers to study (Kajko-Mattson, 2000; Kajko-Mattson, 2001; Kajko-Mattson, 2002;
Kajko-Mattson, 2005; Kajko-Mattson & Nyfjord, 2008; Kajko-Mattson, 2009).

The attributes as suggested in both templates are highly relevant both within heavyweight
and lightweight software development. Many of them however, are not explicitly
documented. They may however be communicated in an oral form. The rigidity of the
documentation is dependent on the type of software systems being developed or
maintained. In cases when the software system is not a safety critical or business critical and
it is not expected to live a long life, one may compromise on the amount and scope of the
information to be documented in favor of oral communication. In case of critical systems,
one should not compromise on even one single attribute in both the SRMT and PMT
template. For instance, the engineers within IT Exchange claim that they would not be able to
survive for long without the information that is listed in the two templates.

So far, very little research has been done on documentation. To our knowledge, there are
only a few publications reporting on this subject. Hence, we claim that this domain is
strongly under-explored. More research is required for agreeing upon the scope and extent
of documentation so that the short-term and long-term benefits may be gained in both the
heavyweight and lightweight contexts.

6. References

ABB. (2009) ABB Group Sweden, http://www.abb.com/secrc, Accessed in July 2009.
Atlantic Systems Guild. (2007). Volare Requirements Specification Template, available at:

http://www.systemsguild.com/GuildSite/Robs/Template.html, Accessed in
December 2007.

Antoniol, G.; Canfora, G.; Casazza, G.; De Lucia. A,. (2000). Information Retrieval models for
Recovering Traceability links between code and documentation, Proceedings of IEEE
International Conference on Software Maintenance, pp. 40-49.

Appukkutty, K.; Ammar, H.H.; Popstajanova, K.G. (2005). Software requirement risk
assessment using UML, Proceedings of International Conference on Computer Systems
and Applications, p. 112.

Arthur, L.J. (1995). Software Evolution: The Software Maintenance Challenge, John Wiley &
Sons.

Bauer, B.J. & Parnas, D.L. (1995). Applying mathematical software documentation: An
Experience Report, Proceedings of 10th Annual Conference on Computer Assurance, pp.
273-284.

Beck K. (2004). Extreme Programming Explained: Embrace Change, 2nd Edition. Upper Sadle
River, NJ, Addison-Wesley.

Boehm, B.W. (1981). Software Engineering Economics, Prentice-Hall.
Briand, L.C. (2003). Software Documentation: How Much is Enough?, Proceedings of IEEE

International Conference on Software Maintenance and Reengineering, pp. 13-15.

Card, D.; McGarry, F.; Page, G. (1987). Evaluating Software Engineering Technologies,
Journal of IEEE Transactions on Software Engineering, Vol. 13, No. 7, pp. 845-851.

Carnegie Mellon University and Software Engineering Institute. (1994). The Capability
Maturity Model: Guidelines for Improving the Software Process, Addison-Wesley.

Chapin, N. (1985). Software maintenance: a different view, Proceedings of National Computer
Conference, AFIPS Press, Reston, Virginia, Volume 54, pp. 508-513.

Clark, P.G.; Lobsitz, R.M.; Shields, J.D. (1989). Documenting the Evolution of an Information
System, Proceedings of IEEE National Aerospace and Electronic Conference, pp. 1819-
1826.

Cohn M. (2006). Agile Estimating and Planning, Pearson Education, Upper Saddle River, NJ.
Conwell, C. L. (2000). Capability maturity models support of modeling and simulation

verification, validation, and accreditation. Proceedings of IEEE Winter Simulation
Conference, pp. 819– 828.

Cook, C. & Visconti, M. (1994), Documentation Is Important, Journal of CrossTalk, Vol. 7, No.
11, pp. 26-30.

Delanghe, S. (2000), Using Learning Styles in Software Documentation, Proceedings of IEEE,
Transactions of Professional Communication, pp. 201-205.

Higgins S.A et. al, (2002). Managing Product Requirements for Medical IT Products.
Proceedings of Joint International Conference on Requirements Engineering, pp 341-349.

Hofmann, P. (1998). Away with Words! How to create Wordless Documentation, Proceedings
of IEEE International Professional Communication Conference, pp. 437-438.

Holt, P.O. (1993). System Documentation and System Design: A Good Reason for Designing
the Manual First, Proceedings of IEEE Colloquium on Issues in Computer Support for
Documentation and Manuals, pp. 1/1-1/3.

IEEE Standards Collection. (1999). Software Engineering, The Institute of Electrical and
Electronics Engineers, Inc.

Kajko-Mattsson, M.; Forssander, S.; Andersson, G. (2000). Software Problem Reporting and
Resolution Process at ABB Robotics AB: State of Practice, Journal of Software
Maintenance and Evolution, Research and Practice, Vol. 12, No. 5, pp. 255-285.

Kajko-Mattsson, M. (2001). Corrective Maintenance Maturity Model: Problem Management,
(2001). PhD thesis, ISBN Nr 91-7265-311-6, ISSN 1101-8526, ISRN SU-KTH/DSV/R-
-01/15, Department of Computer and Systems Sciences (DSV), Stockholm
University and Royal Institute of Technology.

Kajko-Mattsson M. (2002). Evaluating CM3: Problem Management, (2002). Lecture Notes in
Computer Science, Proceedings of Conference on Software Advanced Information Systems
Engineering, Springer-Verlag, Volume 2348, pp. 436-451.

Kajko-Mattsson, M. (2005). A Survey of Documentation Practice within Corrective
Maintenance, Journal of Empirical Software Engineering Journal, Kluwer, Volume 10,
Issue 1, January, pp. 31 – 55.

Kajko-Mattsson M. & Nyfjord, J., (2008). A Template for Communicating Information about
Requirements and their Realization, Proceedings of IAENG International Conference on
Software Engineering, BrownWalker Press: Boca Raton, USA.

Kajko-Mattsson, M. (2009). Status of Requirements Management in Six Chinese Software
Companies, Proceedings of International Conference on Industrial Engineering, IAENG
International Conference on Software Engineering, BrownWalker Press: Boca Raton,
USA.

Engineering the Computer Science and IT276

Kantner, L., et.al., (1997). The Best of Both Worlds: Combining Usability Testing and
Documentation Projects, Proceedings of IEEE International Professional Communication
Conference, pp. 355-363.

Kantner, L., et.al., (2002). Structured Heuristic Evaluation of Online Documentation,
Proceedings of IEEE International Professional Communication Conference, pp. 331-342.

Lepasaar, M.; Varkoi, T.; Jaakkola, H. (2001). Documentation as a Software Process
Capability Indicator, Proceedings of IEEE International Conference on Management of
Engineering and Technology, Vol. 1, p. 436.

Malcolm, A. (2001). Writing for the Disadvanteged Reader, Proceedings of IEEE International
Conference on Professional Communication, pp. 95-100.

Nawrocki, J.; Jasinski, M.; Walter, B.; Wojciechowski, A. (2002). Extreme Programming
Modified: Embrace Requirements Engineering Practicies, (2002). Proceedings of IEEE
Joint International Conference on Requirements Engineering (RE’02), pp. 303-310.

Norman, R.L & Holloran, R.W. (1991). How to simplify the structure of administrative
procedures to make them easier to write, review, produce, and use, Proceedings of
International Conference on Professional Communication, Vol.2 pp. 447 – 450.

Parnas, D. L. & Clements, P.C. (1993). A Rational Design Process: How and Why to Fake it,
Journal of IEEE Transactions on Software Engineering, Vol. SE-12, No. 2.

Parnas, D. L. (1995). Software Aging, Proceedings of 16th International Conference on Software
Engineering, pp. 279-287.

Parnas, D. L. (2000). Requirements documentation: why a formal basis is essential,
Proceedings of IEEE 4th International Conference on Requirements Engineering, pp. 81-82.

Pigoski, TM. (1997). Practical Software Maintenance, John Wiley & Sons.
Ramsay, J. (1997). Corporate Downsizing: Opportunity for a New Partnership between

Engineers and Technical Writers, Proceedings of IEEE International Professional
Communication Conference, pp. 399-403.

Sampayo do Prado Leite J.C. & Doorn, J.H. (2009). Perspectives on Software Requirements,
Kluwer Academic Publishers.

Saunders, P.M. (1989). Communication, Semiotics and the Mediating Role of the Technical
Writer, Proceedings of IEEE International Professional Communication Conference, pp.
102-105.

Sousa, M. & Mendes Moreira, H. (1998). A survey of the software maintenance process.
Proceedings of IEEE International Conference on Software Maintenance, pp. 265– 272.

van Schouwen, A.J.; Parnas, D.L.; Madey, J. (1993). Documentation of Requirements for
Computer Systems, Proceedings of IEEE International Symposium on Requirements
Engineering, pp. 198-207.

Visconti, M. & Cook, C.R. (2000). An Overview of Industrial Software Documentation Practices,
Technical Report 00-60-06, Computer Science Department, Oregon State University,
April.

Visconti, M. & Cook, C.R. (2002). An overview of Industrial Software Documentation
Practice, Proceedings of 12th IEEE International Conference of the Chilean Computer
Science Society, pp. 179-186.

Walker, R. (1985). Applied Qualitative Research, Gower Publishing Company Ltd.
Wedde, K. J.; Stalhane, T.; Nordbo, I.; (1995). A Case Study of a Maintenance Support

System, Proceedings of IEEE International Conference on Software Maintenance,
pp. 32-41.

Ontological description of gene groups by the multi-attribute statistically significant logical rules 277

Ontological description of gene groups by the multi-attribute statistically
significant logical rules

Aleksandra Gruca and Marek Sikora

X

Ontological description of gene groups
by the multi-attribute

statistically significant logical rules

Aleksandra Gruca and Marek Sikora
Silesian University of Technology, Institute of Informatics

Poland

1. Introduction

With the beginning of the post-genomic era, the DNA microarray chips became one of the
most indispensable tools used in the biological laboratories all over the world to support the
genome scale experiments (Baldi & Hatfield, 2002). Development of the DNA chip
technologies provided a great opportunity to learn and understand biological phenomena of
the world of living organisms better by identifying the genes involved in various biological
processes.
A single DNA microarray experiment allows to record simultaneously thousands of gene
expression profiles obtained under similar experimental conditions. Such abundance of data
needs to be analyzed and processed by means of sophisticated mathematical tools.
Nowadays it is impossible for a single person to understand and interpret the experiment
results which consist of thousands of numbers describing the expression profiles of all the
genes whose probes are located on the DNA microarray chip. Only the cooperation among
biologists, mathematicians and computer scientists leads to the complete and profound
understanding of the biological phenomena that are recorded in the laboratory.
The analysis of the data obtained in the DNA microarray experiment is a complex and
difficult process involving applications of many specialized algorithms. Various methods
such as statistical analysis and data mining techniques need to be applied until a final
biological conclusions are derived from the spot intensity measurements obtained from a
scanner software.
Such complex analysis usually consists of the four main steps: data normalization,
identification of the differentially expressed genes, application of the algorithms grouping
together genes with similar expression patterns and interpretation of the biological
functions of the genes co-expressed together.
Data normalization involves methods for reducing effect of the systematic errors.
Differentially expressed genes are identified by applying statistical tests. Unsupervised
methods organize genes expression into separate sets (clusters) that co-expressed together,
thus the groups obtained are expected to include genes involved into similar biological
processes.

15

Engineering the Computer Science and IT278

One of the most important tasks is the interpretation of the obtained clusters – genes that
form the clusters need to be confronted with existing biological knowledge on its classes and
functions. The knowledge of genes and their functions included in the analysis supports
extracting biological knowledge from the performed experiments. This aspect of data
analysis is often done by an expert in the field of the experimental design, frequently
manually, what is time consuming for large data sets.
However, the expert work may be supported by specialized systems designed for storing,
organizing and extracting the relevant information and the new algorithms incorporating
the existing knowledge about genes. These methods, including knowledge discovery,
artificial intelligence and automatic reasoning appeared to be very useful and efficient on
the field of analyses of specific biological data.

2. Gene Ontology analysis

One of the most popular and widely used sources of information about biological processes
and genes involved in these processes is the Gene Ontology database (Ashburner et al.,
2002). Gene Ontology consortium provides structured and controlled vocabulary that is
used to describe genes and their products independently of the species. The GO database is
organized into three disjoint directed-acyclic graphs (DAGs) describing biological process
(BP), molecular function (MF) and cellular component (CC). Each node of the graph is called
a GO term, and it is a single unit that describes some known biological process or function
of the gene. The dependences between GO terms are hierarchical and as the DAG is
traversed from the root into its leafs, the terms are inspected from the general ones to the
more specific concepts. Figure 1 presents part of the GO directed-acyclic graph structure.

Fig. 1. Gene Ontology directed-acyclic graph structure

Ontological description of gene groups by the multi-attribute statistically significant logical rules 279

One of the most important tasks is the interpretation of the obtained clusters – genes that
form the clusters need to be confronted with existing biological knowledge on its classes and
functions. The knowledge of genes and their functions included in the analysis supports
extracting biological knowledge from the performed experiments. This aspect of data
analysis is often done by an expert in the field of the experimental design, frequently
manually, what is time consuming for large data sets.
However, the expert work may be supported by specialized systems designed for storing,
organizing and extracting the relevant information and the new algorithms incorporating
the existing knowledge about genes. These methods, including knowledge discovery,
artificial intelligence and automatic reasoning appeared to be very useful and efficient on
the field of analyses of specific biological data.

2. Gene Ontology analysis

One of the most popular and widely used sources of information about biological processes
and genes involved in these processes is the Gene Ontology database (Ashburner et al.,
2002). Gene Ontology consortium provides structured and controlled vocabulary that is
used to describe genes and their products independently of the species. The GO database is
organized into three disjoint directed-acyclic graphs (DAGs) describing biological process
(BP), molecular function (MF) and cellular component (CC). Each node of the graph is called
a GO term, and it is a single unit that describes some known biological process or function
of the gene. The dependences between GO terms are hierarchical and as the DAG is
traversed from the root into its leafs, the terms are inspected from the general ones to the
more specific concepts. Figure 1 presents part of the GO directed-acyclic graph structure.

Fig. 1. Gene Ontology directed-acyclic graph structure

Standard approach to the analysis with the use of the GO terms includes performing various
statistical tests to detect enrichment or depletion of the GO terms in the analyzed gene
group. There is a number of GO processing tools available, based on the same idea of
mapping GO terms on the genes composing the cluster and then performing a statistical test
to extract over- or underrepresented GO terms in the analyzed set of genes. Thus, a Bingo
(Maere et al., 2005), Cytoscape plugin, implements a hypergeometric and binominal test for
the over-representation of the GO terms and then visualizes the results by means of
Cytoscape network (Cline et al., 2007). Another example of the GO processing tool is a
FatiGO (Al-Shahrour et al., 2005), a web-based application which allows to identify over- or
underrepresented GO terms by applying Fisher’s exact test and performs the analysis
separately for each GO level. Most of the tools consider using multiple-testing corrections
what reduces the rate of false positives occurring among significant results when testing of
thousands hypothesis in the same experiment (Dudoit et al., 2003).
GO browsers such as Bingo or FatiGO usually take as an input two lists of genes: one of
them represents investigated gene set, the other – rest of the genes involved in the
microarray experiment. Each gene from the both lists is then annotated with the appropriate
GO terms and the statistical test is applied to check for significant over or under-
representation of GO terms in one of the sets with respect to another one. Thus, the final
result obtained from such analysis is the list of the statistically significant GO terms that are
enriched or depleted in the investigated gene set. For each term, the p-value of the statistical
test corresponding to that term is recorded and by comparing the p-values of all GO terms
describing genes belonging to the cluster one can have a good indication about the
prominence of a given functional GO category in the gene set.

3. Related work

Knowledge based approaches were used in Gene Ontology analysis mainly for genes
grouping with respect to their expression level (Eissen et al., 1998, Iyer et al., 1999) and
describing groups of similar genes by means of a set of Gene Ontology terms (Brown et al.
2002; Khatri & Draghici, 2005).
The research strictly connected with Gene Ontology analysis by means of rule induction
algorithms were conducted by Hvdistein (Hvidstein et al., 2003) and Midelfart (Midelfart,
2005a, Midelfart, 2005b). In the paper (Hvidstein et al., 2003) conditional rules of the form
“IF conjunction of conditions describing time series of gene expression profile THEN ontological
term” were created. The authors wanted to assign genes with specified expression profiles to
a specific gene ontology term. To simplify the analysis process and get more general rules, a
set of gene ontology terms was limited in such manner that only terms located on the
specified ontology level were considered during the analysis. The ROSETTA (Øhrn et al.,
1998) software based on rough sets methodology (Pawlak, 1991) is used for induction of
rules. Conclusions of rules with the same conditional parts are joined, thus the rules
describing a group of genes with similar expression profiles are obtained. In the conclusions
of the rules, the set of gene ontology terms describing the group is included. The research
shows that number of the obtained rules is huge and there is a need to apply a rule filtration
method (Sikora, 2006) or pointing to a user so-called the most interesting rules (Agrawal &
Srikant, 1994).

Engineering the Computer Science and IT280

In the Midelfart paper a similar approach was used, except that there was not defined which
terms can be located in the rule conclusions. The induction algorithm considers the fact that
terms (what means also rule conclusion) are related (according to the ontology graph).
Beginning from the terms lying at the lowest level of the ontology graph, the algorithm
generates rules for each term. If the rules generated are recognized as good quality rules,
they are added into a result set of rules, and all genes recognizing the rules are removed
from the analyzed data set. If the rules describing a given ontology term are not of good
quality, they are removed from the description and genes assigned to the analyzed term are
moved to higher ontology level, and learning process proceeds again for a new (placed
higher) term. Accuracy and generality decide about a rule quality and thresholds values of
the both parameters have to be defined by a user. From the experiments performed follows
that the method given by Midelfart allows obtaining better results than the method
proposed by Hvdistein. Both papers verify quality of obtained results by means of a
classification accuracy, that is by rightness of assignment to corresponding GO terms these
genes that were not taken into consideration during the analysis. Midelfart also introduces a
measure that presents how many ontology terms managed to describe (assign) genes placed
in the analyzed data set.
Both of the methods presented above do not allow obtaining an information about influence
of co-appearing of some ontology terms on a gene membership to a specified gene group.
The methods do not consider statistical aspect of determined rules, that is they do not search
whether discovered dependences are statistically significant (Rice, 1995).
None of the published papers include research on describing already defined group of
similar genes by means of multiattributes logical rules. Conjunctions of ontology terms are
placed in premises of rules and conclusion include a specific group of similar genes -
research on one-attribute rules were conducted only (Gruca, 2008).
However, the similar research has been conducted recently by Carmona-Saez and
coworkers (Carmona-Saez et al., 2007). The authors propose a method Genecodis, a web-
based tool for integrated analysis of annotations from different sources. They applied the
classical Apriori algorithm (Agrawal & Srikant, 1994) to discover association rules to extract
a sets of annotations (so-called itemsets) that frequently co-occur in analyzed group of
genes. In order to reduce the number of possible outcome combinations, and thus the
computation time, the authors introduced the threshold, so-called support value, that allows
discovering only such combinations of annotations that appear in at least x genes. The
algorithm starts by determining a set of single annotations that satisfy the minimal support
condition x. Then, combinations of annotations are created on the basis of the set of single
annotations obtained in a first step of algorithm. Each combination generated must describe
at least x genes. The combinations obtained are further analyzed in order to verify statistical
significance of computed concurrencies.
On the basis of this method Hackenberg (Hackenberg & Matthiesen, 2008) developed
another web-based application that uses various annotation databases and that allows a user
to discover combinations of annotations from many different fields such as functional
categories, gene regulation, sequence properties, evolution, conservation, etc.
Association rules are also considered in (Carmona-Saez et al., 2006). The method proposed
in this paper combines expression data and biological information. Extracted association
rules are of the following form: {cell cycle → [+] condition 1, [+]condition2, [-]condition3} which
means that in the data set a significant number of genes annotated as “cell cycle” are over-

Ontological description of gene groups by the multi-attribute statistically significant logical rules 281

In the Midelfart paper a similar approach was used, except that there was not defined which
terms can be located in the rule conclusions. The induction algorithm considers the fact that
terms (what means also rule conclusion) are related (according to the ontology graph).
Beginning from the terms lying at the lowest level of the ontology graph, the algorithm
generates rules for each term. If the rules generated are recognized as good quality rules,
they are added into a result set of rules, and all genes recognizing the rules are removed
from the analyzed data set. If the rules describing a given ontology term are not of good
quality, they are removed from the description and genes assigned to the analyzed term are
moved to higher ontology level, and learning process proceeds again for a new (placed
higher) term. Accuracy and generality decide about a rule quality and thresholds values of
the both parameters have to be defined by a user. From the experiments performed follows
that the method given by Midelfart allows obtaining better results than the method
proposed by Hvdistein. Both papers verify quality of obtained results by means of a
classification accuracy, that is by rightness of assignment to corresponding GO terms these
genes that were not taken into consideration during the analysis. Midelfart also introduces a
measure that presents how many ontology terms managed to describe (assign) genes placed
in the analyzed data set.
Both of the methods presented above do not allow obtaining an information about influence
of co-appearing of some ontology terms on a gene membership to a specified gene group.
The methods do not consider statistical aspect of determined rules, that is they do not search
whether discovered dependences are statistically significant (Rice, 1995).
None of the published papers include research on describing already defined group of
similar genes by means of multiattributes logical rules. Conjunctions of ontology terms are
placed in premises of rules and conclusion include a specific group of similar genes -
research on one-attribute rules were conducted only (Gruca, 2008).
However, the similar research has been conducted recently by Carmona-Saez and
coworkers (Carmona-Saez et al., 2007). The authors propose a method Genecodis, a web-
based tool for integrated analysis of annotations from different sources. They applied the
classical Apriori algorithm (Agrawal & Srikant, 1994) to discover association rules to extract
a sets of annotations (so-called itemsets) that frequently co-occur in analyzed group of
genes. In order to reduce the number of possible outcome combinations, and thus the
computation time, the authors introduced the threshold, so-called support value, that allows
discovering only such combinations of annotations that appear in at least x genes. The
algorithm starts by determining a set of single annotations that satisfy the minimal support
condition x. Then, combinations of annotations are created on the basis of the set of single
annotations obtained in a first step of algorithm. Each combination generated must describe
at least x genes. The combinations obtained are further analyzed in order to verify statistical
significance of computed concurrencies.
On the basis of this method Hackenberg (Hackenberg & Matthiesen, 2008) developed
another web-based application that uses various annotation databases and that allows a user
to discover combinations of annotations from many different fields such as functional
categories, gene regulation, sequence properties, evolution, conservation, etc.
Association rules are also considered in (Carmona-Saez et al., 2006). The method proposed
in this paper combines expression data and biological information. Extracted association
rules are of the following form: {cell cycle → [+] condition 1, [+]condition2, [-]condition3} which
means that in the data set a significant number of genes annotated as “cell cycle” are over-

expressed in condition 1 and 2 and under-expressed in condition 3 (Carmona-Saez et al.,
2006). Several measures such as support, confidence and improvement are applied to
compute the significance of the rule.
In our research we assume that there are the groups of genes with similar expression
profiles. The groups were obtained by expert analysis, or by means of clustering method
(Eisen et al., 1998; Kustra & Zagdański, 2006). The aim of this paper is to present a method
that allow to describe each of obtained group of genes with the use of gene ontology terms.
The rules determined have the following meaning:

“if a gene is described by a conjunction of gene ontology terms appearing in a rule premise,
then it belongs to a specific group of genes”.

Covering all genes belonging to a given group we obtain a set of rules which can be
interpreted as follows:

“a given group of genes is described by gene ontology terms appearing
in at least one rule indicating the described group”.

It is also important that the rules generated have a statistical significance level which can be
determined by a user. Obtained rules also consider co-occurrence of the terms in a given
gene group and the presented method guarantees that the co-occurrence will not be trivial
(for example, resulting from hierarchy of the ontology graph).

4. Description of gene groups by multi-attribute logical rules

4.1 Basic notions
Let there be a set of genes G and a set of descriptions of genes and gene products A. There is
a hierarchical relationship among elements from the set A in a form of directed-acyclic
graph (DAG) (Fig.1). This graph is interpreted as a database, called Gene Ontology. Each
element of the Gene Ontology database is called GO term which is represented by a name
and a unique 7-digits identifier. There are three main ontologies describing genes and gene
products from three independent biological domains: biological process, molecular function
and cellular component. Each of them is represented as a separate DAG. The root of each
graph is also the name of the biological domain that is described by that ontology.
Formally, Gene Ontology is a directed acyclic graph GO=(A,), where A is a set of GO terms
describing genes and its products and is a binary relation on A such that genes described
by GO term aj are a subset of genes described by GO term ai, denoted ajai, if and only if
there exist a path (ai,ai+1,…,aj-1,aj) such that amam-1 for m=i+1,i+2,...,j-1,j (we can find here an
analogy to the inverse Hasse diagram for ordering relations). Relation is the order relation
(reflexive, antisymmetric and transitive). The root of the DAG is the largest element and we
assume that the root is on a level zero in the ontology. Each level of the graph is defined in
the following way: the i-th level of the graph is formed by all GO terms aA for which a
path exists (root,a1,...,ai-1,ai) such that: a1root, amam-1 for m=2,3,...,i-1 and aiai-1 (in other
words there exists a path of length i from the root to that GO term). The hierarchical
structure of the ontology database allows representing biological knowledge on the multiple
levels of details. Terms at the higher levels (closer to the root) describe more general

Engineering the Computer Science and IT282

function or process while terms at the lower levels are more specific. Each node from the
DAG is represented by a single GO term from the set A. These terms are further applied in
the annotations of genes or gene products in the biological databases. Each annotation is an
association between gene and the GO term describing it, thus for a simplification, we can
assume that each node of the Gene Ontology is also annotated by the genes from the set G.
A gene can be annotated to zero or more nodes for each ontology, at any level within each
ontology. All GO terms that exist in the DAG must follow the true path rule: "the pathway
from a child term all the way up to its top-level parent(s) must always be true". The
consequence of such approach is that annotating gene to a GO term implies annotation to all
parents via any path.
It stems from the definition of the Gene Ontology and from the interpretation of the relation
 that each gene annotated with GO term ajA is also annotated with a GO term aiA such
that ajai. The relation is transitive, so if we take into consideration the hierarchical
structure of the DAG we may assume that each gene annotated with the particular GO term
(that was assigned to that gene by a curator from Gene Ontology consortium), is also
annotated with the GO terms that are parents of that particular term. In the other words –
the higher is the level of a GO term, the more genes are annotated to that term. Assuming
that Ga is a set of genes annotated with the GO term corresponding to the node a, for each
node ai such that aai , GaGai is satisfied.
To preserve the clarity of the ontology, the annotation files that are available at the Gene
Ontology consortium website include only “original” annotations, that is annotations that
were assigned to the particular GO terms by a curator. The annotations resulting from the
“true path rule” (annotation of that gene to all parent nodes of that term) are not included in
the annotation files. In our analysis we consider a graph that is constructed as described
above. To increase the number of genes annotated to each node (GO term) of the graph, we
assign to each node not only the genes that were directly extracted from the Gene Ontology
annotation database but also the genes that are annotated to all descendant terms of that
node. We call such a graph GO-Inc (similar approach called inclusive analysis is introduced
in GO browser FatiGO).
To summarize, there are given: a set G of genes, a set A of GO terms that create GO-Inc
ontology graph and n gene groups with similar expression profiles {G(1),G(2),...,G(n)}. It is
possible to create a decision table DT=(G,A{d}), where for all aA, a:G{0,1}, and
d(g){G(1),G(2),...,G(n)} for all gG. Thus, rows in the table DT contain descriptions of the
single genes belonging to the set G created by means of GO terms from A. The notation
a(g)=1 denotes that the gene g is assigned to the term a in the GO-Inc graph. Beside
description by the terms from A, each gene is also characterized by a membership to specific
group of similar genes (value d(g)). In the table DT we try to find all statistically significant
relationships in the rules of the form (1)

IF ai1=1 and ai2=1 and … and aik=1 THEN d=G(l) (1)

or in the shortened notation:

IF ai1 and ai2 and … and aik THEN d=G(l) (2)

where: {ai1,ai2,...,aik}A, G(l){G(1),G(2),...,G(n)}.

Ontological description of gene groups by the multi-attribute statistically significant logical rules 283

function or process while terms at the lower levels are more specific. Each node from the
DAG is represented by a single GO term from the set A. These terms are further applied in
the annotations of genes or gene products in the biological databases. Each annotation is an
association between gene and the GO term describing it, thus for a simplification, we can
assume that each node of the Gene Ontology is also annotated by the genes from the set G.
A gene can be annotated to zero or more nodes for each ontology, at any level within each
ontology. All GO terms that exist in the DAG must follow the true path rule: "the pathway
from a child term all the way up to its top-level parent(s) must always be true". The
consequence of such approach is that annotating gene to a GO term implies annotation to all
parents via any path.
It stems from the definition of the Gene Ontology and from the interpretation of the relation
 that each gene annotated with GO term ajA is also annotated with a GO term aiA such
that ajai. The relation is transitive, so if we take into consideration the hierarchical
structure of the DAG we may assume that each gene annotated with the particular GO term
(that was assigned to that gene by a curator from Gene Ontology consortium), is also
annotated with the GO terms that are parents of that particular term. In the other words –
the higher is the level of a GO term, the more genes are annotated to that term. Assuming
that Ga is a set of genes annotated with the GO term corresponding to the node a, for each
node ai such that aai , GaGai is satisfied.
To preserve the clarity of the ontology, the annotation files that are available at the Gene
Ontology consortium website include only “original” annotations, that is annotations that
were assigned to the particular GO terms by a curator. The annotations resulting from the
“true path rule” (annotation of that gene to all parent nodes of that term) are not included in
the annotation files. In our analysis we consider a graph that is constructed as described
above. To increase the number of genes annotated to each node (GO term) of the graph, we
assign to each node not only the genes that were directly extracted from the Gene Ontology
annotation database but also the genes that are annotated to all descendant terms of that
node. We call such a graph GO-Inc (similar approach called inclusive analysis is introduced
in GO browser FatiGO).
To summarize, there are given: a set G of genes, a set A of GO terms that create GO-Inc
ontology graph and n gene groups with similar expression profiles {G(1),G(2),...,G(n)}. It is
possible to create a decision table DT=(G,A{d}), where for all aA, a:G{0,1}, and
d(g){G(1),G(2),...,G(n)} for all gG. Thus, rows in the table DT contain descriptions of the
single genes belonging to the set G created by means of GO terms from A. The notation
a(g)=1 denotes that the gene g is assigned to the term a in the GO-Inc graph. Beside
description by the terms from A, each gene is also characterized by a membership to specific
group of similar genes (value d(g)). In the table DT we try to find all statistically significant
relationships in the rules of the form (1)

IF ai1=1 and ai2=1 and … and aik=1 THEN d=G(l) (1)

or in the shortened notation:

IF ai1 and ai2 and … and aik THEN d=G(l) (2)

where: {ai1,ai2,...,aik}A, G(l){G(1),G(2),...,G(n)}.

A rule of the form (2) should be interpreted as follows:

IF a gene is described simultaneously by the terms occurring in a premise of the rule
THEN it belongs to the gene group G(l)

The above form of the rule representation denotes that descriptors ai1=0 are not in our
interest now, that is we do not describe gene group by means of the statements “GO term a
does not describe a given gene group”.
A set of rules with identical conclusions we denote by RULG(l) and call the description of the
gene group G(l).

4.2 Rules quality measures
Rules of the form (2) are the special case of so-called decision rules, and several measures
that reflect quality of a decision rule can be connected with the rule. These measures are
called the rule quality measures and their main purpose is a rule evaluation and/or such
steering of induction and/or reduction processes that there are rules of the best quality in
the output rule set. Values of most known rule quality measures (An & Cercone, 2001;
Sikora, 2006) can be determined based on the analysis of a contingency table, that allows
describing rules behavior with relation to the decision table DT.
A set of genes which are described by the terms occurring in a premise of a rule r of the form
(2) we denote by match(r). A set of genes characterized by the terms occurring in the
premise of r and belonging to a group indicated by the rule conclusion we denote by
supp(r). If the rule r is shortly written as , then the contingency table of the rule has the
following form:

n n n

n n n

n n n
Table 1. Contingency table of the rule r

In Table 1, n= n+ n=|G| is the number of genes that recognize the rule ; n=
n+ n=|G| is the number of genes that do not recognize the rule ; n= n+
n=|G| is the number of genes that belong to the gene group described by the rule ;
n= n+ n=|G| is the number of genes that do not belong to the gene group
described by the rule ; n=|GG| is the number of genes that support the rule
; n=|GG|; n=|GG|; n=|GG|.
Using the information included in the contingency table and the fact that for a known rule
, there are known the values |G| and |G|, it is possible to determine the values of
quality measures based on the values n and n . It can be also noticed that for any rule
 the inequalities 1n|G|, 0n|G| hold. Hence, the quality measure is the
function of two variables q():{1,...,|G|}{0,...,|G|}R.
Two basic quality measures are accuracy (3) and coverage (4) of a rule. Both the measures
considered at the same time provide complete objective (referring to DT) evaluation of the
rule quality, since according to the principle of induction by enumeration it is known that
the rules with a good accuracy and coverage reflect real dependences. The dependences are
true also for the objects from outside of the analyzed dataset. It is easy to prove that along

Engineering the Computer Science and IT284

with accuracy increasing, rule coverage decreases. Therefore, attempts are performed to
define objective quality measures that respect accuracy and coverage of a rule
simultaneously (Bruha, 1997; An & Cercone, 2001; Furnkranz & Flach, 2005 ; Sikora, 2006).
In the researches quoted some evaluation measures achieved the good results both in a
classification accuracy (generalization ability) and a size of classifiers (description ability).

acc(r)=

n
n

 (3)

cov(r)=

n
n

 (4)

In our research, a rule quality measure is used in filtration process in order to limit a
number of determined rules. We applied a modified version of the WS (5) measure
proposed by Michalski (Michalski, 1983).

WS(r)=w1acc(r)+w2cov(r) (5)

In a rule induction system YAILS values of parameters w1, w2 for the rule r are calculated as
follows: w1=0.5+0.25acc(r), w2=0.5-0.25acc(r). The WS measure is monotone with respect to
each variable n and n , and assumes values from the interval [0,1] (Fig.2).

Fig. 2. Graph of WS-Yails measure for the rule depending on n≡supp() and
nmatch()-supp(). A number of genes described by the rule is n=25, and a
number of remaining genes is n=250.

We assume, that the rules determined of the form (2), have to be statistically significant
rules, with a significance level better then or equal to a level established by a user. To
evaluate a statistical significance of created rules we use a hypergeometric test (6). It can be
easily noticed that a p-value for the rule r of the form (2) can be determined on the basis of
the contingency table (Table 1) and computed using the formula (7). P-values obtained for
fixed n and n are presented on a graph in Fig.3. To verify the statistical significance of the

Ontological description of gene groups by the multi-attribute statistically significant logical rules 285

with accuracy increasing, rule coverage decreases. Therefore, attempts are performed to
define objective quality measures that respect accuracy and coverage of a rule
simultaneously (Bruha, 1997; An & Cercone, 2001; Furnkranz & Flach, 2005 ; Sikora, 2006).
In the researches quoted some evaluation measures achieved the good results both in a
classification accuracy (generalization ability) and a size of classifiers (description ability).

acc(r)=

n
n

 (3)

cov(r)=

n
n

 (4)

In our research, a rule quality measure is used in filtration process in order to limit a
number of determined rules. We applied a modified version of the WS (5) measure
proposed by Michalski (Michalski, 1983).

WS(r)=w1acc(r)+w2cov(r) (5)

In a rule induction system YAILS values of parameters w1, w2 for the rule r are calculated as
follows: w1=0.5+0.25acc(r), w2=0.5-0.25acc(r). The WS measure is monotone with respect to
each variable n and n , and assumes values from the interval [0,1] (Fig.2).

Fig. 2. Graph of WS-Yails measure for the rule depending on n≡supp() and
nmatch()-supp(). A number of genes described by the rule is n=25, and a
number of remaining genes is n=250.

We assume, that the rules determined of the form (2), have to be statistically significant
rules, with a significance level better then or equal to a level established by a user. To
evaluate a statistical significance of created rules we use a hypergeometric test (6). It can be
easily noticed that a p-value for the rule r of the form (2) can be determined on the basis of
the contingency table (Table 1) and computed using the formula (7). P-values obtained for
fixed n and n are presented on a graph in Fig.3. To verify the statistical significance of the

rules induced, we also compute false discovery rate (FDR) coefficient (Benjamini &
Hochberg, 1995)

n
n

n
n

n
n

nnnnp),,,((6)

n

k
val nnknknpnnnnp

0

),,,(),,,((7)

Fig. 3. Graph of p-values depending on n≡supp() and nmatch()-supp().
A number of genes described by the rule is n=10, a number of remaining genes is n=250.

4.3 Rules induction
Induction of decision rules can be classification or discovery oriented. The purpose of
classification-oriented induction is to find, on the basis of the set of learning examples, a set
of decision rules that will be used to classify new unknown examples (Michalski et al., 1998;
Mitchell, 1997). The purpose of discovery-oriented induction is to discover patterns and
regularities (in the form of IF THEN rules) in data which are interesting and useful to
different kinds of users. A set of classification rules often contains only a limited part of all
possible rules that could be induced from that set. Majority of the classification-oriented
algorithms follow the same general scheme using a greedy heuristic strategy. This scheme
consists of creating a first rule by choosing sequentially the ‘best’ elementary conditions
according to some quality criteria. Then, learning examples that match this rule are removed
from the set considered. The process is repeated iteratively until all the examples are
covered by the result rule set. An alternative approach, better from the knowledge discovery
point of view, is the induction of all the rules that satisfy some requirements. This approach
is implemented among others in the association rules induction algorithm Apriori (Agrawal
& Srikant, 1994), and the decision rules induction algorithm Explore (Stefanowski &
Vanderpooten, 2001). Another possibility is to induce all rules and then filter them to find
the most interesting ones (Klemettinen, 1994; Sikora, 2009).

Engineering the Computer Science and IT286

We generate the rules with p-values less or equal to a threshold established by a user.
Therefore to describe given gene group, we must determine all possible combinations of all
possible subsets of GO terms. Since we are interested in the premises with descriptors
assuming value one (see rule definition (2)), in a pessimistic case we have to determine

| |

1

||A

k k
A =2|A|-1 rules, what is impossible in the case of a big number of considered GO

terms. We can model on the heuristic algorithm Apriori used for association rules searching
during rules determining. In contrast to association rules, in our case a rule conclusion is
already established. Therefore, Explore algorithm proposed by Stefanowski is more suitable
for our aims. Using Explore algorithm we can generate all possible conjunctions of GO
terms for each gene group. To limit a number of analyzed combinations, a user can provide
minimal requirements concerning the quality of determined rules (for example, minimal
rule coverage, minimal rule accuracy). In the method proposed, we generate only satistically
significant conjunctions of GO terms.
In the standard version of Explore algorithm, rule induction starts from one-condition rules
and then next conditions are iteratively added to each rule. After adding a next condition, a
created rule is verified whether it satisfies quality criteria defined by a user. If it does, then the
rule is added to a result rule set. If it does not, then the algorithm checks whether the created
(temporary) rule may satisfy quality criteria introduced by the user (for example, whether the
rule of the current form covers enough quantity of objects – minimal coverage requirements).
A premise of the temporal rule that has a chance of satisfying minimal requirements of quality
is widen by the next conditions, other temporal rules are not widen and are removed. A
detailed description of the algorithm can be found in (Stefanowski & Vanderpooten, 2001).
For our purposes, Explore algorithm was put to a few modifications. Searching space of
potential candidates for rules is made by means of a procedure that is iteratively repeated
for each gene group. The main part of the algorithm generates premises with increasing size,
beginning from premises containing one GO term. When a rule created in this way satisfies
a p-value criterion established by a user, it is added to the generated rule set and
conjunction is widen (assuming that other statistically significant rules can be determined
from the conjunction). Motivation of such solution is that more information may be obtained
from the statistically significant rule (8) than also significant, but shorter rule (9).

IF primary metabolic process and
membrane-bounded organelle and

proteasome storage granule and
threonine-type endopeptidase activity and

proteasome core complex
THEN gene group 2

supp(r)=9, match(r)=9,
acc(r)=1, cov(r)=0.33, pVal(r)=2.231392e-010

(8)

IF primary metabolic process and
membrane-bounded organelle

THEN gene group 2
supp(r)=19, match(r)=114,

acc(r)=0.166, cov(r)=0.703, pVal(r)=0.00147

(9)

Ontological description of gene groups by the multi-attribute statistically significant logical rules 287

We generate the rules with p-values less or equal to a threshold established by a user.
Therefore to describe given gene group, we must determine all possible combinations of all
possible subsets of GO terms. Since we are interested in the premises with descriptors
assuming value one (see rule definition (2)), in a pessimistic case we have to determine

| |

1

||A

k k
A =2|A|-1 rules, what is impossible in the case of a big number of considered GO

terms. We can model on the heuristic algorithm Apriori used for association rules searching
during rules determining. In contrast to association rules, in our case a rule conclusion is
already established. Therefore, Explore algorithm proposed by Stefanowski is more suitable
for our aims. Using Explore algorithm we can generate all possible conjunctions of GO
terms for each gene group. To limit a number of analyzed combinations, a user can provide
minimal requirements concerning the quality of determined rules (for example, minimal
rule coverage, minimal rule accuracy). In the method proposed, we generate only satistically
significant conjunctions of GO terms.
In the standard version of Explore algorithm, rule induction starts from one-condition rules
and then next conditions are iteratively added to each rule. After adding a next condition, a
created rule is verified whether it satisfies quality criteria defined by a user. If it does, then the
rule is added to a result rule set. If it does not, then the algorithm checks whether the created
(temporary) rule may satisfy quality criteria introduced by the user (for example, whether the
rule of the current form covers enough quantity of objects – minimal coverage requirements).
A premise of the temporal rule that has a chance of satisfying minimal requirements of quality
is widen by the next conditions, other temporal rules are not widen and are removed. A
detailed description of the algorithm can be found in (Stefanowski & Vanderpooten, 2001).
For our purposes, Explore algorithm was put to a few modifications. Searching space of
potential candidates for rules is made by means of a procedure that is iteratively repeated
for each gene group. The main part of the algorithm generates premises with increasing size,
beginning from premises containing one GO term. When a rule created in this way satisfies
a p-value criterion established by a user, it is added to the generated rule set and
conjunction is widen (assuming that other statistically significant rules can be determined
from the conjunction). Motivation of such solution is that more information may be obtained
from the statistically significant rule (8) than also significant, but shorter rule (9).

IF primary metabolic process and
membrane-bounded organelle and

proteasome storage granule and
threonine-type endopeptidase activity and

proteasome core complex
THEN gene group 2

supp(r)=9, match(r)=9,
acc(r)=1, cov(r)=0.33, pVal(r)=2.231392e-010

(8)

IF primary metabolic process and
membrane-bounded organelle

THEN gene group 2
supp(r)=19, match(r)=114,

acc(r)=0.166, cov(r)=0.703, pVal(r)=0.00147

(9)

If for a given premise all GO terms were already considered, then a new GO term is selected
(not chosen yet) and a new rule creation begins.
In order to narrow the searching space the following solutions were applied:

 After adding a GO term a to a rule premise, no terms lying on any path (from
ontology leaf to the root) that leads to the term a are considered. Let us notice that
for any term bA for which ba, the conjunction ba reduces to a, since b lies on
lower level than a, so GbGa. Similarly, for cA for which ac, the conjunction ac
reduces to c, since c lies on a higher level. There is no point to consider the
conjunction ac because the descriptor c will be considered by the algorithm
separately. The same reasoning can be presented for a conjunction composed of
bigger number of terms to which a new GO term is added.

 If a rule with the premise a1a2...aj was added to the result set of rules, then rules
with premises being permutations of {a1,a2,...,aj} will be no longer considered. The
algorithm starts creation of a rule premise by selecting the terms that describe the
most genes in the analyzed gene group.

 Assuming that the currently created rule has the form , the GO term a will be
added to its premise forming the rule a, if acc()≤acc(a). The
condition limits a number of analyzed combinations by rejecting the terms that do
not contribute to improving a rule accuracy, thus improving statistical significance
of the rule as well.

The algorithm starts with a parameter characterizing maximal number of terms in the rule
premises. However, a number of rules determined in this way is still very large. Therefore, a
method of rules evaluation and filtration is required.

4.4 Rules evaluation and filtration
Statistical significance of a rule is the first criterion of its evaluation. A graph of p-value
depending on a number of objects recognizing and supporting the rule is presented on the
Fig. 3. From the graph follows that evaluating statistical significance only may lead in some
cases to prefer hardly accurate rules. A rule describing one of gene group from the YEAST
set (Eisen et al., 1998) is such example (10):

IF cellular metabolic process and

macromolecule metabolic process
THEN gene group 2

acc(r)=0.116,cov(r)=1, pVal=0.0077, FDR(r)=0.00872

(10)

The group consists of 27 genes, and there are 274 genes in the analyzed set. The presented
rule covers the whole group, and recognizes 231 genes. Thus it is very inaccurate one. The
rule is low-quality rule, however, significance level of the rule is good. This follows from the
fact that the rule concentrates probability of selecting genes from the group described by the
rule with relation to whole data set. The presented example shows that we need other rule
quality evaluation criteria in order to select the best rules from the analyzed set of rules.
Thus, the next criterion evaluating rule quality is a modified measure WS (11):

mWS(r)=[0.5+0.25acc(r)]acc(r)+[0.5-0.25cov(r)]cov(r)

(11)

Engineering the Computer Science and IT288

It can be easily noticed that the measure mWS differs from the measure applied in the
system YAILS (5) by a manner of calculation a value of the parameter w2. In the modification
presented in the formula (11) the rule coverage was used for establishing the value of the
parameter w2 unlike the rule accuracy used for the measure (5). The change is justified by
the fact that for general, inaccurate rules the modified version of WS (11) assumes less
values than original WS measure. Differences in rule evaluation between measures (5) and
(11) can be clearly seen by comparing graphs of the both measures (Fig. 4).

Fig. 4. Graphs of the standard and modified WS Yails measure

Another criterion of a rule quality evaluation is a number of GO terms included in a rule
premise (12). We assume that the bigger number of terms is in the rule premise, the more
information is represented by rule (we remind that terms occurring in a premise do not lie
on a common path in ontology graph).

length(r)=
MaxGOterms

)NoGOterms(r (12)

where NoGOterms(r) is the number of GO terms in the r rule premise, MaxGOterms is the
maximal number of descriptors in the longest rule that describes the same gene group as the
rule r.
The last rule quality evaluation criterion is the level of GO terms occurring in the rule
premise (13). From a description point of view we should prefer rules with premises
including terms from as low level of the GO graph as possible.

depth(r)=

)NoGOterms(

1i

r)NoGOterms(

1

)(pathmax_

)level(

r

i

i
i

a

a
 (13)

where: level(ai) is the level of GO term ai that occurs in the rule premise, max_path(ai) is the
longest path leading form the root to leaf of GO-Inc that pass trough the node ai.

Ontological description of gene groups by the multi-attribute statistically significant logical rules 289

It can be easily noticed that the measure mWS differs from the measure applied in the
system YAILS (5) by a manner of calculation a value of the parameter w2. In the modification
presented in the formula (11) the rule coverage was used for establishing the value of the
parameter w2 unlike the rule accuracy used for the measure (5). The change is justified by
the fact that for general, inaccurate rules the modified version of WS (11) assumes less
values than original WS measure. Differences in rule evaluation between measures (5) and
(11) can be clearly seen by comparing graphs of the both measures (Fig. 4).

Fig. 4. Graphs of the standard and modified WS Yails measure

Another criterion of a rule quality evaluation is a number of GO terms included in a rule
premise (12). We assume that the bigger number of terms is in the rule premise, the more
information is represented by rule (we remind that terms occurring in a premise do not lie
on a common path in ontology graph).

length(r)=
MaxGOterms

)NoGOterms(r (12)

where NoGOterms(r) is the number of GO terms in the r rule premise, MaxGOterms is the
maximal number of descriptors in the longest rule that describes the same gene group as the
rule r.
The last rule quality evaluation criterion is the level of GO terms occurring in the rule
premise (13). From a description point of view we should prefer rules with premises
including terms from as low level of the GO graph as possible.

depth(r)=

)NoGOterms(

1i

r)NoGOterms(

1

)(pathmax_

)level(

r

i

i
i

a

a
 (13)

where: level(ai) is the level of GO term ai that occurs in the rule premise, max_path(ai) is the
longest path leading form the root to leaf of GO-Inc that pass trough the node ai.

Finally, a measure that incorporates all aspects of rule quality evaluation presented above, is
a product of all component measures (14):

Q(r)=mWS(r)×length(r)×depth(r) (14)

The measure Q is monotone with respect to each component of the product, i.e. when values
of any two factors are fixed, the measure value is non-decreasing function with respect to
the third factor. This feature fulfills assumptions of quality measures that were given by
Piatetsky-Shapiro (Piatetsky-Shapiro, 1991).
The compound quality measure Q allows creating a ranking of rules describing each gene
group. Below we present a filtration algorithm that uses obtained rules ranking:

Rules filtration algorithm
Input: G – a genes set, RULG a set of rules describing the gene group G.
Output: RULGF – filtered rule set covering the same objects from the set G as the set RULG.

Begin
 RULGF:=;
 Create a ranking RANK_RUL of rules from the set RULG according to decreasing value of
 an evaluation measure Q;
 While RANK_RUL or G= do
 Begin

 Take a first rule r from the set RANK_RUL;
 RANK_RUL:= RANK_RUL – {r};
 RULGF := RULGF {r};
 For all rrRANK_RUL do
 Begin
 If supp(rr)supp(r) then
 Begin
 If sim(rr,r) then RULGF:= RULGF{rr};
 RANK_RUL:=RANK_RUL-{rr}
 End if
 End for

Renumber the set RANK_RUL taking into account removed rules;
G:=G-supp(r);

 End while
End

The presented filtration algorithm creates a coverage of the set G (or part of the set G which
is covered by rules from the set RULG) beginning from the best rules with respect to the
value of measure Q. If the rule rr covers the same objects as currently the best rule r, but
contains other biological knowledge, then rule rr is not removed but remains in the result
set of rules. It is worth to notice that the filtration algorithm defined in such way does not
guarantee that filtered rule set RULGF includes only dissimilar rules containing different
biological knowledge. If we assume that there are three initial rules in the ranking r1,r2,r3
such as: supp(r3)supp(r1), supp(r2)supp(r1) and sim(r1,r3), sim(r1,r2), then the rules

Engineering the Computer Science and IT290

r2,r3 will be included in the result data set. Meanwhile, it may appear that sim(r2,r3)>
which means that rules r2,r3 include similar biological knowledge. However, the presented
filtration algorithm do not remove neither the rule r2 nor r3. Therefore, after the first part of
the filtration, the second part consist in verification of rules similarity in pairs. If rules are
similar, then a rule covering more objects always remains in the filtered rules set.
The similarity of rules is determined by the formula (15). If a rule is similar to the reference
rule to degree greater than 50% (=0.5), then it is finally removed from the set of determined
rules, otherwise it remains in an output rule set.

sim(ri, rj)=
)(NoGOterms)(NoGOterms
),(uGOterms),(uGOterms

ji

ijji

rr
rrrr

 (15)

where: uGOterms(ri,rj) is a number of unique GO terms occurring in the rule ri and not
occurring in the rule rj; the GO term a from the rule ri is unique if it does not occur directly
in the rule rj and there is no path in GO-Inc graph that includes both term a and any term b
from rule rj premise; NoGOterms(r) is the number of GO terms in the rule r premise.

4.5 Evaluation of significance of GO terms appearing in induced rules
Based on induced rule set we can also determine which of GO terms occurring in rule
premises are characterized by the highest significance. A statistical significance is not the
thing here but a significance (influence) of a given GO term for a quality of rule that include
this term. A problem of evaluation a significance of conditions appearing in rules premises
was considered in (Greco et al., 2007) where the authors applied indexes used in games
theory for evaluation a quality of coalition. In conducted researches, the Banzhaf index
(Banzhaf, 1965) and the modified version of the approach presented in (Greco et al., 2007)
were applied to evaluate a significance of GO terms occurring in rules premises.
Let be given a rule r of the form (2). A set of GO terms occurring in the rule premise we
denote by W, that is W={t1,t2,...,tn}. In the standard form presented in (Greco et al., 2007), the
Banzhaf measure that evaluates contribution of elementary condition (a single GO term ti
here) to the rule r accuracy is calculated according to the following formula (16):

B(ti, r)=

}{t-

1-),acc(-)},{acc(
iWY

in rYrtY
2
1 (16)

where acc(Y,r) denotes the accuracy of r in premise part of which only GO terms included in
the set Y occur; acc(,r)=0; acc(W,r)=acc(r).
To evaluate a quality (significance) of a GO term in whole set of rules that create a
description of analyzed gene group, it is necessary to compute its significance in each rule
from the description (in each rule that include a considered GO term) and verify whether,
by any chance, the GO term occurs also in rules from other gene groups descriptions. We
can represent above requirements as a formula which allows evaluating GO term
significance for the description of a given gene group (17):

Ontological description of gene groups by the multi-attribute statistically significant logical rules 291

r2,r3 will be included in the result data set. Meanwhile, it may appear that sim(r2,r3)>
which means that rules r2,r3 include similar biological knowledge. However, the presented
filtration algorithm do not remove neither the rule r2 nor r3. Therefore, after the first part of
the filtration, the second part consist in verification of rules similarity in pairs. If rules are
similar, then a rule covering more objects always remains in the filtered rules set.
The similarity of rules is determined by the formula (15). If a rule is similar to the reference
rule to degree greater than 50% (=0.5), then it is finally removed from the set of determined
rules, otherwise it remains in an output rule set.

sim(ri, rj)=
)(NoGOterms)(NoGOterms
),(uGOterms),(uGOterms

ji

ijji

rr
rrrr

 (15)

where: uGOterms(ri,rj) is a number of unique GO terms occurring in the rule ri and not
occurring in the rule rj; the GO term a from the rule ri is unique if it does not occur directly
in the rule rj and there is no path in GO-Inc graph that includes both term a and any term b
from rule rj premise; NoGOterms(r) is the number of GO terms in the rule r premise.

4.5 Evaluation of significance of GO terms appearing in induced rules
Based on induced rule set we can also determine which of GO terms occurring in rule
premises are characterized by the highest significance. A statistical significance is not the
thing here but a significance (influence) of a given GO term for a quality of rule that include
this term. A problem of evaluation a significance of conditions appearing in rules premises
was considered in (Greco et al., 2007) where the authors applied indexes used in games
theory for evaluation a quality of coalition. In conducted researches, the Banzhaf index
(Banzhaf, 1965) and the modified version of the approach presented in (Greco et al., 2007)
were applied to evaluate a significance of GO terms occurring in rules premises.
Let be given a rule r of the form (2). A set of GO terms occurring in the rule premise we
denote by W, that is W={t1,t2,...,tn}. In the standard form presented in (Greco et al., 2007), the
Banzhaf measure that evaluates contribution of elementary condition (a single GO term ti
here) to the rule r accuracy is calculated according to the following formula (16):

B(ti, r)=

}{t-

1-),acc(-)},{acc(
iWY

in rYrtY
2
1 (16)

where acc(Y,r) denotes the accuracy of r in premise part of which only GO terms included in
the set Y occur; acc(,r)=0; acc(W,r)=acc(r).
To evaluate a quality (significance) of a GO term in whole set of rules that create a
description of analyzed gene group, it is necessary to compute its significance in each rule
from the description (in each rule that include a considered GO term) and verify whether,
by any chance, the GO term occurs also in rules from other gene groups descriptions. We
can represent above requirements as a formula which allows evaluating GO term
significance for the description of a given gene group (17):

G(ti, RULG) =)cov(),()cov(),(rrtrrt
GRULr

iB
GRULr

iB

 (17)

where cov(r) is the coverage (4) of the rule r, and RULG is the set of rules that create the
description of the gene group G.
In described method of GO terms significance evaluation, contribution of each term to a rule
accuracy is evaluated, while its contribution to the rule coverage is not evaluated (the
coverage is considered for the whole rule only). For the purpose of a significance evaluation
of GO terms describing a gene group it would be better to evaluate contribution of analyzed
GO term to both accuracy and coverage. Such evaluation can be obtained by using mWS
measure in formula (11) instead of the accuracy. Using mWS measure in the formula allows
considering the contribution of the GO term to accuracy and coverage of all ‘subrules’ which
can be created from the rule r. Finally, to evaluate a significance of the GO terms occurring
in rule premises, a modified measure B was applied:

B(ti, r, mWS)=

}{t-

1-),mWS(-)},{mWS(
iWY

in rYrtY
2
1 (18)

where: mWS(Y,r) denotes a value of the mWS measure determined for the rule r, in premise
part of which only GO terms included in the Y occur; mWS(,r)=0; mWS(W,r)=mWS(r).
As a consequence of the introduced modification, the measure G that evaluates quality
(significance) of a GO term in whole set of rules describing analyzed gene group (19) was
also modified:

G(ti, RULG, mWS) =))(,,())(,,(

GRULr

iB
GRULr

iB rmWSrtrmWSrt (19)

Instead of mWS measure any rule quality evaluation measure can be substituted.
It is worth to mention that acc(Y, r) is monotonic measure which means that if YXW, then
acc(Y,r)acc(X,r). It can be easily proved that, at the worst case, adding next conjunction
may not improve the rule accuracy. Moreover, it is also easy to prove that mWS measure is
not monotonic, because removing the condition from the premise, though can decrease
accuracy of the rule, may also increase the rule coverage which can finally increase a value
of mWS measure. A consequence of the reasoning is the fact that a value of the measure (18)
may be negative (then (18) is the function but not the measure), while a value of the measure
(16) is always nonnegative. The negative value of (18) means that ‘subrules’ have, at the
average, better quality without the GO term ti than ‘subrules’ with the term, since in such
case the term ti should be considered as unimportant (causing noises). The presented
property of the measure (18) is consistent with the idea of significant descriptor, therefore
lack of monotonicity is not a problem in our case.

Engineering the Computer Science and IT292

5. Data analysis

5.1 Data description
Experiments were conducted on two freely available data sets: YEAST and HUMAN. The
data set YEAST contains values of expression levels of budding yeast Saccharomyces cerevisiae
measured in several DNA microarray experiments (Eisen et al., 1998). Our analysis were
performed on 274 genes from 10 top clusters presented in the paper (Eisen et al., 1998). The
data set HUMAN contains values of expression levels of human broblasts in response to
serum (Iyer et al., 1999). In the paper (Iyer et al., 1999), 517 EST sequences were reported and
divided into 10 clusters. After translation of the sequences for unique gene names and
removal sequences that are duplicated or that are currently considered to be invalid, we
obtained set of 368 genes. Then, each gene from YEAST and HUMAN data sets were
described by GO terms from biological process ontology (BP) and from all three types of
ontologies (ALL).
There were some genes in the HUMAN data set that had no GO terms assigned, thus we
removed them from further analysis. After that step we obtained set consisting of 319
objects for BP ontology and 364 for all three types of ontology. To induce decision rules we
created decision tables on the basis of the GO-Inc graphs for BP, CC and MF ontology. We
used GO terms from at least second ontology level and describing at least three (for
HUMAN data set, genes described by all three types of ontologies) or five genes from our
data sets (for other data sets).
After removing from gene description GO terms that did not fullled the above conditions
we finally obtained four decision tables. Number of genes and GO terms for each decision
table are presented in Table 2.

Decision table Number of genes Number of GO terms
YEAST BP 274 249
YEAST ALL 274 418
HUMAN BP 310 625
HUMAN ALL 364 588

Table 2. Number of genes and GO terms obtained for each decision table.

5.2 Results of analysis
For each decision table we computed decision rules using the following criteria for Explore
algorithm:

 statistical significance of the rules: 0.01,
 maximal number of descriptors in premise of the rule: 5.

The results of the analysis: number of the rules obtained (before and after filtration) and the
coverage for each gene group are presented in Table 3 (for YEAST data set) and in Table 4
(for HUMAN data set).

Ontological description of gene groups by the multi-attribute statistically significant logical rules 293

5. Data analysis

5.1 Data description
Experiments were conducted on two freely available data sets: YEAST and HUMAN. The
data set YEAST contains values of expression levels of budding yeast Saccharomyces cerevisiae
measured in several DNA microarray experiments (Eisen et al., 1998). Our analysis were
performed on 274 genes from 10 top clusters presented in the paper (Eisen et al., 1998). The
data set HUMAN contains values of expression levels of human broblasts in response to
serum (Iyer et al., 1999). In the paper (Iyer et al., 1999), 517 EST sequences were reported and
divided into 10 clusters. After translation of the sequences for unique gene names and
removal sequences that are duplicated or that are currently considered to be invalid, we
obtained set of 368 genes. Then, each gene from YEAST and HUMAN data sets were
described by GO terms from biological process ontology (BP) and from all three types of
ontologies (ALL).
There were some genes in the HUMAN data set that had no GO terms assigned, thus we
removed them from further analysis. After that step we obtained set consisting of 319
objects for BP ontology and 364 for all three types of ontology. To induce decision rules we
created decision tables on the basis of the GO-Inc graphs for BP, CC and MF ontology. We
used GO terms from at least second ontology level and describing at least three (for
HUMAN data set, genes described by all three types of ontologies) or five genes from our
data sets (for other data sets).
After removing from gene description GO terms that did not fullled the above conditions
we finally obtained four decision tables. Number of genes and GO terms for each decision
table are presented in Table 2.

Decision table Number of genes Number of GO terms
YEAST BP 274 249
YEAST ALL 274 418
HUMAN BP 310 625
HUMAN ALL 364 588

Table 2. Number of genes and GO terms obtained for each decision table.

5.2 Results of analysis
For each decision table we computed decision rules using the following criteria for Explore
algorithm:

 statistical significance of the rules: 0.01,
 maximal number of descriptors in premise of the rule: 5.

The results of the analysis: number of the rules obtained (before and after filtration) and the
coverage for each gene group are presented in Table 3 (for YEAST data set) and in Table 4
(for HUMAN data set).

Gene group Decision table Coverage No of rules before
filtration

No of rules after
filtration

1 BP
ALL

100%
100%

377
9625

6
25

2 BP
ALL

100%
100%

1447
50356

4
14

3 BP
ALL

93%
100%

4308
31708

12
20

4 BP
ALL

100%
100%

43083
254289

22
50

5 BP
ALL

41%
100%

307
13457

4
13

6 BP
ALL

93%
100%

20225
4982663

11
25

7 BP
ALL

100%
100%

6645
61361

12
18

8 BP
ALL

100%
100%

3842
76963

12
18

9 BP
ALL

100%
100%

54426
737049

12
31

10 BP
ALL

94%
94%

810
124486

8
19

Table 3. Number of decision rules and coverage obtained for YEAST data set.

Gene group Decision table Coverage No of rules before
filtration

No of rules after
filtration

1 BP
ALL

27%
58%

6
1547

6
23

2 BP
ALL

53%
67%

1204
16344

15
38

3 BP
ALL

44%
71%

5030
3639

11
20

4 BP
ALL

88%
91%

3937
87610

26
70

5 BP
ALL

80%
100%

7134
68714

8
23

6 BP
ALL

90%
62%

58263
84759

42
75

7 BP
ALL

46%
92%

11763
29954

8
27

8 BP
ALL

26%
37%

27
129

4
9

9 BP
ALL

43%
86%

147
3875

6
24

10 BP
ALL

81%
88%

16208
119917

31
48

Table 4. Number of decision rules and coverage obtained for HUMAN data set.

Engineering the Computer Science and IT294

5.3 Interpretation of the obtained decision rules
Decision rules are generated mainly for description purposes to support drawing biological
conclusions from the DNA microarray experiments. Thus, the real verification of the rule
quality is its ability to provide biological interpretation of the genes composing the analyzed
groups.
Below, we present two exemplary decision rules from YEAST and HUMAN data sets. We
also provide their short, biological interpretation.

IF generation of precursor metabolites and energy and

glucose metabolic process and
hexose catabolic process and

pyruvate metabolic process and
hexose biosynthetic process

THEN gene group 4
acc(r)=1.0,cov(r)=0.47, pVal=3.42e-11, FDR(r)= 1.79e-10

genes supporting the rule:

TPI1,GPM1,PGK1,TDH3,TDH2,ENO2,TDH1,FBA1

(20)

The above rule was generated from YEAST data set, for gene group number 4, which was
described as glycolisys in the original paper (Eisen et al., 1998). This rule is supported by 8
genes which encode proteins that are active in energy metabolism processes. The names of
some of these processes can be obtained directly from GO terms that compose a conditional
part of the rule. We also searched trough available internet databases of publications in
order to find papers that include information about all of the genes supporting the rule. One
of the results of our analysis is a paper (Bruckman et al., 2007) where all genes supporting
the rule are mentioned and described as the genes encoding proteins active in the
glucogenesis process which is part of the glycolisys.
Another exemplary interpretation of decision rule is presented for the rule from HUMAN
data set and was generated for gene group number 6.

IF protein binding and
system development and

cell proliferation and
extracellular space and

transmembrane receptor protein tyrosine kinase signaling pathway
THEN gene group 6

acc(r)=1.0,cov(r)=0.16, pVal=0.3.3e-04, FDR(r)= 0.13

genes supporting the rule:
FGF2,FLT1,VEGFA

(21)

The above rule is supported by three genes which encode proteins involved in the process of
angiogenesis. VEGFA is one of the most important proteins from the VEGF (vascular
endothelial growth factor) sub-family of growth factors. VEGFA stimulate cellular responses
by binding to tyrosine kinase receptors Flt-1 and KDF/Flk-1. A VEGFA and fibroblast
growth factor 2 (FGF2), both are well-investigated pro-angiogenic molecules (Kano et al.,

Ontological description of gene groups by the multi-attribute statistically significant logical rules 295

5.3 Interpretation of the obtained decision rules
Decision rules are generated mainly for description purposes to support drawing biological
conclusions from the DNA microarray experiments. Thus, the real verification of the rule
quality is its ability to provide biological interpretation of the genes composing the analyzed
groups.
Below, we present two exemplary decision rules from YEAST and HUMAN data sets. We
also provide their short, biological interpretation.

IF generation of precursor metabolites and energy and

glucose metabolic process and
hexose catabolic process and

pyruvate metabolic process and
hexose biosynthetic process

THEN gene group 4
acc(r)=1.0,cov(r)=0.47, pVal=3.42e-11, FDR(r)= 1.79e-10

genes supporting the rule:

TPI1,GPM1,PGK1,TDH3,TDH2,ENO2,TDH1,FBA1

(20)

The above rule was generated from YEAST data set, for gene group number 4, which was
described as glycolisys in the original paper (Eisen et al., 1998). This rule is supported by 8
genes which encode proteins that are active in energy metabolism processes. The names of
some of these processes can be obtained directly from GO terms that compose a conditional
part of the rule. We also searched trough available internet databases of publications in
order to find papers that include information about all of the genes supporting the rule. One
of the results of our analysis is a paper (Bruckman et al., 2007) where all genes supporting
the rule are mentioned and described as the genes encoding proteins active in the
glucogenesis process which is part of the glycolisys.
Another exemplary interpretation of decision rule is presented for the rule from HUMAN
data set and was generated for gene group number 6.

IF protein binding and
system development and

cell proliferation and
extracellular space and

transmembrane receptor protein tyrosine kinase signaling pathway
THEN gene group 6

acc(r)=1.0,cov(r)=0.16, pVal=0.3.3e-04, FDR(r)= 0.13

genes supporting the rule:
FGF2,FLT1,VEGFA

(21)

The above rule is supported by three genes which encode proteins involved in the process of
angiogenesis. VEGFA is one of the most important proteins from the VEGF (vascular
endothelial growth factor) sub-family of growth factors. VEGFA stimulate cellular responses
by binding to tyrosine kinase receptors Flt-1 and KDF/Flk-1. A VEGFA and fibroblast
growth factor 2 (FGF2), both are well-investigated pro-angiogenic molecules (Kano et al.,

2005). There are evidences that VEGFA regulates expression of FLT1 (Mata-Greenwood et
al., 2003) and FGF2 (Seghezzi et al., 1998).

5.4 Comparison of our method with results from Genecodis tool
We also compared results from our analysis with the results obtained from Genecodis – an
Internet service for discovering co-occurrences of the annotations in the analyzed group of
genes. The rule generation method provided by the authors of Genecodis is based on the
Apriori algorithm for discovering frequent itemsets of attributes that describe analyzed set
of objects. To generate the rules we used the following values of algorithm parameters:

 GO level: lowest level,
 Minimum number of genes: 2.

The results of a comparison: number of the rules and coverage are presented in Table 5.
Both methods, Genecodis and Explore, are based on the similar idea of searching for
frequent co-occurrences of combinations of annotations, however the process of selection of
attributes differs significantly in both methods. Genecodis algorithm do not perform any
initial selection of the attributes that are added to the premise of created rule – it simply
generates all possible combinations of GO terms. As a result of such approach one may
obtain the rules that include redundant information in their premises, i.e. GO terms that are
in relation ≤ with other GO terms composing the rule. With the Explore method, rules
obtained include smaller number of GO terms, but each of the term describe different
biological process.
Below we present an exemplary list of descriptors form the rule obtained from the
Genecodis. This rule was generated for the objects form gene group number 6, from YEAST
data set for GO terms from BP ontology:

IF transport and

ion transport and
ATP synthesis coupled proton transport and

proton transport and
ATP metabolic process and

ATP biosynthetic process and
THEN gene group 6

(22)

The analysis of the structure of GO graph for BP ontology, revealed that there are following
relations among GO terms composing the above rule:
ATP synthesis coupled proton transport ≤ proton transport ≤ ion transport ≤ transport,
and
ATP synthesis coupled proton transport ≤ ATP biosynthetic process ≤ ATP metabolic process.

Engineering the Computer Science and IT296

Gene group Method of analysis Coverage Number of rules

1

Genecodis BP
Explore BP

45%
100%

4
6

Genecodis ALL
Explore ALL

45%
100%

2
25

2

Genecodis BP
Explore BP

100%
100%

6
4

Genecodis ALL
Explore ALL

100%
100%

37
14

3

Genecodis BP
Explore BP

0%
93%

0
12

Genecodis ALL
Explore ALL

57%
100%

5
20

4

Genecodis BP
Explore BP

88%
100%

23
22

Genecodis ALL
Explore ALL

100%
100%

115
50

5

Genecodis BP
Explore BP

0%
41%

0
4

Genecodis ALL
Explore ALL

63%
100%

10
13

6

Genecodis BP
Explore BP

60%
93%

3
11

Genecodis ALL
Explore ALL

93%
100%

23
25

7

Genecodis BP
Explore BP

100%
100%

5
12

Genecodis ALL
Explore ALL

100%
100%

5
18

8

Genecodis BP
Explore BP

25%
100%

2
12

Genecodis ALL
Explore ALL

92%
100%

41
18

9

Genecodis BP
Explore BP

80%
100%

4
12

Genecodis ALL
Explore ALL

100%
100%

8
31

10

Genecodis BP
Explore BP

75%
94%

12
8

Genecodis ALL
Explore ALL

81%
94%

52
19

Table 5. Comparison of the rules obtained from Genecodis and Explore

Ontological description of gene groups by the multi-attribute statistically significant logical rules 297

Gene group Method of analysis Coverage Number of rules

1

Genecodis BP
Explore BP

45%
100%

4
6

Genecodis ALL
Explore ALL

45%
100%

2
25

2

Genecodis BP
Explore BP

100%
100%

6
4

Genecodis ALL
Explore ALL

100%
100%

37
14

3

Genecodis BP
Explore BP

0%
93%

0
12

Genecodis ALL
Explore ALL

57%
100%

5
20

4

Genecodis BP
Explore BP

88%
100%

23
22

Genecodis ALL
Explore ALL

100%
100%

115
50

5

Genecodis BP
Explore BP

0%
41%

0
4

Genecodis ALL
Explore ALL

63%
100%

10
13

6

Genecodis BP
Explore BP

60%
93%

3
11

Genecodis ALL
Explore ALL

93%
100%

23
25

7

Genecodis BP
Explore BP

100%
100%

5
12

Genecodis ALL
Explore ALL

100%
100%

5
18

8

Genecodis BP
Explore BP

25%
100%

2
12

Genecodis ALL
Explore ALL

92%
100%

41
18

9

Genecodis BP
Explore BP

80%
100%

4
12

Genecodis ALL
Explore ALL

100%
100%

8
31

10

Genecodis BP
Explore BP

75%
94%

12
8

Genecodis ALL
Explore ALL

81%
94%

52
19

Table 5. Comparison of the rules obtained from Genecodis and Explore

5.5 Significance of descriptors
The evaluation of rule descriptors significance was performed after filtration. Numbers of
the rules and descriptors obtained for each gene group are presented in Table 6.

Gene
group

Yeast Human

Rules terms GO Rules terms GO

1 6 17 6 11
2 4 12 15 20
3 12 25 11 21
4 22 31 26 40
5 4 7 8 18
6 11 11 42 63
7 12 19 8 18
8 12 22 4 8
9 12 17 6 19
10 8 12 31 56

Table 6. Number of the rules and descriptors obtained for descriptions of each gene group

Detailed results for each gene group are presented in Table 7 and Table 8, and the names of
the most important and the least important GO term describing the considered group are
given. Values of the significance coefficient defined by the formula (19) are also given. A
ranking of the considered GO term specified by the standard method defined by formulas
(16), (17) is presented in the column Std. ranking. Moreover, a number of descriptors
describing each group are given additionally for the worst term.
As it can be noticed, there are some differences between rankings created by the standard
and modified methods. We will not provide more detailed analysis of the differences as is
not in the field of this paper.
The analysis of obtained results shows that establishing a ranking of GO terms that describe
a given gene group provides additional knowledge about the group. Analysis of the rules
and the results presented in Tables 7 and 8 leads to the conclusion that the best GO terms
describing a given gene group usually occur in the best rules describing the group and do
not occur in rules describing other groups (even if they occur, then they are recognized as
the worst or almost the worst terms and are placed at the bottom of the other group
rankings). The least significant terms usually have negative values of the coefficient (19) and
are considered as the worst terms in two or more gene groups in an analyzed data set. This
result is consistent with intuition and can be justified by the fact that such terms introduce a
noise into gene groups description. Thus, application to the analysis some methods of
postprocessing, such as rule shortening, may significantly improve the quality of obtained
description. There is also interesting to verify the similarity of the groups (or at least part of
genes belonging to these groups) which are described by the same, the least significant, GO
terms.

Engineering the Computer Science and IT298

Gene
group

The best GO terms
name (significance)

Std.
ranking

The worst GO term
name (significance)

Std.
ranking

1 protein ubiquitination (0.78) 4 cellular macromolecule metabolic
process (-0.49) worst

2 reproductive process in
single-celled organism (0.31) 5 cellular catabolic process

(-0.56) 9/12

3
RNA splicing, via

transesterification reactions
(0.98)

2
biopolymer biosynthetic process (-1.01)

15/25

4 pyruvate metabolic process
(1.53) best gene expression (-0.92) worst

5 cellular respiration (1.46) best biopolymer biosynthetic process (-0.80) 4/7

6
purine nucleoside

triphosphate biosynth.
process (1.30)

best
oxidation reduction

(-0.48) worst

7

negative regulation of
nucleobase, nucleoside,

nucleotide and nucleic acid
metabolic process (1.63)

4

regulation of macromolecule
biosynthetic process (-1.04) 18/19

8 ribosomal small subunit
biogenesis (0.98) 8 biopolymer biosynthetic process (-0.64) worst

9 S phase (2.13) best biopolymer metabolic process (-0.53) worst

10
respiratory electron

transport chain (0.90) best
generation of precursor metabolites and

energy
(-0.17)

11/12

Table 7. Results of evaluation of GO term significance for YEAST dataset

Gene
group

The best GO terms
name (significance)

Std.
ranking

The worst GO term
name (significance)

Std.
ranking

1 cognition (0.93) best biopolymer metabolic process (-0.88) worst

2 RNA biosynthetic process
(0.76) 2 regulation of cellular process (-0.54) 18/20

3 innate immune response
(0.59) 2 cellular alcohol metabolic process

(-0.90) worst

4 cell cycle checkpoint (1.64) 3 biopolymer metabolic process (-0.97) 39/40

5 cellular alcohol metabolic
process (0.90) best regulation of cellular process (-1.19) 17/18

6 leukocyte migration (2.80) best response to stress (-0.93) 62/63

7 androgen receptor signaling
pathway (1.85) best response to biotic

stimulus (-0.49) 10/18

8 blood circulation (0.58) best regulation of cellular process (-1.10) worst

9 lipid biosynthetic process
(0.56) best regulation of cellular process (-1.29) worst

10 skeletal system development
(1.65) best regulation of cellular process (-1.19) worst

Table 8. Results of evaluation of GO term significance for HUMAN dataset

Ontological description of gene groups by the multi-attribute statistically significant logical rules 299

Gene
group

The best GO terms
name (significance)

Std.
ranking

The worst GO term
name (significance)

Std.
ranking

1 protein ubiquitination (0.78) 4 cellular macromolecule metabolic
process (-0.49) worst

2 reproductive process in
single-celled organism (0.31) 5 cellular catabolic process

(-0.56) 9/12

3
RNA splicing, via

transesterification reactions
(0.98)

2
biopolymer biosynthetic process (-1.01)

15/25

4 pyruvate metabolic process
(1.53) best gene expression (-0.92) worst

5 cellular respiration (1.46) best biopolymer biosynthetic process (-0.80) 4/7

6
purine nucleoside

triphosphate biosynth.
process (1.30)

best
oxidation reduction

(-0.48) worst

7

negative regulation of
nucleobase, nucleoside,

nucleotide and nucleic acid
metabolic process (1.63)

4

regulation of macromolecule
biosynthetic process (-1.04) 18/19

8 ribosomal small subunit
biogenesis (0.98) 8 biopolymer biosynthetic process (-0.64) worst

9 S phase (2.13) best biopolymer metabolic process (-0.53) worst

10
respiratory electron

transport chain (0.90) best
generation of precursor metabolites and

energy
(-0.17)

11/12

Table 7. Results of evaluation of GO term significance for YEAST dataset

Gene
group

The best GO terms
name (significance)

Std.
ranking

The worst GO term
name (significance)

Std.
ranking

1 cognition (0.93) best biopolymer metabolic process (-0.88) worst

2 RNA biosynthetic process
(0.76) 2 regulation of cellular process (-0.54) 18/20

3 innate immune response
(0.59) 2 cellular alcohol metabolic process

(-0.90) worst

4 cell cycle checkpoint (1.64) 3 biopolymer metabolic process (-0.97) 39/40

5 cellular alcohol metabolic
process (0.90) best regulation of cellular process (-1.19) 17/18

6 leukocyte migration (2.80) best response to stress (-0.93) 62/63

7 androgen receptor signaling
pathway (1.85) best response to biotic

stimulus (-0.49) 10/18

8 blood circulation (0.58) best regulation of cellular process (-1.10) worst

9 lipid biosynthetic process
(0.56) best regulation of cellular process (-1.29) worst

10 skeletal system development
(1.65) best regulation of cellular process (-1.19) worst

Table 8. Results of evaluation of GO term significance for HUMAN dataset

6. Conclusions

Issues of gene groups description by means of GO terms were presented in the paper.
Logical rules were used as a language of the description. Work connected with gene groups
description by means of rules with various representations were presented. A novel method
of induction, evaluation and filtration of logical rules describing gene groups was shown in
the fundamental part of the paper. A method of significance evaluation of a single GO term
occurring in the premises of the rules determined was also introduced. The presented
method of rules induction, evaluation and filtration appeared to be very effective. After
filtration we obtained small rule sets having average statistical significance better than for
the unfiltered rule set.
The presented method of rules induction guarantees that all statistically significant rules are
determined. Features that distinguish the proposed approach from other methods are: the
way of evaluation and filtration of the rules and the fact that terms lying on the same path in
Gene Ontology graph do not occur in the rule premises simultaneously (like, for example, in
Genecodis system). Both, objective factors (accuracy and coverage) and subjective factors
that express what is interesting for a user (premises composed of many GO terms assigned
to the lowest possible level in the ontology graph) are involved in a rule evaluation.
Additionally, the filtration allows the user to extract the most interesting information that
can be derived from the huge number of rules.
The algorithms presented may be a useful tool that helps biologists to understand and
interpret the DNA microarray experiment results. Results of the experiments presented
show that the proposed method of rules induction and postprocessing is useful. In
particular, the method enables to discover automatically the dependences which were found
during the researches published by biologists (Bruckman et al., 2007; Mata-Greenwood et
al., 2003, Kano et al., 2005; Seghezzi et al., 1998)
The algorithms described in the paper are available for the users through RuleGO Internet
service (http://rulego.polsl.pl) (Gruca et al., 2009). The service is continuously and
intensively developed. In particular, research on developing algorithms that enable rules
induction in much faster way are conducted. Explore algorithm allows obtaining all
statistically significant rules but, depending on the data set, calculation time may vary from
several minutes to several hours, even after introducing modifications described above.
Long calculation time should be regarded as the disadvantage of the presented method,
thus users submitting the computational task to RuleGO service are notified by an email
when their calculations are finished.
Future research will concentrate on determining the rules including descriptors referencing
GO terms which does not describe the analyzed genes. In such case we will be interested in
occurrence of this type of descriptors on the highest possible level of the ontology. The
appropriately modified version of heuristics rules induction algorithm LEM (Grzymała-
Busse & Ziarko, 2003) will be implemented in order to improve the algorithm performance.

Engineering the Computer Science and IT300

7. References

Agrawal, R. & Srikant, R. (1994). Fast Algorithms for Mining Association Rules. Proc. of the
20th VLDB Conference, Santiago, Chile.

Al-Shahrour, F.; Minguez, P.; Vaquerizas, J.M.; Conde, L. & Dopazo, J. (2005).
BABELOMICS: A Suite of Web Tools for Functional Annotation and Analysis of
Groups of Genes in High-Throughput Experiments. Nucleic Acid Research, 33,
W460–W464.

An, A. & Cercone, N. (2001). Rule quality measures for rule induction systems: Description
and evaluation. Computational Intelligence, 17(3).

Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M. et al. (2005). Gene
Ontology: Tool for the Unification of Biology. The Gene Ontology Consortium.
Nature genetics, 25, 25–9.

Baldi, P. & Hatfield G.W. (2002). DNA Microarrays and Gene Expression. Cambridge
University Press, Cambridge.

Banzhaf, J. F. (1965). Weighted voting doesn`t work : A mathematical analysis. Rutgers Law
Review 19, 317-343.

Benjamini, Y. & Hochberg, T. (1995). Controlling the false discovery rate : a practical and
powerful approach to multiple testing. J. Roy. Statist. Soc. Ser. B, 59, 289-300.

Brown, M.P.S.; Grundy, W.N.; Lin, D.; Cristianini, N.; Sugnet, C.W.; Furey, T.S.; Ares, M. &
Haussler, D. (2000). Knowledge-based analysis of microarray gene expression data
by using support vector machines. Proc. Natl. Acad. Sci. USA, 97, 262-267.

Bruckmann, A. ; Hensbergen, P.J. ; Balog, C.I. ; Deelder, A.M. ; de Steensma, H.Y. & van
Heusden G.P. (2007). Post-transcriptional control of the saccharomyces cerevisiae
proteome by 14-3-3 proteins. J. Proteome Res. 6, 1689–1699.

Bruha, I. (1997). Quality of Decision Rules: Definitions and Classification Schemes for
Multiple Rules. In Machine Learning and Statistics, Nakhaeizadeh G., Taylor C. C.
(ed.), John Wiley and Sons.

Carmona-Sayez, P.; Chagoyen, M.; Rodriguez, A.; Trelles, O.; Carazo, J.M. & Pascual-
Montano, A. (2006). Integrated analysis of gene expression by association rules
discovery. BMC Bioinformatics, 7.

Carmona-Saez, P.; Chagoyen, M.; Tirado, F.; Carazo, J.M. & Pascual-Montano, A. (2007).
Genecodis: a web based tool for finding significant concurrent annotations in gene
list. Genome Biology, 8.

Cline, M.S.; Smoot M.; Cerami E. et al. (2007). Integration of biological networks and gene
expression data using Cytoscape, Nat. Protoc., 2, 1, 2366-82.

Dudoit, S.; Shafer, J.P. & Boldrick, J. (2003). Multiple hypothesis testing in microarray
experiments. Statistical Science, 18, 71–103.

Eisen, M.B.; Spellman, P.T.; Brown, P.O. & Botstein D. (1998). Cluster analysis and display of
genome-wide expression patterns. Proc. Natl. Acad. Sci. USA., 95, 14863–14868.

Furnkranz, J. & Flach, P.A. (2005). ROC ‘n’ Rule Learning – Towards a Better Understanding
of Covering Algorithms. Machine Learning 58, 39-77.

Greco, S.; Słowiński, R. & Stefanowski, J. (2007). Evaluating importance of conditions in the
set of discovered rules. (RSFDGrC 2007) Lecture Notes in Artificial Intelligence 4482,
314-321.

Gruca, A. (2008). Analysis of GO composition of gene clusters by using multiattribute
decision rules. Biocybernetics and Biomedical Engineering, 28, 4, 21-31.

Ontological description of gene groups by the multi-attribute statistically significant logical rules 301

7. References

Agrawal, R. & Srikant, R. (1994). Fast Algorithms for Mining Association Rules. Proc. of the
20th VLDB Conference, Santiago, Chile.

Al-Shahrour, F.; Minguez, P.; Vaquerizas, J.M.; Conde, L. & Dopazo, J. (2005).
BABELOMICS: A Suite of Web Tools for Functional Annotation and Analysis of
Groups of Genes in High-Throughput Experiments. Nucleic Acid Research, 33,
W460–W464.

An, A. & Cercone, N. (2001). Rule quality measures for rule induction systems: Description
and evaluation. Computational Intelligence, 17(3).

Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M. et al. (2005). Gene
Ontology: Tool for the Unification of Biology. The Gene Ontology Consortium.
Nature genetics, 25, 25–9.

Baldi, P. & Hatfield G.W. (2002). DNA Microarrays and Gene Expression. Cambridge
University Press, Cambridge.

Banzhaf, J. F. (1965). Weighted voting doesn`t work : A mathematical analysis. Rutgers Law
Review 19, 317-343.

Benjamini, Y. & Hochberg, T. (1995). Controlling the false discovery rate : a practical and
powerful approach to multiple testing. J. Roy. Statist. Soc. Ser. B, 59, 289-300.

Brown, M.P.S.; Grundy, W.N.; Lin, D.; Cristianini, N.; Sugnet, C.W.; Furey, T.S.; Ares, M. &
Haussler, D. (2000). Knowledge-based analysis of microarray gene expression data
by using support vector machines. Proc. Natl. Acad. Sci. USA, 97, 262-267.

Bruckmann, A. ; Hensbergen, P.J. ; Balog, C.I. ; Deelder, A.M. ; de Steensma, H.Y. & van
Heusden G.P. (2007). Post-transcriptional control of the saccharomyces cerevisiae
proteome by 14-3-3 proteins. J. Proteome Res. 6, 1689–1699.

Bruha, I. (1997). Quality of Decision Rules: Definitions and Classification Schemes for
Multiple Rules. In Machine Learning and Statistics, Nakhaeizadeh G., Taylor C. C.
(ed.), John Wiley and Sons.

Carmona-Sayez, P.; Chagoyen, M.; Rodriguez, A.; Trelles, O.; Carazo, J.M. & Pascual-
Montano, A. (2006). Integrated analysis of gene expression by association rules
discovery. BMC Bioinformatics, 7.

Carmona-Saez, P.; Chagoyen, M.; Tirado, F.; Carazo, J.M. & Pascual-Montano, A. (2007).
Genecodis: a web based tool for finding significant concurrent annotations in gene
list. Genome Biology, 8.

Cline, M.S.; Smoot M.; Cerami E. et al. (2007). Integration of biological networks and gene
expression data using Cytoscape, Nat. Protoc., 2, 1, 2366-82.

Dudoit, S.; Shafer, J.P. & Boldrick, J. (2003). Multiple hypothesis testing in microarray
experiments. Statistical Science, 18, 71–103.

Eisen, M.B.; Spellman, P.T.; Brown, P.O. & Botstein D. (1998). Cluster analysis and display of
genome-wide expression patterns. Proc. Natl. Acad. Sci. USA., 95, 14863–14868.

Furnkranz, J. & Flach, P.A. (2005). ROC ‘n’ Rule Learning – Towards a Better Understanding
of Covering Algorithms. Machine Learning 58, 39-77.

Greco, S.; Słowiński, R. & Stefanowski, J. (2007). Evaluating importance of conditions in the
set of discovered rules. (RSFDGrC 2007) Lecture Notes in Artificial Intelligence 4482,
314-321.

Gruca, A. (2008). Analysis of GO composition of gene clusters by using multiattribute
decision rules. Biocybernetics and Biomedical Engineering, 28, 4, 21-31.

Gruca, A.; Sikora, M.; Chrost L. & Polanski A. (2009). RULEGO. Bioinformatical Internet
Service – System Architecture. Proc. of the 16th Conference CN'09. Communications
in Computer and Information Science, Wisla, Poland

Grzymała-Busse, J.W. & Ziarko, W. (2003). Data mining based on rough sets. In: Wang J.
(eds.) Data Mining Opportunities and Challenges. IGI Publishing, Hershey, USA, 142-
173.

Hackenberg, M. & Matthiesen, R. (2008). Annotation-modules: a tool for finding significant
combinations of mulitsource annotations of gene lists. Bioinformatics, 24.

Hvidstein, T. R.; Legreid, A. & Komorowski, J. (2003). Learning rule-based models of
biological process form gene ontology expression time profiles using Gene
Ontology. Bioinformatics, 19, 9, 1116-1123.

Iyer, V.R.; Eisen, M.B.; Ross, D.T.; Schuler, Moore, G. T.; Lee, J.C.; Trent, J.M.; Staudt, L.M.;
Hudson, J.; Boguski, M.S.; Lashkari, D.; Shalon, D.; Botstein, D. & Brown, P.O.
(1999). The transcriptional program in the response of human broblasts to serum.
Science, 283, 83–87.

Kano, M.R. ; Morishita, Y. ; Iwata, C. ; Iwasaka, S. ; Watabe, T. ; Ouchi, Y. ; Miyazono, K. &
Miyazawa, K. (2005). Vegf-a and fgf-2 synergistically promote neoangiogenesis
through enhancement of endogenous pdgf-b-pdgfrbeta signaling. J. Cell Sci., 118,
3759–3768, 2005.

Khatri, P. & Draghici, S. (2005). Ontological analysis of gene expression data: current tools,
limitations and open problems. Bioinformatics 21, 3587-3595.

Klemettinen, M. ; Mannila, H. ; Ronkainen, P. ; Toivonen, H. & Inkeri-Verkamo, A. (1994).
Finding interesting rules form large sets of discovered association rules. In The third
international conference on information and knowledge management. 29.11-02.12.1994,
Gaithersburg, Maryland, USA.

Kustra, R. & Zagdański, A. (2006). Incorporating Gene Ontology in Clustering Gene
Expression Data. In Proc. of the 19th IEEE Symposium on Computer-Based Medical
Systems (CBMS'06).

Maere S.; Heymans, K. & Kuiper, M. (2005). BiNGO: a Cytoscape plugin to assess
overrepresentation of Gene Ontology categories in biological networks.
Bioinformatics, 21, 3448-3449.

Mata-Greenwood, E.; Meyrick, B.; Soifer, S.J.; Fineman, J.R. & Black, S.M. (2003). Expression
of vegf and its receptors t-1 and k-1/kdr is altered in lambs with increased
pulmonary blood ow and pulmonary hypertension. Am. J. Physiol. Lung Cell Mol.
Physiol., 285, L222–L231.

Michalski, R. S. (1983) A Theory and Methodology of Inductive Learning, In: Machine
Learnig: An Articial Intelligence Approach, 83–129, Tioga, Palo Alto, Calif.

Michalski, R. S. ; Bratko, I. & Kubar, M. (1998). Machine learning and data mining. John
Wiley and Sons.

Midelfart H. (2005a). Supervised Learning in Gene Ontology Part I: A Rough Set
Framework. Transaction on Rough Sets IV LNCS, 3700, 69-97.

Midelfart H. (2005b). Supervised Learning in Gene Ontology Part II: A Bottom-Up
Algorithm. Transaction on Rough Sets IV LNCS, 3700, 98-124.

Mitchell, T. (1997). Machine learning. McGraw Hill.
Øhrn, A.; Komorowski, J.; Skowron, A. & Synak, P. (1998). The ROSETTA software system.

In Rough Sets in Knowledge Discovery 1: Methodology and Applications, Polkowski, L.
& Skowron, A. (Ed,), 572–576. Physica-Verlag, Heidelberg, Germany.

Engineering the Computer Science and IT302

Pawlak, Z. (1991). Theoretical aspects of reasoning about data. Kluwer Academic Publisher,
Dordrecht.

Piatetsky-Shapiro, G. (1991). Discovery, analysis and presentation of strong rules. Knowledge
Discovery in Databases, 229-248, Melno Park, CA:AAAI Press.

Rice, J.A. (1995). Mathematical Statistics and Data Analysis. Duxbury Press, Belmont, ed. 2
Seghezzi, G.; Patel, S.; Ren, C.J.; Gualandris, A.; Pintucci, G.; Robbins, E.S.; Shapiro, R.L.;

Galloway, A.C. ; Rifkin, D.B. & Mignatti, P. (1998). Fibroblast growth factor-2 (fgf-2)
induces vascular endothelial growth factor (vegf) expression in the endothelial cells
of forming capillaries: an autocrine mechanism contributing to angiogenesis. J. Cell
Biol., 141, 1659–1673.

Sikora, M. (2006). Rule quality measures in creation and reduction of data rule models.
Lecture Notes in Articial Intelligence, 4259, 716–725.

Sikora, M. (2009). Decision rules-based data models using TRS and NetTRS – methods and
algorithms. Transaction on Rough Sets, LNCS, Springer (in press).

Stefanowski, J. & Vanderpooten, D. (2001). Induction of Decision Rules in Classification and
Discovery-Oriented Perspectives. Internatinal Journal of Intelligent Systems, 16, 13-27.

Mathematical modeling of the Internet survey 303

Mathematical modeling of the Internet survey

Getka-Wilczyńska Elżbieta

X

Mathematical modeling of the Internet survey

Getka-Wilczyńska Elżbieta
Warsaw School of Economics

Poland

1. Introduction

Recently statistical research as for as sampling selection can be divided into representative
surveys based on the probability sample and surveys based on the non-probability sample,
e.g. the Internet surveys. After choosing the kind of the sample selection next stage of the
survey is data gathering. In all surveys, the data is collected using an immediate interview, a
telephone interview or a post and in recent years an interview over the Internet (Internet,
2001, Dillman, 2000).
Surveys over the Internet (Internet mediated research: online surveys, Internet surveys, Web
surveys (Vehovar, 2007)) are in a process of intensive development and key of characteristic
of it is their diversity. Collecting data through the Internet surveys is useful either for mar-
keting and other private research societies either statistical agencies. The first graphic
browser (NCSA Mosaic) was released in 1992, with Netscape Navigator following in 1994
and Internet explore in 1995. The first publishes papers on Web surveys appeared in 1996.
Since then, there has been a virtual increasing tendency of interest in the Internet generally,
and World Wide Web specifically, as a tool of data collection (www.WebSM.org). A special
portal WebSM – Web survey methodology web site is a website dedicated to the methodol-
ogy of Web surveys. It supported by EU since 2002 and it includes bibliography lists and
software database.
Generally, difference between these researches rely on following aspects. In representative
surveys based on the probability sample the frame of sampling is known, respondents are
drawn to the sample by a statistician in accordance with sampling design (sampling scheme)
and the methods of theory sampling are applied to data analysis (Bracha, 1996; Kordos,
1982; Tille, 2006; Särndal et al., 1992; Steczkowski, 1988; Wywiał, 1992). If in these surveys an
electronic questionnaire is used, it is only one of modes of data collection and then the cor-
rect use of this data collection tool requires the suitable survey methodology (Biffignandi &
Pratesi, 2000).
The Internet survey has several advantages, such as low costs of collecting information, the
speed of the data transmission and a possibility to monitor it. Moreover, the computerized
nature of Web surveys facilitates conducting experiments. The usage of the electronic ques-
tionnaire in the Internet survey makes the interview more efficient, lowers the workload of
the respondents and controls the responds’ quality.
But the basic problem in the surveys over the Internet is concerned with collecting data sets
according to classical methods of the sampling theory. In the Internet surveys drawing the

16

Engineering the Computer Science and IT304

sample is not possible and respondents are not randomly selected to the sample, but they
participate in the survey with a subjective decision and they form an uncontrolled sample
(the Internet sample). The methods of the sampling theory can not be used immediately for
the data from such the sample because the probability inclusions are not known and statis-
tics are calculated usually on the basis Internet data refer usually to the population surveyed
(Getka-Wilczyńska, 2003). In theory and practice of Internet survey two approaches to deal-
ing with this problem are identified (Couper & Miller, 2008). The first - the design based ap-
proach, attempts to build probability – based Internet panels by using other methods for
sampling and recruitment and – if it is necessary- providing Internet access to those without.
This approach is applied e.g. by Knowledge Networks in the USA and CentERdata’s MESS
panel in the Netherlands. The second – the model based approach begins with a volunteer
or opt - in panel of Internet users, and attempts to correct for representation biases using e.g.
propensity score adjustment (Lee, 2006) or some other weighting method for assessing Web
panel quality (Callegaro & Disogra, 2008, Toeppoel et.al., 2008). In both approaches usually
are used methodology of sampling theory to data analysis. Other an interesting proposition
is an application of a dynamic theory of decision making and the decision field theory to
theoretical explanation of survey behavior (Galesic, 2006).
In this study are proposed certain conceptions of modelling of the Internet survey as a ran-
dom experiment or a life testing experiment by using notions and methods of the stochastic
processes and the reliability theory (Kingman, 2002; Kopociński, 1973; Barlow & Proschan,
1965 (1996), 1975; Sołowiew, 1983). Generally this approach is presented in following way.
At the first, the process of the Internet data collection is considered as a process of register-
ing questionnaires on the server at fixed interval of the time, the time of the survey con-
ducted. An events appear in the Internet survey are interpreted as the moment of an arrival,
a birth, a death of the population elements or a waiting time for these events. In this case the
random size of the uncontrolled sample (Internet sample, a random set of the moments in
which questionnaires - from respondents who participate in the Internet survey - are rec-
orded on the server) is defined as a counting process by using Poisson processes (Getka-
Wilczyńska, 2004 (in Polish), 2005, 2008).
At the second, the Internet survey is considered as a life test of the population surveyed by
using the notions and methods of the reliability theory, (Getka-Wilczyńska, 2007). In this
case the events which appear in the Internet survey are interpreted as the moment of failure,
renew or functioning time of the population elements, when the population is treated as a
coherent system of finite number of elements or as the lifetime of the population elements,
when the length of the population lifetime is considered. The length of the population life-
time is defined by using the structure function of the population and the reliability function
of the length of the population lifetime is defined for the series, parallel and partial structure
of the population. Then the basic characteristics of the reliability function are described, cal-
culated and estimated by using path and cut method (Barlow & Proschan, 1965).
More interesting is the life testing experiment, if different models of elements’ dependence
are considered, e.g. dependence on initial parameters of the population (the system), exter-
nal conditions, as well as on the states of other elements. In this study is described a general
model of functioning of the population (the system), when exist the dependence of the relia-
bility of one element on the states of the other elements, (Sołowiew, 1983). Then the changes
in time of the population states (the system states) are determined by multidimensional sto-
chastic process which is chosen in such a way that the state of the population can be

explicitly defined in each moment (whether the population is in the state of life or in the
state of death). As an example are considered the particularly cases of stochastic processes -
a general death process (when the rate of the state change of the element depend only on the
states of the elements) and a pure death process (when in the general death process the ele-
ments of the population are symmetrical), (Sołowiew, 1983). In an aspect of the Internet sur-
vey three characteristics are important: the time until the first change of state of the popula-
tion, the length of the lifetime of the population per one change of the state and the residual
time of the population lifetime.

2. Assumptions

We generally assume, that Internet survey begins at the moment 0t , when the electronic
questionnaire is put on the website and the survey is conducted for the time 0T .
A set ,...,u,u 21 denotes the population of potential respondents. For each 1n , the
population of n units is surveyed and the respondent sent the questionnaires
independently.
By 1n,n,...,2,1j,Xj , we denote a moment of questionnaire record on the server after an

initial moment 0t , from each respondent n,...,2,1t,uk , 1n , belonging to the
population of the size 1n , who took part in the survey as j - th.
The moment of the questionnaire record is an event that can be interpreted

- as the moment of arrival or the respondent, who took part in the survey as j -th,
when the size of the uncontrolled sample is defined,

- as the moment of failure or renew of j -th element of the population, when the
population is treated as a coherent system,

- as the waiting time for the j -th questionnaire record after the initial moment 0t
equal the length of lifetime of j -th element of the population until the moment

0t
- the moment of death or birth of the j -th element of the population, when the

length of the population lifetime is considered.
Theoretically, four cases which describe the relation between the time of the survey
conducting , 0T , and the size of the uncontrolled sample can be considered.
In the first case, the registering the questionnaires ends at the moment 0T specified in
advance, independently of the questionnaires’ number recorded. The size of the
uncontrolled sample is then a random value in the interval]T,0[and depends on the length
of time of the survey and on a selection procedure applied in the survey (if it is used in the
survey). An extreme situation occurs when no data was collected (an arrival set is empty or
the questionnaire, which arrived were rejected by the selection procedure used in the
survey).
In the second case the sample size is specified in advance and the survey ends when the
assumed number of responses has arrived, independently of the length of time of the survey
(a random value in this case). An extreme situation occurs when the length of time of the
survey is infinite.

Mathematical modeling of the Internet survey 305

sample is not possible and respondents are not randomly selected to the sample, but they
participate in the survey with a subjective decision and they form an uncontrolled sample
(the Internet sample). The methods of the sampling theory can not be used immediately for
the data from such the sample because the probability inclusions are not known and statis-
tics are calculated usually on the basis Internet data refer usually to the population surveyed
(Getka-Wilczyńska, 2003). In theory and practice of Internet survey two approaches to deal-
ing with this problem are identified (Couper & Miller, 2008). The first - the design based ap-
proach, attempts to build probability – based Internet panels by using other methods for
sampling and recruitment and – if it is necessary- providing Internet access to those without.
This approach is applied e.g. by Knowledge Networks in the USA and CentERdata’s MESS
panel in the Netherlands. The second – the model based approach begins with a volunteer
or opt - in panel of Internet users, and attempts to correct for representation biases using e.g.
propensity score adjustment (Lee, 2006) or some other weighting method for assessing Web
panel quality (Callegaro & Disogra, 2008, Toeppoel et.al., 2008). In both approaches usually
are used methodology of sampling theory to data analysis. Other an interesting proposition
is an application of a dynamic theory of decision making and the decision field theory to
theoretical explanation of survey behavior (Galesic, 2006).
In this study are proposed certain conceptions of modelling of the Internet survey as a ran-
dom experiment or a life testing experiment by using notions and methods of the stochastic
processes and the reliability theory (Kingman, 2002; Kopociński, 1973; Barlow & Proschan,
1965 (1996), 1975; Sołowiew, 1983). Generally this approach is presented in following way.
At the first, the process of the Internet data collection is considered as a process of register-
ing questionnaires on the server at fixed interval of the time, the time of the survey con-
ducted. An events appear in the Internet survey are interpreted as the moment of an arrival,
a birth, a death of the population elements or a waiting time for these events. In this case the
random size of the uncontrolled sample (Internet sample, a random set of the moments in
which questionnaires - from respondents who participate in the Internet survey - are rec-
orded on the server) is defined as a counting process by using Poisson processes (Getka-
Wilczyńska, 2004 (in Polish), 2005, 2008).
At the second, the Internet survey is considered as a life test of the population surveyed by
using the notions and methods of the reliability theory, (Getka-Wilczyńska, 2007). In this
case the events which appear in the Internet survey are interpreted as the moment of failure,
renew or functioning time of the population elements, when the population is treated as a
coherent system of finite number of elements or as the lifetime of the population elements,
when the length of the population lifetime is considered. The length of the population life-
time is defined by using the structure function of the population and the reliability function
of the length of the population lifetime is defined for the series, parallel and partial structure
of the population. Then the basic characteristics of the reliability function are described, cal-
culated and estimated by using path and cut method (Barlow & Proschan, 1965).
More interesting is the life testing experiment, if different models of elements’ dependence
are considered, e.g. dependence on initial parameters of the population (the system), exter-
nal conditions, as well as on the states of other elements. In this study is described a general
model of functioning of the population (the system), when exist the dependence of the relia-
bility of one element on the states of the other elements, (Sołowiew, 1983). Then the changes
in time of the population states (the system states) are determined by multidimensional sto-
chastic process which is chosen in such a way that the state of the population can be

explicitly defined in each moment (whether the population is in the state of life or in the
state of death). As an example are considered the particularly cases of stochastic processes -
a general death process (when the rate of the state change of the element depend only on the
states of the elements) and a pure death process (when in the general death process the ele-
ments of the population are symmetrical), (Sołowiew, 1983). In an aspect of the Internet sur-
vey three characteristics are important: the time until the first change of state of the popula-
tion, the length of the lifetime of the population per one change of the state and the residual
time of the population lifetime.

2. Assumptions

We generally assume, that Internet survey begins at the moment 0t , when the electronic
questionnaire is put on the website and the survey is conducted for the time 0T .
A set ,...,u,u 21 denotes the population of potential respondents. For each 1n , the
population of n units is surveyed and the respondent sent the questionnaires
independently.
By 1n,n,...,2,1j,Xj , we denote a moment of questionnaire record on the server after an

initial moment 0t , from each respondent n,...,2,1t,uk , 1n , belonging to the
population of the size 1n , who took part in the survey as j - th.
The moment of the questionnaire record is an event that can be interpreted

- as the moment of arrival or the respondent, who took part in the survey as j -th,
when the size of the uncontrolled sample is defined,

- as the moment of failure or renew of j -th element of the population, when the
population is treated as a coherent system,

- as the waiting time for the j -th questionnaire record after the initial moment 0t
equal the length of lifetime of j -th element of the population until the moment

0t
- the moment of death or birth of the j -th element of the population, when the

length of the population lifetime is considered.
Theoretically, four cases which describe the relation between the time of the survey
conducting , 0T , and the size of the uncontrolled sample can be considered.
In the first case, the registering the questionnaires ends at the moment 0T specified in
advance, independently of the questionnaires’ number recorded. The size of the
uncontrolled sample is then a random value in the interval]T,0[and depends on the length
of time of the survey and on a selection procedure applied in the survey (if it is used in the
survey). An extreme situation occurs when no data was collected (an arrival set is empty or
the questionnaire, which arrived were rejected by the selection procedure used in the
survey).
In the second case the sample size is specified in advance and the survey ends when the
assumed number of responses has arrived, independently of the length of time of the survey
(a random value in this case). An extreme situation occurs when the length of time of the
survey is infinite.

Engineering the Computer Science and IT306

In the third case, both the length of time of the survey and the sample size are specified in
advance and the survey ends in earlier of the assumed moments.
In the fourth case, the final moment of the survey is not specified in advance. The process of
registering questionnaires lasts at the moment when the collected data set meets the
demands of the survey organizers.

3. The random size of an uncontrolled sample

If the process of Internet data collection is considered as a process of registering
questionnaires on the server in a fixed interval of the time 0T (the time of the survey
conducting) then the size of the uncontrolled sample at the moment 0t equals the total
number arrivals until the moment 0t and is defined as a counting process - Bernoulli,
Poisson or compound Poisson process (Kingman, 2001).
In this part of the study paper we describe the two cases, the first and the second of the
dependence between the time of the survey conducting and the size of the Internet sample
(Getka-Wilczyńska, 2008).

3.1 The size of the uncontrolled sample as Bernoulli process
Definition 2.1. For fixed 1n the size of uncontrolled sample until the moment 0t is
given by

 t,0X:nk1cardtN k
and is equal to a sum

 tN...tNtN n1 ,
where

tXif1
tXif0

tN
k

k
k , n,...,2,1k,Xk , 1n ,

are independent random variables with uniform distribution over]T,0[, 0T , XX k1k
for 1j , 0X0 and at the initial moment 0t no arrivals occur.
The value of the random variable 0t,tN equals the total number of arrivals until the
moment 0t and the process 0t,tN can be described in a following way. Each of n
respondents, independently of others send only one questionnaire with the probability 1 in
the interval]T,0[for 0T (the time of the survey conducted). The probability of sending
the questionnaire by the certain respondent in the interval of the length T,0 is equal to

ratio
T

.

In this way, each respondent generates a stream consisted of only one arrival. A summary
stream obtained by summing these streams is called a bound Bernoulli stream, that is, it
consists of finite number of events.
To complete the definition of the counting process it remains to compute the distribution of
 tN and the joint distribution of tN,...,tN,tN n21 for any non-negative t,...,t,t n10 .

Let
 n,...,1k,ktNPtPk

be the probability of event, that at the moment 0t the total number of arrivals)t(N equals
k .
Since the probability of arrival of the given respondent in the interval T,0t,0 is equal

to ratio
T
t and the arrivals came independently, hence the total number of arrivals)t(N at

the moment 0t is random variable with Bernoulli distribution

knk

k k
t1

k
t

k
n

tP

If the intervals n1,..., are disjoint pairs and the interval n1 ...T,0 is a sum of
 n1 ,..., , then for any non-negative integers k,...,k n1 such that nk...k n1 holds

 p...p
!k!...k

!n
kN,...,kNP k

n
k
1

n1
nn11 n1 ,

where iN is the number of arrivals which occur in the interval i ,
T

p i
i

 for

n,...,1i , and i is the length of the interval n,...,1i,tt 1iii .

3.2 The size of the uncontrolled sample as Poisson process
Definition 2.2. For fixed 1n the size of uncontrolled sample until the moment 0t is
given by

 tS:0nmaxt,0X:ncardt'N nn ,

where ,...X,X 21 , denote as before the successive moments of questionnaires record,

XX k1k for 1k and 0X0 ,
 Yk 1k

 is a sequence of independent and identically distributed random variables

XXY 1kkk with exponential distribution

 e1tG t , 0t , 0 and XXY 1kkk for 1k

denotes k th spacing between k th and)1k(th arrivals,

n

1k
kn YS is a random va-

riable with Erlang distribution given by

e

!i
t1tSP t

1n

0i

i
n

 for 0t and 0 ,

Then

Mathematical modeling of the Internet survey 307

In the third case, both the length of time of the survey and the sample size are specified in
advance and the survey ends in earlier of the assumed moments.
In the fourth case, the final moment of the survey is not specified in advance. The process of
registering questionnaires lasts at the moment when the collected data set meets the
demands of the survey organizers.

3. The random size of an uncontrolled sample

If the process of Internet data collection is considered as a process of registering
questionnaires on the server in a fixed interval of the time 0T (the time of the survey
conducting) then the size of the uncontrolled sample at the moment 0t equals the total
number arrivals until the moment 0t and is defined as a counting process - Bernoulli,
Poisson or compound Poisson process (Kingman, 2001).
In this part of the study paper we describe the two cases, the first and the second of the
dependence between the time of the survey conducting and the size of the Internet sample
(Getka-Wilczyńska, 2008).

3.1 The size of the uncontrolled sample as Bernoulli process
Definition 2.1. For fixed 1n the size of uncontrolled sample until the moment 0t is
given by

 t,0X:nk1cardtN k
and is equal to a sum

 tN...tNtN n1 ,
where

tXif1
tXif0

tN
k

k
k , n,...,2,1k,Xk , 1n ,

are independent random variables with uniform distribution over]T,0[, 0T , XX k1k
for 1j , 0X0 and at the initial moment 0t no arrivals occur.
The value of the random variable 0t,tN equals the total number of arrivals until the
moment 0t and the process 0t,tN can be described in a following way. Each of n
respondents, independently of others send only one questionnaire with the probability 1 in
the interval]T,0[for 0T (the time of the survey conducted). The probability of sending
the questionnaire by the certain respondent in the interval of the length T,0 is equal to

ratio
T

.

In this way, each respondent generates a stream consisted of only one arrival. A summary
stream obtained by summing these streams is called a bound Bernoulli stream, that is, it
consists of finite number of events.
To complete the definition of the counting process it remains to compute the distribution of
 tN and the joint distribution of tN,...,tN,tN n21 for any non-negative t,...,t,t n10 .

Let
 n,...,1k,ktNPtPk

be the probability of event, that at the moment 0t the total number of arrivals)t(N equals
k .
Since the probability of arrival of the given respondent in the interval T,0t,0 is equal

to ratio
T
t and the arrivals came independently, hence the total number of arrivals)t(N at

the moment 0t is random variable with Bernoulli distribution

knk

k k
t1

k
t

k
n

tP

If the intervals n1,..., are disjoint pairs and the interval n1 ...T,0 is a sum of
 n1 ,..., , then for any non-negative integers k,...,k n1 such that nk...k n1 holds

 p...p
!k!...k

!n
kN,...,kNP k

n
k
1

n1
nn11 n1 ,

where iN is the number of arrivals which occur in the interval i ,
T

p i
i

 for

n,...,1i , and i is the length of the interval n,...,1i,tt 1iii .

3.2 The size of the uncontrolled sample as Poisson process
Definition 2.2. For fixed 1n the size of uncontrolled sample until the moment 0t is
given by

 tS:0nmaxt,0X:ncardt'N nn ,

where ,...X,X 21 , denote as before the successive moments of questionnaires record,

XX k1k for 1k and 0X0 ,
 Yk 1k

 is a sequence of independent and identically distributed random variables

XXY 1kkk with exponential distribution

 e1tG t , 0t , 0 and XXY 1kkk for 1k

denotes k th spacing between k th and)1k(th arrivals,

n

1k
kn YS is a random va-

riable with Erlang distribution given by

e

!i
t1tSP t

1n

0i

i
n

 for 0t and 0 ,

Then

Engineering the Computer Science and IT308

e

!n
ttSPtSPnt'NP1nt'NPkt'NP t

n
n1n

 0t, ,

the total number of arrivals until the moment 0t , is a random variable with Poisson dis-
tribution with the parameter 0 and 0t:)t('N is Poisson process.
Moreover, if in the Poisson process (stream) in the interval]T,0[, 0T , n arrivals occur,
then process (stream) of arrivals in this interval is the Bernoulli process (stream), (Kingman,
2001). This fact is shown below.
If Tt0 and nk0 , then

 nt'NP

knt'NT'N,kt'NPnT'Nkt'NP

nT'NP

kntT'NPkt'NP

 e!n
T

e!kn
tT

e!k
t

tT
n

tT
kn

t
k

 .

Hence

 nT'Nkt'NP
knk

T
t1

T
t

k
n

 .

If the intervals n1 ,..., are disjoint pairs and n1 ...T,0 , then for any nonnegative
integers k,...,k n1 such that nk...k n1 holds

nT'NP

k'NP

nT'NP
k'N,...,k'NPnT'Nk'N,...,k'NP

n

1i
ii

nn11k
nn11

e
!n

T

e

T
n

n

1i
i

k ii

 .

Therefore

 nT'Nk'N,...,k'NP nn11 p...p
!k!...k

!n k
n

k
1

n1
n1 .

3.3 The size of the uncontrolled sample with a selection procedure as compound
Poisson process
In the Internet surveys the electronic questionnaire is available to all Internet users and a
part of the registered arrivals came from respondents who do not necessarily belong to the
surveyed population.
In this case only the arrivals of these respondents whose questionnaires qualified for the
data set based on the selection procedure are included in the sample. By this assumption
and the assumptions made in case 2 the size of the uncontrolled sample is defined as a
compound Poisson process (Kingman 2001).

Definition 3.3. For fixed 1n the size of uncontrolled sample until the moment 0t is
given by StY t'N ,
 where

 tS:0nmaxt,0X:ncardt'N nn ,

t'N

1j
jt'N US ,

a sequence 1nnU of independent and identically distributed random variables and the
Poisson process 0t:t'N are independent.
The arrivals ...2,1n,Xn , are selected for the uncontrolled sample in the following way (the
sequence of arrivals ...2,1n,Xn is thinned): the arrival ...2,1n,n ., is omitted with the
probability p ,]1,0[p (independently of the process taking place), if the respondent does
not belong to the population and the arrival ...2,1n,Xn ., is left with the probability p1 ,
otherwise.
The random variable Ui is equal to 1, if the arrival Xi remains, and 0, if the arrival Xi is
omitted.
The probability p ,]1,0[p is defined by the procedure of selection used in the survey and
consequently, process 0t,tY is compound Poisson process with expected number of
the arrivals p1 .

4. Length of the population lifetime

In the remaining part of this study we assume that the population of n units for 1n is
treated as a finite coherent system of n components (Barlow & Proschan, 1965) and the
Internet survey begins at time 0t and it is conducted for the time 0T,T . In this case the
process of Internet data collection can be considered as a random experiment or a life testing
experiment in which the basic characteristics of length of the population lifetime are
analysed by using the methods of reliability theory (Barlow & Proschan, 1965 (1996), 1975;
Kopociński, 1973, Sołowiew, 1983).
We assume that a non-negative independent random variables 1n,n...,2,1k,Xk with
distribution function

 tXPtF kk , for 0t , n,...,2,1k , 1n ,

and probability density function

 tFtf '
kk and

t

0
kk dxxftF

are interpreted as the length of lifetime of k-th element of the population until the moment
t ≥ 0 or the moment of death of k-th element of the population until the moment t ≥ 0 or the
waiting time of arrival of k-th element of the population until the moment t ≥ 0.
The probability

 tF1tF kk for 0t , n,...,2,1k , 1n

Mathematical modeling of the Internet survey 309

e

!n
ttSPtSPnt'NP1nt'NPkt'NP t

n
n1n

 0t, ,

the total number of arrivals until the moment 0t , is a random variable with Poisson dis-
tribution with the parameter 0 and 0t:)t('N is Poisson process.
Moreover, if in the Poisson process (stream) in the interval]T,0[, 0T , n arrivals occur,
then process (stream) of arrivals in this interval is the Bernoulli process (stream), (Kingman,
2001). This fact is shown below.
If Tt0 and nk0 , then

 nt'NP

knt'NT'N,kt'NPnT'Nkt'NP

nT'NP

kntT'NPkt'NP

 e!n
T

e!kn
tT

e!k
t

tT
n

tT
kn

t
k

 .

Hence

 nT'Nkt'NP
knk

T
t1

T
t

k
n

 .

If the intervals n1 ,..., are disjoint pairs and n1 ...T,0 , then for any nonnegative
integers k,...,k n1 such that nk...k n1 holds

nT'NP

k'NP

nT'NP
k'N,...,k'NPnT'Nk'N,...,k'NP

n

1i
ii

nn11k
nn11

e
!n

T

e

T
n

n

1i
i

k ii

 .

Therefore

 nT'Nk'N,...,k'NP nn11 p...p
!k!...k

!n k
n

k
1

n1
n1 .

3.3 The size of the uncontrolled sample with a selection procedure as compound
Poisson process
In the Internet surveys the electronic questionnaire is available to all Internet users and a
part of the registered arrivals came from respondents who do not necessarily belong to the
surveyed population.
In this case only the arrivals of these respondents whose questionnaires qualified for the
data set based on the selection procedure are included in the sample. By this assumption
and the assumptions made in case 2 the size of the uncontrolled sample is defined as a
compound Poisson process (Kingman 2001).

Definition 3.3. For fixed 1n the size of uncontrolled sample until the moment 0t is
given by StY t'N ,
 where

 tS:0nmaxt,0X:ncardt'N nn ,

t'N

1j
jt'N US ,

a sequence 1nnU of independent and identically distributed random variables and the
Poisson process 0t:t'N are independent.
The arrivals ...2,1n,Xn , are selected for the uncontrolled sample in the following way (the
sequence of arrivals ...2,1n,Xn is thinned): the arrival ...2,1n,n ., is omitted with the
probability p ,]1,0[p (independently of the process taking place), if the respondent does
not belong to the population and the arrival ...2,1n,Xn ., is left with the probability p1 ,
otherwise.
The random variable Ui is equal to 1, if the arrival Xi remains, and 0, if the arrival Xi is
omitted.
The probability p ,]1,0[p is defined by the procedure of selection used in the survey and
consequently, process 0t,tY is compound Poisson process with expected number of
the arrivals p1 .

4. Length of the population lifetime

In the remaining part of this study we assume that the population of n units for 1n is
treated as a finite coherent system of n components (Barlow & Proschan, 1965) and the
Internet survey begins at time 0t and it is conducted for the time 0T,T . In this case the
process of Internet data collection can be considered as a random experiment or a life testing
experiment in which the basic characteristics of length of the population lifetime are
analysed by using the methods of reliability theory (Barlow & Proschan, 1965 (1996), 1975;
Kopociński, 1973, Sołowiew, 1983).
We assume that a non-negative independent random variables 1n,n...,2,1k,Xk with
distribution function

 tXPtF kk , for 0t , n,...,2,1k , 1n ,

and probability density function

 tFtf '
kk and

t

0
kk dxxftF

are interpreted as the length of lifetime of k-th element of the population until the moment
t ≥ 0 or the moment of death of k-th element of the population until the moment t ≥ 0 or the
waiting time of arrival of k-th element of the population until the moment t ≥ 0.
The probability

 tF1tF kk for 0t , n,...,2,1k , 1n

Engineering the Computer Science and IT310

is the reliability function of the length of lifetime of k-th element at the moment t ≥ 0, (the re-
liability of the k-th element in short) and equal to the probability of the length of lifetime of
k-th element at least t ≥ 0 or the probability of event that k-th respondent is in the state of life
at least t ≥ 0.
The conditional probability density function

 tF
tft

k

k
k for 0t , n,...,2,1k , 1n

is called arrival or failure rate of k -th element of the population, (Kopociński, 1973).
The elements of the population are not renewed - each record of questionnaires decreases
the size of the population in one and the element which arrived is not replaced by a new
one. This way of selection is called random sampling without replacement.
The length of the population lifetime and is defined by using the structure function of the
population as follows (Sołowiew, 1983).

4.1 States of elements of the population
The state of i -th elements of the population (as the system) is defined by the values of the
binary function

 tmoment the untilarriveelement th-i ordeath of state thein iselement th-i if1

 tmoment the until arrivenot didelement th-i or life of state thein iselement th-i if0
tYi

where 1,0n,...,2,1),0[:Y and tYi,tY i for n,...,1i , ,0t .
Then the state of all elements of the population of size n , for 1n , is determined by n -
dimension vector Tn21 tY,...,tY,tYtY and we assume that at the initial moment

0t all elements of the population of size n , for 1n , are in the states of life. This
assumption means that at the moment 0t no arrivals occurred.

4.2 States of the population
The state of the population of the size n , for 1n , at the moment 0t is defined by the
values of the binary function

t moment the untilended) (test) survey (the death of state thein is popualtion the if1

t moment the atconducted) is (test) survey (the life of statein is population the if0
t0

and at each moment 0t it depends on the states of the elements through the values of the
function tYtY,...,tYt n10 .
In the process of Internet data collection treated as a life test of the population of size n , for

1n , the population can be found at the moment 0t in the state of life during the
conducting of the survey in following cases.

In the first case, at the moment Tt0 where T is the time of the survey conducting
specified in advance and the number of death (arrivals) in interval of the length 0t is a
random value but it is less than the size of the population. Otherwise, until the moment T
specified in advance.
In the second case, until the moment 0t , in which the number of death (arrivals) is equal
to the size of the sample specified in advance (it is equals or less than the size of the
population) and the time of the survey conducting T is not specified in advance.
In the third case, until the earlier of the time of the survey conducting T and the moment

0t , when the number of death (arrivals) is equal to the sample size, where both the length
of time of the survey T and the sample size are specified in advance.
In the fourth case, until the moment 0t , when the collected data set (it can be a subset of
the population or the population surveyed) meets the demands of the survey organizers and
the final moment of the survey is not specified in advance.

4.3 Properties of the structure function
The structure function Y is increasing, if for any two vectors 1Y and 2Y is satisfied
the condition:

if 21 YY , then 21 YY ,

where 21 YY , if for all n,...,1i , YY 2

i
1

i .
This property of the structure function introduce a partial order in a set of the binary vectors
and means that additional death of the element can not change the state of the population
from the state of death to the state of life.
The function tY define a division of a set 1,0Y:Y:YE nn of all n - dimension
and binary vectors which describe the state of the population to two sets:

 0tY:YE , a set of states of life of the population and
 1tY:YE , a set of states of death of the population.

If the structure function is increasing, then the division of the set E to two sets E and E
is called a monotonic structure (Barlow & Proschan, 1965).

4.4 Length of the population lifetime
Let us denote by X the length of the population lifetime and

 1tY:tinfX .
Then

 tXPtF
is the probability of ending of the survey (test) until the moment 0t or the probability of
the event that the population is in the state of death until the moment 0t
and

Mathematical modeling of the Internet survey 311

is the reliability function of the length of lifetime of k-th element at the moment t ≥ 0, (the re-
liability of the k-th element in short) and equal to the probability of the length of lifetime of
k-th element at least t ≥ 0 or the probability of event that k-th respondent is in the state of life
at least t ≥ 0.
The conditional probability density function

 tF
tft

k

k
k for 0t , n,...,2,1k , 1n

is called arrival or failure rate of k -th element of the population, (Kopociński, 1973).
The elements of the population are not renewed - each record of questionnaires decreases
the size of the population in one and the element which arrived is not replaced by a new
one. This way of selection is called random sampling without replacement.
The length of the population lifetime and is defined by using the structure function of the
population as follows (Sołowiew, 1983).

4.1 States of elements of the population
The state of i -th elements of the population (as the system) is defined by the values of the
binary function

 tmoment the untilarriveelement th-i ordeath of state thein iselement th-i if1

 tmoment the until arrivenot didelement th-i or life of state thein iselement th-i if0
tYi

where 1,0n,...,2,1),0[:Y and tYi,tY i for n,...,1i , ,0t .
Then the state of all elements of the population of size n , for 1n , is determined by n -
dimension vector Tn21 tY,...,tY,tYtY and we assume that at the initial moment

0t all elements of the population of size n , for 1n , are in the states of life. This
assumption means that at the moment 0t no arrivals occurred.

4.2 States of the population
The state of the population of the size n , for 1n , at the moment 0t is defined by the
values of the binary function

t moment the untilended) (test) survey (the death of state thein is popualtion the if1

t moment the atconducted) is (test) survey (the life of statein is population the if0
t0

and at each moment 0t it depends on the states of the elements through the values of the
function tYtY,...,tYt n10 .
In the process of Internet data collection treated as a life test of the population of size n , for

1n , the population can be found at the moment 0t in the state of life during the
conducting of the survey in following cases.

In the first case, at the moment Tt0 where T is the time of the survey conducting
specified in advance and the number of death (arrivals) in interval of the length 0t is a
random value but it is less than the size of the population. Otherwise, until the moment T
specified in advance.
In the second case, until the moment 0t , in which the number of death (arrivals) is equal
to the size of the sample specified in advance (it is equals or less than the size of the
population) and the time of the survey conducting T is not specified in advance.
In the third case, until the earlier of the time of the survey conducting T and the moment

0t , when the number of death (arrivals) is equal to the sample size, where both the length
of time of the survey T and the sample size are specified in advance.
In the fourth case, until the moment 0t , when the collected data set (it can be a subset of
the population or the population surveyed) meets the demands of the survey organizers and
the final moment of the survey is not specified in advance.

4.3 Properties of the structure function
The structure function Y is increasing, if for any two vectors 1Y and 2Y is satisfied
the condition:

if 21 YY , then 21 YY ,

where 21 YY , if for all n,...,1i , YY 2

i
1

i .
This property of the structure function introduce a partial order in a set of the binary vectors
and means that additional death of the element can not change the state of the population
from the state of death to the state of life.
The function tY define a division of a set 1,0Y:Y:YE nn of all n - dimension
and binary vectors which describe the state of the population to two sets:

 0tY:YE , a set of states of life of the population and
 1tY:YE , a set of states of death of the population.

If the structure function is increasing, then the division of the set E to two sets E and E
is called a monotonic structure (Barlow & Proschan, 1965).

4.4 Length of the population lifetime
Let us denote by X the length of the population lifetime and

 1tY:tinfX .
Then

 tXPtF
is the probability of ending of the survey (test) until the moment 0t or the probability of
the event that the population is in the state of death until the moment 0t
and

Engineering the Computer Science and IT312

 tXPtF
is the probability of the conducting survey (test) at least 0t , the probability of the event
that the population is in the state of life at least 0t or the reliability function of the X, the
length of the population lifetime at the moment 0t , (the reliability of the population in
short).

4.5 Calculation of the reliability of the length of the population lifetime
The formula which expresses the relation between X, the reliability of the length of the
population lifetime and 1n,n...,2,1k,Xk reliabilities of elements at the moment 0t is
given by

EtY
tYptF ,

where

 tFtFtYp Y
k

n

1k
Y1

k
kk

 ,

(there is adopted the convention 100) is a probability of event that the population is in the
state Y .

If 1n,n...,2,1k,Xk are non-negative independent random variables, the elements are
not renewed and the function e is increasing, then the reliability function of the length of
the population lifetime tF is increasing respectively to each coordinate of the reliability
function of the length of the element lifetime tFk .
Thus an upper or a lower bound on the reliability of X, the length of the population lifetime
may be obtained from the upper or lower bounds on the reliabilities of the elements.
When the number of the states is large (the number of all states is equal to 2n) and the
function Y is very complicated, then a formulae given above is not efficient and the other
methods of calculation are applied e.g. the method of path and cut (Barlow & Proschan,
1975; Koutras et al.,2003) or the recurrence method of Markov chain or generally, the
Markov methods (Sołowiew, 1983).

5. Basic structures of the population

5.1 Length of the population lifetime for the series structure
The population (as the system) of n - elements for 1n is called a series structure, when the
population is in the state of life if and only if each element is in the state of life.
In this case, the change of the state of any element causes the change of the population state.
The length of the population lifetime is equal to the waiting time of the first death and the
size of the uncontrolled sample equals zero for the first death. Then the basic characteristics
of the reliability function of the series structure are given as follows.

From definition of the series structure follows that the length of the population lifetime is
equal

)X,...,X,Xmin(X n21n,1
and the probability of it (duration of the survey) at least 0t is equal to

 tFtF
n

1i
i

.

From inequality (Hardy, et. al, 1934)

n

1i
i

2n

1i
ij

ji
i

n

1i
i

n

1i
i

n

1i
i F

2
1

F1FFF1F1F1

it follows that

n

1i
iFtF

n

1i
i

2

F
2
1 .

The change rate of the population equals the sum of the change rate of the elements

 t

tF

t'FtFln'tFln
tF
t'Ft

n

1i
i

n

1i i

in

1i
i

''

.

The expected time of the length of the population lifetime is equal to

 dttFXE
0

.

5.2 Length of the population lifetime for the parallel structure
The population (as the system) of n - elements for 1n is called a parallel structure, when
the population is in the state of death if and only if all elements are in the state of death.
In this case, the change of the state of the population (death of the population) takes places
only if changes of all population elements occur - all elements of the population died and
the size of the uncontrolled sample is equal to the size of the population (all elements of the
populations arrived).
From definition of the parallel structure follows that the length of the population lifetime is
equal to

)X,...,X,Xmax(X n21n,n
and the probability of the length of the population lifetime (duration of the survey) at least

0t is equal to

 tFtF
n

1i
i

 or tFtF n

0

and the expected time of the length of the population lifetime is equal to

 dttF1XE
0

or dttF1XE
0

n
0

, when n,...,2,1i,tFtF 0i .

Mathematical modeling of the Internet survey 313

 tXPtF
is the probability of the conducting survey (test) at least 0t , the probability of the event
that the population is in the state of life at least 0t or the reliability function of the X, the
length of the population lifetime at the moment 0t , (the reliability of the population in
short).

4.5 Calculation of the reliability of the length of the population lifetime
The formula which expresses the relation between X, the reliability of the length of the
population lifetime and 1n,n...,2,1k,Xk reliabilities of elements at the moment 0t is
given by

EtY
tYptF ,

where

 tFtFtYp Y
k

n

1k
Y1

k
kk

 ,

(there is adopted the convention 100) is a probability of event that the population is in the
state Y .

If 1n,n...,2,1k,Xk are non-negative independent random variables, the elements are
not renewed and the function e is increasing, then the reliability function of the length of
the population lifetime tF is increasing respectively to each coordinate of the reliability
function of the length of the element lifetime tFk .
Thus an upper or a lower bound on the reliability of X, the length of the population lifetime
may be obtained from the upper or lower bounds on the reliabilities of the elements.
When the number of the states is large (the number of all states is equal to 2n) and the
function Y is very complicated, then a formulae given above is not efficient and the other
methods of calculation are applied e.g. the method of path and cut (Barlow & Proschan,
1975; Koutras et al.,2003) or the recurrence method of Markov chain or generally, the
Markov methods (Sołowiew, 1983).

5. Basic structures of the population

5.1 Length of the population lifetime for the series structure
The population (as the system) of n - elements for 1n is called a series structure, when the
population is in the state of life if and only if each element is in the state of life.
In this case, the change of the state of any element causes the change of the population state.
The length of the population lifetime is equal to the waiting time of the first death and the
size of the uncontrolled sample equals zero for the first death. Then the basic characteristics
of the reliability function of the series structure are given as follows.

From definition of the series structure follows that the length of the population lifetime is
equal

)X,...,X,Xmin(X n21n,1
and the probability of it (duration of the survey) at least 0t is equal to

 tFtF
n

1i
i

.

From inequality (Hardy, et. al, 1934)

n

1i
i

2n

1i
ij

ji
i

n

1i
i

n

1i
i

n

1i
i F

2
1

F1FFF1F1F1

it follows that

n

1i
iFtF

n

1i
i

2

F
2
1 .

The change rate of the population equals the sum of the change rate of the elements

 t

tF

t'FtFln'tFln
tF
t'Ft

n

1i
i

n

1i i

in

1i
i

''

.

The expected time of the length of the population lifetime is equal to

 dttFXE
0

.

5.2 Length of the population lifetime for the parallel structure
The population (as the system) of n - elements for 1n is called a parallel structure, when
the population is in the state of death if and only if all elements are in the state of death.
In this case, the change of the state of the population (death of the population) takes places
only if changes of all population elements occur - all elements of the population died and
the size of the uncontrolled sample is equal to the size of the population (all elements of the
populations arrived).
From definition of the parallel structure follows that the length of the population lifetime is
equal to

)X,...,X,Xmax(X n21n,n
and the probability of the length of the population lifetime (duration of the survey) at least

0t is equal to

 tFtF
n

1i
i

 or tFtF n

0

and the expected time of the length of the population lifetime is equal to

 dttF1XE
0

or dttF1XE
0

n
0

, when n,...,2,1i,tFtF 0i .

Engineering the Computer Science and IT314

5.3 Length of the population lifetime for the partial structure
The population (as the system) of n - elements for 1n is called a partial structure if all
elements of the population are identical and the population is in the state of life if at least
m elements of the population are in the state of life (that is, at most mn death occur) and
the size of the uncontrolled sample equals mn .
The reliability function of the length of the population lifetime is equal to

 tFtFk
n

tXP1tF kn
0

k
0

n

mk
n,1mn

 .

6. Estimate of the reliability of the length of the population lifetime - the
method of path and cut

In this method are defined notions of minimal path minimal cut that used to estimate the
reliability function of the length of the population lifetime, (Barlow & Proschan, 1965).

Definition 6.1. The set of elements u,...,uA k1 of the population of the size n, 1n , is
called a minimal path if all the elements of this set are in the state of life (the population is in
the state of life, the survey is being conducted) and no subset of the set A has this property.

From the monotonic property of the structure function, the set u,...,uA k1 is a minimal
path if and only if EY , where e is a vector in which coordinates i,...,i k1 take on the
value zero and the remaining coordinates take on the value one, with any state greater than
Y belonging to E .
Therefore, every minimal path determines a bordering state of the life of the population in
which the occur of death of any element causes a change of the state of the population into
the state of death one (ending of the survey (test)).
In term of the size of the uncontrolled sample, it means, that the number of arrivals is equal
to the number of elements of the minimal path is smaller per one than the size of the sample
assumed in the survey.
Let A,...,A,A m21 be a sets of all minimal paths with the corresponding bordering states

 Y,...,Y,Y m21 .
As is an event in which all elements of the minimal path As are in the state of life. Since

U
m

1s
sAE

 , (Sołowiew, 1983), the reliability function of the length of the population lifetime

is calculated from the formula

 j,i kji
m21

1m
kjiji

m

1i
i

m

1s
s A...AAP1...AAAPAAPAPAPtF U

The number of the elements of the sum on the right is equal to 12m and the probability of
any event which is given by A...AA iii k21 , where i,...ii k21 is equal to

 tF....tFtFA...AAP sssiii l21k21 ,

where s1 , s2 ,. sl are different indices of elements of the minimal paths (that is, in the case
of the elements belonging to overlapping parts of different paths, each element is calculated
only once).
In the order to lower the number of calculation are introduced the following notions.
The two minimal paths are called crossing, when they have at least one common element.
The two minimal paths are called relevant, if there exists a chain of crossing paths which
connects them.
The relevant relation is the equivalent relation which divides a set of all minimal paths into
classes of relevant minimal paths.
Let A...A,A...A k1kk1 211 be the successive classes of the relevant minimal paths.
Because

m

1i
iAPtF1tF ,

(the symbol

m

1i
iA means an intersection of sets iA for m,...,1i) and the events belonging

to different classes are independent, then

 APAPtF
k

1i
1k

k

1i
i

2

1

1

 .

A dual notion of the minimal path is a minimal cut (a critical set).

Definition 6.2. A set of elements j,...,j,jB l21 is called a minimal cut, if all elements of this
set are in the state of death (the population is in the state of death, the survey (test) ended)
and no subset of the set B has this property.

In this case we are interesting in those cut set in which the number of elements is equal to
the size of the uncontrolled sample specified in advance (all elements belonging to the set
B arrived).
If B,...,B,B s21 is a set of all the minimal cuts, then the probability of an event that the
survey (test) ends until the moment 0t is equal to

 ji kji
kjiji

s

1i
i

s

1i
i ...BBBPBBPBPBPtF U B...BBP1 m21

1m

 S1...SSS s
1s

321

From this formula the estimation of the length of the population lifetime (during the survey)
as the estimation of the reliability function of the population can be obtained.
In this case the number of elements in the successive minimal cuts is interpreted as the
possible sample sizes which can be collected in the survey on condition that the survey ends
after collection of the sample of the assumed size.
From proof of this formula for the non-crossing minimal cuts holds

Mathematical modeling of the Internet survey 315

5.3 Length of the population lifetime for the partial structure
The population (as the system) of n - elements for 1n is called a partial structure if all
elements of the population are identical and the population is in the state of life if at least
m elements of the population are in the state of life (that is, at most mn death occur) and
the size of the uncontrolled sample equals mn .
The reliability function of the length of the population lifetime is equal to

 tFtFk
n

tXP1tF kn
0

k
0

n

mk
n,1mn

 .

6. Estimate of the reliability of the length of the population lifetime - the
method of path and cut

In this method are defined notions of minimal path minimal cut that used to estimate the
reliability function of the length of the population lifetime, (Barlow & Proschan, 1965).

Definition 6.1. The set of elements u,...,uA k1 of the population of the size n, 1n , is
called a minimal path if all the elements of this set are in the state of life (the population is in
the state of life, the survey is being conducted) and no subset of the set A has this property.

From the monotonic property of the structure function, the set u,...,uA k1 is a minimal
path if and only if EY , where e is a vector in which coordinates i,...,i k1 take on the
value zero and the remaining coordinates take on the value one, with any state greater than
Y belonging to E .
Therefore, every minimal path determines a bordering state of the life of the population in
which the occur of death of any element causes a change of the state of the population into
the state of death one (ending of the survey (test)).
In term of the size of the uncontrolled sample, it means, that the number of arrivals is equal
to the number of elements of the minimal path is smaller per one than the size of the sample
assumed in the survey.
Let A,...,A,A m21 be a sets of all minimal paths with the corresponding bordering states

 Y,...,Y,Y m21 .
As is an event in which all elements of the minimal path As are in the state of life. Since

U
m

1s
sAE

 , (Sołowiew, 1983), the reliability function of the length of the population lifetime

is calculated from the formula

 j,i kji
m21

1m
kjiji

m

1i
i

m

1s
s A...AAP1...AAAPAAPAPAPtF U

The number of the elements of the sum on the right is equal to 12m and the probability of
any event which is given by A...AA iii k21 , where i,...ii k21 is equal to

 tF....tFtFA...AAP sssiii l21k21 ,

where s1 , s2 ,. sl are different indices of elements of the minimal paths (that is, in the case
of the elements belonging to overlapping parts of different paths, each element is calculated
only once).
In the order to lower the number of calculation are introduced the following notions.
The two minimal paths are called crossing, when they have at least one common element.
The two minimal paths are called relevant, if there exists a chain of crossing paths which
connects them.
The relevant relation is the equivalent relation which divides a set of all minimal paths into
classes of relevant minimal paths.
Let A...A,A...A k1kk1 211 be the successive classes of the relevant minimal paths.
Because

m

1i
iAPtF1tF ,

(the symbol

m

1i
iA means an intersection of sets iA for m,...,1i) and the events belonging

to different classes are independent, then

 APAPtF
k

1i
1k

k

1i
i

2

1

1

 .

A dual notion of the minimal path is a minimal cut (a critical set).

Definition 6.2. A set of elements j,...,j,jB l21 is called a minimal cut, if all elements of this
set are in the state of death (the population is in the state of death, the survey (test) ended)
and no subset of the set B has this property.

In this case we are interesting in those cut set in which the number of elements is equal to
the size of the uncontrolled sample specified in advance (all elements belonging to the set
B arrived).
If B,...,B,B s21 is a set of all the minimal cuts, then the probability of an event that the
survey (test) ends until the moment 0t is equal to

 ji kji
kjiji

s

1i
i

s

1i
i ...BBBPBBPBPBPtF U B...BBP1 m21

1m

 S1...SSS s
1s

321

From this formula the estimation of the length of the population lifetime (during the survey)
as the estimation of the reliability function of the population can be obtained.
In this case the number of elements in the successive minimal cuts is interpreted as the
possible sample sizes which can be collected in the survey on condition that the survey ends
after collection of the sample of the assumed size.
From proof of this formula for the non-crossing minimal cuts holds

Engineering the Computer Science and IT316

2
S

S
2
1

2 ,
6
S

S
3
1

3 ,

and so on, and in the case of the crossing minimal cuts the partial sums maintain an order

 SOS 2
1k .

Moreover, for any k ,
 SS...SStFS...SS 1k2k221k221 .

Thus there exists the possibility of the estimation of the probability of length of the popula-
tion lifetime with assumed precision because partial sums on the right of the last formula
are the interchangeable upper and the lower bounds of the reliability function.

7. Reliability of the length of the population lifetime – Markov methods

So far we have assumed that the length of the lifetime of the population elements (the wait-
ing time for arrival) are independent distributed random variables. In literature devoted to
research of reliability of the system of order n considered dependence on initial parameters
of the system, external conditions, as well as on the states of other elements. Let us consider
the last dependence.

7.1 Model of dependence of the element of the population
In the most general way, if no dependence of initial parameters exists and there is no de-
pendence of the lifetimes of the elements on the common external conditions, then the only
type of dependence is the dependence of the reliability of one element on the states of the
other elements. This dependence is described as follows (Sołowiew, 1983).
Let the states of the population of n - elements for 1n are defined by the binary vector

 Tn21 tY,...,tY,tYtY
and by t is denoted a realisation of the process xY in interval]t,0[.
If the realisation t of the process xY is determined until the moment t , then the transi-
tion probability in the time t to the state Y equals

 totY,t 1.1.7
There are can be considered the following cases:
1) at the same time the change of the states of a few elements occur,
2) in each moment the change of the state of only one element occurs (failure, arrival).
If case 2 is considered, then the process tY is described by the arrival (failure) rates of the
elements and ti is the conditional arrival (failure) rate of the i -th element, on condition
that the realisation of the process is determined until the moment t .
If the arrival (failure) rate of the element given by formulae tY,titi , depends
only on the moment t and the state of the process in this moment then the process tY is
non-homogeneous Markov process with a finite number of states.

If the arrival (failure) rate of the element does not depends on time, but depends only on the
states of the elements YY,t ii , then such a homogeneous Markov process is a gen-
eralised pure death process.
If in the generalised pure death process the elements of the population are symmetrical,
then all arrival (failure) rates of elements are equal to YYi and the arrival (failure)
rate of the population not depend on the vector Y , but depends only on the number of

states changes (arrivals, failures) of the elements YY , where

n

1k
2
kYY . The proc-

ess tY , in which the transition from the state iY is possible only to the state 1i
with the rate i1n is a pure death process.
The pure death process describes functioning of the non-renewable the system consisting of
identical elements while the generalised one describes functioning of the system consisting
of different elements. It seems to me that the application of the Markov methods for the re-
search of the length of the population lifetime when the population is treated as a system of
n, 1n elements is natural.
Namely – changes in time of the population states (as the system of n, 1n elements) are
determined by multidimensional stochastic process. This process is chosen in such a way
that when we investigate the reliability of the population and we know the state of the proc-
ess, we can in each moment explicitly define the state of the population (whether the system
is functioning or failed, whether the population is in the state of life or death).
Bellow is presented a general model of functioning of that population (as the system of n,

1n elements), (Sołowiew, 1983).

7.2 General model functioning of the population
Let t denote the stochastic process chosen in the way described above.
A set E of this process states decomposed into two disjoined subsets EEE .
If Et , then the population is in state of life at the moment t and if Et , then the
population is in state of death at the moment t .
The transition of the process from the set E to the set E is called death of the population,
and a reverse transition from the set E to the set E is called a renewal of the population.
The process observed in time changes the state E into the state E and reverse.
Let

,...Z,...,Z,Z 'k'1'0 and ,...Z,...,Z,Z ''k''1''0

denote successive intervals respectively, in which the population is in the state of life or
death.
If there exists a stationary distribution for the process t , which describes the functioning

of the renewable population, then there exist limits ZZ '
P

'k ZZ ''
P

''k .
A random variable
Z'0 - is called the time until the first change of the state of the population

'Z - is called the length of the lifetime of the population per one change of the state

Mathematical modeling of the Internet survey 317

2
S

S
2
1

2 ,
6
S

S
3
1

3 ,

and so on, and in the case of the crossing minimal cuts the partial sums maintain an order

 SOS 2
1k .

Moreover, for any k ,
 SS...SStFS...SS 1k2k221k221 .

Thus there exists the possibility of the estimation of the probability of length of the popula-
tion lifetime with assumed precision because partial sums on the right of the last formula
are the interchangeable upper and the lower bounds of the reliability function.

7. Reliability of the length of the population lifetime – Markov methods

So far we have assumed that the length of the lifetime of the population elements (the wait-
ing time for arrival) are independent distributed random variables. In literature devoted to
research of reliability of the system of order n considered dependence on initial parameters
of the system, external conditions, as well as on the states of other elements. Let us consider
the last dependence.

7.1 Model of dependence of the element of the population
In the most general way, if no dependence of initial parameters exists and there is no de-
pendence of the lifetimes of the elements on the common external conditions, then the only
type of dependence is the dependence of the reliability of one element on the states of the
other elements. This dependence is described as follows (Sołowiew, 1983).
Let the states of the population of n - elements for 1n are defined by the binary vector

 Tn21 tY,...,tY,tYtY
and by t is denoted a realisation of the process xY in interval]t,0[.
If the realisation t of the process xY is determined until the moment t , then the transi-
tion probability in the time t to the state Y equals

 totY,t 1.1.7
There are can be considered the following cases:
1) at the same time the change of the states of a few elements occur,
2) in each moment the change of the state of only one element occurs (failure, arrival).
If case 2 is considered, then the process tY is described by the arrival (failure) rates of the
elements and ti is the conditional arrival (failure) rate of the i -th element, on condition
that the realisation of the process is determined until the moment t .
If the arrival (failure) rate of the element given by formulae tY,titi , depends
only on the moment t and the state of the process in this moment then the process tY is
non-homogeneous Markov process with a finite number of states.

If the arrival (failure) rate of the element does not depends on time, but depends only on the
states of the elements YY,t ii , then such a homogeneous Markov process is a gen-
eralised pure death process.
If in the generalised pure death process the elements of the population are symmetrical,
then all arrival (failure) rates of elements are equal to YYi and the arrival (failure)
rate of the population not depend on the vector Y , but depends only on the number of

states changes (arrivals, failures) of the elements YY , where

n

1k
2
kYY . The proc-

ess tY , in which the transition from the state iY is possible only to the state 1i
with the rate i1n is a pure death process.
The pure death process describes functioning of the non-renewable the system consisting of
identical elements while the generalised one describes functioning of the system consisting
of different elements. It seems to me that the application of the Markov methods for the re-
search of the length of the population lifetime when the population is treated as a system of
n, 1n elements is natural.
Namely – changes in time of the population states (as the system of n, 1n elements) are
determined by multidimensional stochastic process. This process is chosen in such a way
that when we investigate the reliability of the population and we know the state of the proc-
ess, we can in each moment explicitly define the state of the population (whether the system
is functioning or failed, whether the population is in the state of life or death).
Bellow is presented a general model of functioning of that population (as the system of n,

1n elements), (Sołowiew, 1983).

7.2 General model functioning of the population
Let t denote the stochastic process chosen in the way described above.
A set E of this process states decomposed into two disjoined subsets EEE .
If Et , then the population is in state of life at the moment t and if Et , then the
population is in state of death at the moment t .
The transition of the process from the set E to the set E is called death of the population,
and a reverse transition from the set E to the set E is called a renewal of the population.
The process observed in time changes the state E into the state E and reverse.
Let

,...Z,...,Z,Z 'k'1'0 and ,...Z,...,Z,Z ''k''1''0

denote successive intervals respectively, in which the population is in the state of life or
death.
If there exists a stationary distribution for the process t , which describes the functioning

of the renewable population, then there exist limits ZZ '
P

'k ZZ ''
P

''k .
A random variable
Z'0 - is called the time until the first change of the state of the population

'Z - is called the length of the lifetime of the population per one change of the state

Engineering the Computer Science and IT318

 tZ - is the lifetime of the population from the moment t until the first moment after the
change of the state of the population, residual time of the population lifetime.
As before, if there exists a stationary distribution for the process t , then there exists the

limit ZtZ
P

 .
Distributions of random variables Z,''Z,'Z,tZ,Z,Z,Z ''k'k'0 and their an expected values
 ZE '0 , ZE 'k ,)Z(E ''k ,)tZ(E ,)'Z(E ,)''Z(E ,)Z(E) are basic characteristics of the reliabil-

ity function.
One of the simpler type of the processes used in the reliability calculations is the class of
Markov processes with a finite or uncountable number of states. In this sense the pure death
or general death process could be a model describing the changes of the population states.

In aspect of Internet survey three characteristics are important:
Z'0 - the time until the first change of the state of the population,

'Z - the length of the lifetime of the population per one change of the state,
 tZ - the lifetime of the population from the moment t until the first moment after the

change of the state of the population, residual time of lifetime of the population.

Below the probability distribution of these random values and their the expected values are
derived.

7.3 Formulae of characteristics of Markov process
Assume that the process t is a homogeneous Markov process with a finite number of the
states which is assigned N,...,2,1 .
Let the set n,...,2,1,0E denote a set of the functioning states of the system (life states of
the population) and n,...,2k,1kE a set of the failed states of the system (a set of
death states of the population which is interpreted as break between repeated surveys).
The Markov process is analysed in following steps.

1. The Markov process has two properties which are equivalent to the definition the Markov
process:

- the interval in which the process finds itself in the state i , does not depend on the process
taking place outside the interval and it has exponential distribution

 ettP t
i i,i , where

ij
j,ii,i ,

- a sequence of the states through which the process passes is the homogenous Markov

chain with transition probabilities

i,i

j,i
j,i . At the same time, if 0i,i , then the state i

is called an absorbing state, because when the process has entered the state, it will remain in
it forever. In this case we assume that 0j,i .

2. Solution of the Kolmogorov equations

Let
 itPtpi .
The probabilities of the states tpi satisfy the Kolmogorov equations

 tptp i
N

0i
j,i

'
j

, N,...,1,0j 1.3.7

These equations are rewritten in a matrix form

 tptp' ,
where tp,...,tptp n0 is the vector of the states probabilities, j,i is the matrix of
the transition rate with the properties:
a) all elements of the matrix j,i satisfy the condition 0j,i ,

b) 0
N

0j
j,i

.

After assuming the initial distribution of the process p0p 0ii the system of the Kolmo-
gorov equations 1.3.7 has the explicit solution

 p0p 0ii .
The system of the Kolmogorov equations 1.3.7 is solved by means of Laplace transform.
Let

 dttpeza i
0

zt
i

 .

Taking the properties of Laplace transform is obtained

 N...,2,1,0j,zazazp j,i
N

0i
ij0j

,

and from the Cramer’s formulae the solution of the system is given by

 z

zza i
i

 2.3.7

where j,ij,izz , the determinant in the numerator is calculated from the determi-

nant in the denominator by the replacement of the i- th line with the line of the initial prob-
abilities p 0j , j,i is a Kronecker’s symbol. After inversion of the Laplace transform the for-

mulae of the probability of the process states is obtained.
3. Conditions of existing of the stationary distribution of the process.
Two states are called communicating, if there exist such indices i,...,i k1 as well as j,...,j l1 ,
that 0,...,, j,ii,ii,i k211 and 0,...,, i,jj,jj,j l211

 . We also assume that each state commu-

nicates with itself.

Mathematical modeling of the Internet survey 319

 tZ - is the lifetime of the population from the moment t until the first moment after the
change of the state of the population, residual time of the population lifetime.
As before, if there exists a stationary distribution for the process t , then there exists the

limit ZtZ
P

 .
Distributions of random variables Z,''Z,'Z,tZ,Z,Z,Z ''k'k'0 and their an expected values
 ZE '0 , ZE 'k ,)Z(E ''k ,)tZ(E ,)'Z(E ,)''Z(E ,)Z(E) are basic characteristics of the reliabil-

ity function.
One of the simpler type of the processes used in the reliability calculations is the class of
Markov processes with a finite or uncountable number of states. In this sense the pure death
or general death process could be a model describing the changes of the population states.

In aspect of Internet survey three characteristics are important:
Z'0 - the time until the first change of the state of the population,

'Z - the length of the lifetime of the population per one change of the state,
 tZ - the lifetime of the population from the moment t until the first moment after the

change of the state of the population, residual time of lifetime of the population.

Below the probability distribution of these random values and their the expected values are
derived.

7.3 Formulae of characteristics of Markov process
Assume that the process t is a homogeneous Markov process with a finite number of the
states which is assigned N,...,2,1 .
Let the set n,...,2,1,0E denote a set of the functioning states of the system (life states of
the population) and n,...,2k,1kE a set of the failed states of the system (a set of
death states of the population which is interpreted as break between repeated surveys).
The Markov process is analysed in following steps.

1. The Markov process has two properties which are equivalent to the definition the Markov
process:

- the interval in which the process finds itself in the state i , does not depend on the process
taking place outside the interval and it has exponential distribution

 ettP t
i i,i , where

ij
j,ii,i ,

- a sequence of the states through which the process passes is the homogenous Markov

chain with transition probabilities

i,i

j,i
j,i . At the same time, if 0i,i , then the state i

is called an absorbing state, because when the process has entered the state, it will remain in
it forever. In this case we assume that 0j,i .

2. Solution of the Kolmogorov equations

Let
 itPtpi .
The probabilities of the states tpi satisfy the Kolmogorov equations

 tptp i
N

0i
j,i

'
j

, N,...,1,0j 1.3.7

These equations are rewritten in a matrix form

 tptp' ,
where tp,...,tptp n0 is the vector of the states probabilities, j,i is the matrix of
the transition rate with the properties:
a) all elements of the matrix j,i satisfy the condition 0j,i ,

b) 0
N

0j
j,i

.

After assuming the initial distribution of the process p0p 0ii the system of the Kolmo-
gorov equations 1.3.7 has the explicit solution

 p0p 0ii .
The system of the Kolmogorov equations 1.3.7 is solved by means of Laplace transform.
Let

 dttpeza i
0

zt
i

 .

Taking the properties of Laplace transform is obtained

 N...,2,1,0j,zazazp j,i
N

0i
ij0j

,

and from the Cramer’s formulae the solution of the system is given by

 z

zza i
i

 2.3.7

where j,ij,izz , the determinant in the numerator is calculated from the determi-

nant in the denominator by the replacement of the i- th line with the line of the initial prob-
abilities p 0j , j,i is a Kronecker’s symbol. After inversion of the Laplace transform the for-

mulae of the probability of the process states is obtained.
3. Conditions of existing of the stationary distribution of the process.
Two states are called communicating, if there exist such indices i,...,i k1 as well as j,...,j l1 ,
that 0,...,, j,ii,ii,i k211 and 0,...,, i,jj,jj,j l211

 . We also assume that each state commu-

nicates with itself.

Engineering the Computer Science and IT320

The communication relation is an equivalence relation and introduce the decomposition of
the set of the states into the classes of communicating states A,...,A m1 .
 The class As follows the class Ar , if there exist the states Ai r and Aj s such that

0j,i .
A class is called ergodic, if it is not followed by any class. By compliance with or satisfaction
of these conditions the proposition holds:
The stationary distribution of the process, ptplim i

P
i

t

, which is independent of the

initial distribution exists if and only if there exists exactly one ergodic class, whereas the sta-
tionary probabilities satisfy the system of equations:

 N,...,2,1,0j,0p j,i
N

0i
i

, 1p

n

1i
i

 3.3.7

4. Basic characteristics of the reliability function

Let A be a set of the states and let Ai .
The transition time to the set A is defined as a random variable

 i0At:tinfAXi .
Its probability distribution is obtained by means of Laplace transform

 AXzexpEz ii .
From the formula of the total probability for the expected value

 Aj ij,Aj

j
i,i

j,i

i,i

j,i

i,i

i,i
i z

z
z

is computed in the following way.
In the state i the process is for the time i which is the random variable with exponential

distribution and Laplace transform

i,i

i,i
z

 , next, from this state it passes with the prob-

ability

i,i

j,i to the state j .

If Aj , then ii AX , and if Aj , then AXAX jii and both components are in-
dependent.
The solutions of the equations system

Aj
j,ii

ij
Aj

j,ij,i

A,Ai

Azz
 4.3.7

are rational functions and after inversing them the probability distribution of the random
variable AXi is obtained.
Differentiating the equation system 4.3.7 as regards to z and substituting 0z , the ex-
pected transition times

 0AXE '

ii
are obtained and they are satisfying the equations system

 Ai,01AXE j

Aj
j,i

.

Let Aq j,i denote probability of an event, that in the moment of the first entrance of the

process to the set A, the process will enter the state Aj , on condition that at initial mo-
ment the process was in the state Ai .
In the analogical way as above are obtained the forward equations for these probabilities

 ik,Ak
j,k

i,i

k,i

i,i

j,i
j,i Aqzq .

Transforming the equations we have

j,ij,k
Ak

k,i Aq , Aj,Ai 5.3.7

5. Transcription of the characteristics from the point 4 by means of AXi and the probabil-
ity Aq j,i .

Let at the initial moment 00 , that is at the initial moment all the elements of the system
are functioning (all the elements of the population are in the state of life).
Then
 EXZ 0'0 .
The probability Eq j,0 is computed from the equations system of 5.3.7 and from the

formula of the total probability is derived

 tEXPEqtZP j
Ej

j,0
''i

 .

Probability of the event that in the moment of the first renewal the process enters the state
Ek from the formula of the total probability is equal to

 EqEq k,j
Ej

j,0

 .

If these probabilities are known, then the probability distribution Z'1 and the probabilities of
entrance to given states at the moment of the second failure (at the moment of the second

Mathematical modeling of the Internet survey 321

The communication relation is an equivalence relation and introduce the decomposition of
the set of the states into the classes of communicating states A,...,A m1 .
 The class As follows the class Ar , if there exist the states Ai r and Aj s such that

0j,i .
A class is called ergodic, if it is not followed by any class. By compliance with or satisfaction
of these conditions the proposition holds:
The stationary distribution of the process, ptplim i

P
i

t

, which is independent of the

initial distribution exists if and only if there exists exactly one ergodic class, whereas the sta-
tionary probabilities satisfy the system of equations:

 N,...,2,1,0j,0p j,i
N

0i
i

, 1p

n

1i
i

 3.3.7

4. Basic characteristics of the reliability function

Let A be a set of the states and let Ai .
The transition time to the set A is defined as a random variable

 i0At:tinfAXi .
Its probability distribution is obtained by means of Laplace transform

 AXzexpEz ii .
From the formula of the total probability for the expected value

 Aj ij,Aj

j
i,i

j,i

i,i

j,i

i,i

i,i
i z

z
z

is computed in the following way.
In the state i the process is for the time i which is the random variable with exponential

distribution and Laplace transform

i,i

i,i
z

 , next, from this state it passes with the prob-

ability

i,i

j,i to the state j .

If Aj , then ii AX , and if Aj , then AXAX jii and both components are in-
dependent.
The solutions of the equations system

Aj
j,ii

ij
Aj

j,ij,i

A,Ai

Azz
 4.3.7

are rational functions and after inversing them the probability distribution of the random
variable AXi is obtained.
Differentiating the equation system 4.3.7 as regards to z and substituting 0z , the ex-
pected transition times

 0AXE '

ii
are obtained and they are satisfying the equations system

 Ai,01AXE j

Aj
j,i

.

Let Aq j,i denote probability of an event, that in the moment of the first entrance of the

process to the set A, the process will enter the state Aj , on condition that at initial mo-
ment the process was in the state Ai .
In the analogical way as above are obtained the forward equations for these probabilities

 ik,Ak
j,k

i,i

k,i

i,i

j,i
j,i Aqzq .

Transforming the equations we have

j,ij,k
Ak

k,i Aq , Aj,Ai 5.3.7

5. Transcription of the characteristics from the point 4 by means of AXi and the probabil-
ity Aq j,i .

Let at the initial moment 00 , that is at the initial moment all the elements of the system
are functioning (all the elements of the population are in the state of life).
Then
 EXZ 0'0 .
The probability Eq j,0 is computed from the equations system of 5.3.7 and from the

formula of the total probability is derived

 tEXPEqtZP j
Ej

j,0
''i

 .

Probability of the event that in the moment of the first renewal the process enters the state
Ek from the formula of the total probability is equal to

 EqEq k,j
Ej

j,0

 .

If these probabilities are known, then the probability distribution Z'1 and the probabilities of
entrance to given states at the moment of the second failure (at the moment of the second

Engineering the Computer Science and IT322

change of the population state) can be computed. This in turn makes it possible to compute
the probability distribution Z'2 and so on.
To compute the stationary distributions of the random variables Z' and Z'' let us introduce
the following probabilities:
- Eqi - probability of an event that in the moment of the renewal of the population (as the
system) in stationary conditions the process enters the state Ei ,
- Eqi - probability of an event that in the moment of the death of the population (the fail-
ure of the system) in stationary conditions the process enters the state Ei .

 Eqi is the probability of the event that in the time dt the process will pass from the set

E to the state Ei on condition that in this time the process passed from the set E to the
set E .
Formally, it is transcribed by formulas

Ei Ej
i,jj

Ej
i,jj

i p

p

Eq 6.3.7

and analogically

Ei Ej
i,jj

Ej
i,jj

i p

p

Eq 6.3.7

where pj are the stationary probabilities of the process.

The probability distributions of the random variables Z' , ''Z and Z - residual time of the
system life are given by

 tEXPEqtZP i
Ei

i
'

 7.3.7

 tEXPEqtZP i
Ei

i
''

 8.3.7

 tEXPptZP i
Ei

i

 9.3.7

The expected values of the basic reliability characteristics are given by

 EXEZE 0'0 ,
 EXEEqZE i

Ei
i

'

,

 EXEEqZE i
Ei

i
''

,

 EXEpZE i
Ei

i

,

8. The pure death process

The pure death process is a homogenous Markov process t with the space of states
0,1,2,...,n,..., for which

0ij,i as well as 0j,i for 1ij .
That is, the pure death process passes successively through the states ...n...210
and in the state k it is for the time tk with exponential distribution

 ettP t

k k

and next it passes to the state 1k with the probability one.
Let n,...,2,1,0E be a set of the functioning states of the system (the set of the states of
the life of the population), ,...2n,1nE is a set of the failed states of the system (the
set of the states of death of the population), and 00 .
Because the pure death process describes behaviour of the non- renewable system, we as-
sume that a basic characteristic of the pure death process is the time until the first failure of
the system (the time until the first change of the state of the population, the time until the
first of death of the population)
 EXZ 0'0 .
And as before

 i0At:tinfAXi and zEXzexpE ii
are introduced.
Then the equations system (7.3.4) takes on the form

nnn

ii1ii
zz

ni,0zzz

from which it follows that

n0

n10z
0 z...z

...
eEz '

0 ,

n

0k kk

t
n10

'0 'w
e...tZPtF

k
 1.8

where n10 x...xxxw .
Because the time until the first moment of the failure of the system (the time until the first
change of the state of the population, the time until the first death of the population) is a
sum of the random variables

 n10

'0 ...Z

Mathematical modeling of the Internet survey 323

change of the population state) can be computed. This in turn makes it possible to compute
the probability distribution Z'2 and so on.
To compute the stationary distributions of the random variables Z' and Z'' let us introduce
the following probabilities:
- Eqi - probability of an event that in the moment of the renewal of the population (as the
system) in stationary conditions the process enters the state Ei ,
- Eqi - probability of an event that in the moment of the death of the population (the fail-
ure of the system) in stationary conditions the process enters the state Ei .

 Eqi is the probability of the event that in the time dt the process will pass from the set

E to the state Ei on condition that in this time the process passed from the set E to the
set E .
Formally, it is transcribed by formulas

Ei Ej
i,jj

Ej
i,jj

i p

p

Eq 6.3.7

and analogically

Ei Ej
i,jj

Ej
i,jj

i p

p

Eq 6.3.7

where pj are the stationary probabilities of the process.

The probability distributions of the random variables Z' , ''Z and Z - residual time of the
system life are given by

 tEXPEqtZP i
Ei

i
'

 7.3.7

 tEXPEqtZP i
Ei

i
''

 8.3.7

 tEXPptZP i
Ei

i

 9.3.7

The expected values of the basic reliability characteristics are given by

 EXEZE 0'0 ,
 EXEEqZE i

Ei
i

'

,

 EXEEqZE i
Ei

i
''

,

 EXEpZE i
Ei

i

,

8. The pure death process

The pure death process is a homogenous Markov process t with the space of states
0,1,2,...,n,..., for which

0ij,i as well as 0j,i for 1ij .
That is, the pure death process passes successively through the states ...n...210
and in the state k it is for the time tk with exponential distribution

 ettP t

k k

and next it passes to the state 1k with the probability one.
Let n,...,2,1,0E be a set of the functioning states of the system (the set of the states of
the life of the population), ,...2n,1nE is a set of the failed states of the system (the
set of the states of death of the population), and 00 .
Because the pure death process describes behaviour of the non- renewable system, we as-
sume that a basic characteristic of the pure death process is the time until the first failure of
the system (the time until the first change of the state of the population, the time until the
first of death of the population)
 EXZ 0'0 .
And as before

 i0At:tinfAXi and zEXzexpE ii
are introduced.
Then the equations system (7.3.4) takes on the form

nnn

ii1ii
zz

ni,0zzz

from which it follows that

n0

n10z
0 z...z

...
eEz '

0 ,

n

0k kk

t
n10

'0 'w
e...tZPtF

k
 1.8

where n10 x...xxxw .
Because the time until the first moment of the failure of the system (the time until the first
change of the state of the population, the time until the first death of the population) is a
sum of the random variables

 n10

'0 ...Z

Engineering the Computer Science and IT324

hence the expected time until the first failure of the system (the time until the first change of
the state of the population, the time until the first death of the population) is equal to

n10

'0
1...11

ZE 2.8

9. The general pure death process

The general pure death process is a homogeneous Markov process t with the number of
states 1,0Y:Y:YE nn , where 1Y or0Y,Y,...,YY ii

T
n1 , for which only im-

mediate transitions in the form

 n,...,1i,Y,...,Y,1,Y,...,Y'YY,...,Y,0,Y,...,YY n1i1i1n1i1i1 ,
with the transition rates Yi are possible.
Such a transition denotes a change of the state of one element of the population and can be
interpreted in the research of the population lifetime as a failure, an arrival or a death of the
i -th element.
By the previous denotations E is a set of the states of life of the population (a set of the
functioning states of the system), E is a set of the states of death of the population (a set of
the failed states of the system).
We assume that in the initial moment all the elements are in the state of life that is 00Y .
The notion of the way is defined as class of the realisation of the process tY with an as-
sumed sequence of the states, through which the process passes. This sequence begins from
the state at the initial moment zero and ends with the state at the moment of the change of
the state of the system (the failure of the system, the death of the population)
 Y,...,Y,Y m10 ,

 0,...,0,0Y 0 , EY k

 for ,mk EY m
 .

Each transition from a state to a state described by the way Y,...,Y,Y m10 is the
change of the state of the system element (which is the failure of the system element or arri-
val or death of the element of the population of the size n , 1n).
Summary rate is defined then as

 YY
n

1i
i

,

where 0Yi , if in the state Y i -th element is already failed (i -th element of the popula-
tion has arrived).
Then from the properties of the Markov process

 Y

YYp i
i

is the probability of the event that the process passes from the state
 Y,...,Y,0,Y,...,YY n1i1i1 to the state Y,...,Y,1,Y,...,Y'Y n1i1i1 , that is i -th element

changes its state (fails, arrives or dies).
Let ik denote the number of the element changing the state (failing, arriving or dying)
when it passes from the state Y 1k to the state Y k during the passage of the way .
Then from the formula of the total probability the probability of the change of the system
state (failure of the system, death of the population) equals

ptFt'ZPtF 0 1.9

where sum is calculated for all the possible ways ,

 ep...epepp m

i
1

i
0

i m21

is the passage probability of the way , and tF is the conditional probability of the
change of state of the system (failure of the system, death of the population) on the condi-
tion of the passage of the way .
Since in each state Y k the process remains for the time with the exponential distribution

with the parameter Y k , hence the conditional process tY on the condition of the pas-

sage of the way is the pure death process with transition rates being given by Y k .
Substituting to the form 1.9 the expression 1.8 the probability of the first death of the
population (the first failure of the system) is obtained.
The expected time of the first death of the population (the first failure of the system) from
the equality 2.8 is derived and equals

 Y

1...
Y
1pZE 1m0

'0 .

10. Conclusions

In this study the process of Internet data collection is interpreted and analysed as a random
experiment or the life test of population surveyed by using the notions and methods of the
probability and reliability theories. A random set of respondents who participate in Internet
survey is called the uncontrolled sample and defined as the counting process by using Pois-
son processes. The proposed approach allows to study some stochastic properties of the
process of the Internet data collection, the calculation and the estimate of the basic character-
istics by the assumed assumptions. Moreover, the Markov methods are applied to descrip-
tion of a life testing experiment in which the basic characteristics of a reliability of the length
of the population lifetime are derived, when the finite population is interpreted as a system
with the monotonic structure function and the changes of the population states are de-
scribed through the death and the general death processes.

Mathematical modeling of the Internet survey 325

hence the expected time until the first failure of the system (the time until the first change of
the state of the population, the time until the first death of the population) is equal to

n10

'0
1...11

ZE 2.8

9. The general pure death process

The general pure death process is a homogeneous Markov process t with the number of
states 1,0Y:Y:YE nn , where 1Y or0Y,Y,...,YY ii

T
n1 , for which only im-

mediate transitions in the form

 n,...,1i,Y,...,Y,1,Y,...,Y'YY,...,Y,0,Y,...,YY n1i1i1n1i1i1 ,
with the transition rates Yi are possible.
Such a transition denotes a change of the state of one element of the population and can be
interpreted in the research of the population lifetime as a failure, an arrival or a death of the
i -th element.
By the previous denotations E is a set of the states of life of the population (a set of the
functioning states of the system), E is a set of the states of death of the population (a set of
the failed states of the system).
We assume that in the initial moment all the elements are in the state of life that is 00Y .
The notion of the way is defined as class of the realisation of the process tY with an as-
sumed sequence of the states, through which the process passes. This sequence begins from
the state at the initial moment zero and ends with the state at the moment of the change of
the state of the system (the failure of the system, the death of the population)
 Y,...,Y,Y m10 ,

 0,...,0,0Y 0 , EY k

 for ,mk EY m
 .

Each transition from a state to a state described by the way Y,...,Y,Y m10 is the
change of the state of the system element (which is the failure of the system element or arri-
val or death of the element of the population of the size n , 1n).
Summary rate is defined then as

 YY
n

1i
i

,

where 0Yi , if in the state Y i -th element is already failed (i -th element of the popula-
tion has arrived).
Then from the properties of the Markov process

 Y

YYp i
i

is the probability of the event that the process passes from the state
 Y,...,Y,0,Y,...,YY n1i1i1 to the state Y,...,Y,1,Y,...,Y'Y n1i1i1 , that is i -th element

changes its state (fails, arrives or dies).
Let ik denote the number of the element changing the state (failing, arriving or dying)
when it passes from the state Y 1k to the state Y k during the passage of the way .
Then from the formula of the total probability the probability of the change of the system
state (failure of the system, death of the population) equals

ptFt'ZPtF 0 1.9

where sum is calculated for all the possible ways ,

 ep...epepp m

i
1

i
0

i m21

is the passage probability of the way , and tF is the conditional probability of the
change of state of the system (failure of the system, death of the population) on the condi-
tion of the passage of the way .
Since in each state Y k the process remains for the time with the exponential distribution

with the parameter Y k , hence the conditional process tY on the condition of the pas-

sage of the way is the pure death process with transition rates being given by Y k .
Substituting to the form 1.9 the expression 1.8 the probability of the first death of the
population (the first failure of the system) is obtained.
The expected time of the first death of the population (the first failure of the system) from
the equality 2.8 is derived and equals

 Y

1...
Y
1pZE 1m0

'0 .

10. Conclusions

In this study the process of Internet data collection is interpreted and analysed as a random
experiment or the life test of population surveyed by using the notions and methods of the
probability and reliability theories. A random set of respondents who participate in Internet
survey is called the uncontrolled sample and defined as the counting process by using Pois-
son processes. The proposed approach allows to study some stochastic properties of the
process of the Internet data collection, the calculation and the estimate of the basic character-
istics by the assumed assumptions. Moreover, the Markov methods are applied to descrip-
tion of a life testing experiment in which the basic characteristics of a reliability of the length
of the population lifetime are derived, when the finite population is interpreted as a system
with the monotonic structure function and the changes of the population states are de-
scribed through the death and the general death processes.

Engineering the Computer Science and IT326

11. Acknowledgments

The research was partially supported by the Ministry of Science and Higher Education pro-
grams 03/S/0063/04, 03/S/0059/07 and 03/E/0015/08, Warsaw School of Economics.

12. References

Barlow, R.E. & Proschan, F. (1965, 1996). Mathematical theory of reliability. J. Wiley and Sons,
Inc. New York or Philadelphia SIAM, ISBN 0-89971-369-2

Barlow, R.E. & Proschan, F. (1975). Statistical theory of reliability and life testing, Holt, Reinhart
and Winston INC. New York

Biffignandi, S. & Pratesi, M. (2000). Modelling firm response and contact probabilities in
Web surveys, Proceedings of the “Second International Conference on establishment sur-
veys”, USA, June 2000, Buffalo

Bracha, Cz. (1996). Theoretical foundation of survey sampling (in Polish), Polish Scientific Pub-
lisher, ISBN 83-01-12123-8, Warsaw

Callegaro, M. & Disogra, CH. (2008). Computing response metrics for online panels, Public
Opinion Quarterly, Vol. 72, No. 5, 2008, Special Issue, pp. 1008-1032, ISSN 0033-362X

Couper, M.P. & Miller, P.V. (2008). Web survey methods, Public Opinion Quarterly, Vol. 72,
No. 5, 2008, Special Issue, pp. 831-835, ISSN 0033-362X

Dilman, Don A.; Smyth, J. & Christian, L.M. (2008). Internet, Mail and Mixed-Mode Surveys:
The Tailored Design Method, 3rd ed., Hoboken, NJ: John Wiley Co., ISBN 978-0-471-
69868-5, New York

Galesic, M. (2006). Dropout on the Web: effects of interest and burden experiences during an
online survey, Journal of Official Statistics, Vol. 22, No. 2, June 2006, pp. 313-328,
ISSN 0282-423X

Getka-Wilczyńska, E. (2003). Using WWW for data collection in a national survey on scho-
larship granted to young researches, Statistics in Transition, Journal of the Polish Sta-
tistical Association, Vol. 6, No. 1, June 2003, pp. 33-55, ISSN 1234-7655

Getka-Wilczyńska, E. (2004). About random properties of an uncontrolled sample (in Polish,
O losowych własnościach próby niekontrolowanej), Annals of College of Economic
Analyses, Vol. 13, 2004, pp. 59-69, ISSN 1232-4671

Getka-Wilczyńska, E. (2005). Stochastic properties of Internet data collection process, Pro-
ceedings of the 55th Session of the International Statistical Institute, CD-ROM, paper No.
998, ISBN 1-877040-28-2, Australia, April 2005, International Statistical Institute,
Sydney

Getka-Wilczyńska, E. (2007). Markov methods in test of the population lifetime, Proceedings
of the 56th Session International Statistical Institute 56th Session, CD-ROM, papers No.
1708, ISBN 978-972-8859-71-8, Portugal, July 2007, Centro de Estatística e
Aplicacŏes (CEAUL), Instituto Nacional de Estatística (INE) & International Statis-
tical Institute(ISI), Lisbon

Getka-Wilczyńska, E. (2008). The Internet sample, Statistics in Transition – new series, Journal
of Polish Statistical Association, Vol. 8, No. 3, December 2008, pp. 553-560

Hardy, G.H.; Littlewood, J.E. & Polya, G. (1934). Inequalities. Cambridge University Press,
Cambridge Internet and Innovative Data Collection (2001). Bulletin of the Interna-
tional Statistical Institute, 53rd Session, Proceedings, Tome LIX, Three books, Book 1,
Topic 16, pp. 229-253, ISBN 90-73592-20-8, South Korea, August 2001, International
Statistical Institute, Seoul

Kingman, J.F.C. (2002): Poisson’ processes (in Polish), Polish Scientific Publishers, ISBN 83-01-
13534-4, Warsaw

Kopociński, B. (1973). Outline of the renewal and reliability theory, (in Polish), Polish Scientific
Publishers, Warsaw

Kordos, J. (1982). Quality of statistical data (in Polish), Polish Economic Publisher, Warsaw
Koutra, M. V.; Tsitmidelis, S. & Zissmopoulos, V. (2003). Evaluation of reliability bounds by

set covering models, Statistics and Probability Letters, 61, 2003, pp. 163-175, ISSN
0167-7152

Lee, S. (2006). Propensity score adjustment as a weighting scheme for volunteer panel Web
surveys, Journal of Official Statistics, Vol. 22, No. 2, June 2006, pp. 329-349, ISSN
0282-423X

Särndal, C.E.; Swensson, B. & Wretman, J. (1992). Model assisted Survey Sampling, Springer-
Verlag New York Inc., ISBN 0-387-97528-4, New York

Sołowiew, A.D. (1983). Analytical methods in reliability theory (in Polish), Technical – Scientific
Publisher, ISBN 83-204-0473-8, Warsaw

Steczkowski, J. (1988). Application of survey sampling in social-economics research (in Polish),
Polish Economic Publisher, Warsaw

Tillě, Y. (2006). Sampling algorithms, Springer Science-Business Media, Inc., ISBN 10:0-387-
30814-8; ISBN 13:978-0387-30814-2, New York

Toepoel, V.; Das, M. & Van Soes, A. (2008). Effects of design in Web surveys, Public Opinion
Quarterly, Vol. 72, No. 5, 2008, Special Issue, pp. 985-1007, ISSN 0033-362X

Vehovar, V. (2007). Workshop on Internet Survey Methodology, Ullehammer, September
2007, http://vv.ris.org

www.WebSM.org
Wywiał, J. (1992). Statistical survey sampling in economics research (in Polish), Economic Acad-

emy, Katowice

Mathematical modeling of the Internet survey 327

11. Acknowledgments

The research was partially supported by the Ministry of Science and Higher Education pro-
grams 03/S/0063/04, 03/S/0059/07 and 03/E/0015/08, Warsaw School of Economics.

12. References

Barlow, R.E. & Proschan, F. (1965, 1996). Mathematical theory of reliability. J. Wiley and Sons,
Inc. New York or Philadelphia SIAM, ISBN 0-89971-369-2

Barlow, R.E. & Proschan, F. (1975). Statistical theory of reliability and life testing, Holt, Reinhart
and Winston INC. New York

Biffignandi, S. & Pratesi, M. (2000). Modelling firm response and contact probabilities in
Web surveys, Proceedings of the “Second International Conference on establishment sur-
veys”, USA, June 2000, Buffalo

Bracha, Cz. (1996). Theoretical foundation of survey sampling (in Polish), Polish Scientific Pub-
lisher, ISBN 83-01-12123-8, Warsaw

Callegaro, M. & Disogra, CH. (2008). Computing response metrics for online panels, Public
Opinion Quarterly, Vol. 72, No. 5, 2008, Special Issue, pp. 1008-1032, ISSN 0033-362X

Couper, M.P. & Miller, P.V. (2008). Web survey methods, Public Opinion Quarterly, Vol. 72,
No. 5, 2008, Special Issue, pp. 831-835, ISSN 0033-362X

Dilman, Don A.; Smyth, J. & Christian, L.M. (2008). Internet, Mail and Mixed-Mode Surveys:
The Tailored Design Method, 3rd ed., Hoboken, NJ: John Wiley Co., ISBN 978-0-471-
69868-5, New York

Galesic, M. (2006). Dropout on the Web: effects of interest and burden experiences during an
online survey, Journal of Official Statistics, Vol. 22, No. 2, June 2006, pp. 313-328,
ISSN 0282-423X

Getka-Wilczyńska, E. (2003). Using WWW for data collection in a national survey on scho-
larship granted to young researches, Statistics in Transition, Journal of the Polish Sta-
tistical Association, Vol. 6, No. 1, June 2003, pp. 33-55, ISSN 1234-7655

Getka-Wilczyńska, E. (2004). About random properties of an uncontrolled sample (in Polish,
O losowych własnościach próby niekontrolowanej), Annals of College of Economic
Analyses, Vol. 13, 2004, pp. 59-69, ISSN 1232-4671

Getka-Wilczyńska, E. (2005). Stochastic properties of Internet data collection process, Pro-
ceedings of the 55th Session of the International Statistical Institute, CD-ROM, paper No.
998, ISBN 1-877040-28-2, Australia, April 2005, International Statistical Institute,
Sydney

Getka-Wilczyńska, E. (2007). Markov methods in test of the population lifetime, Proceedings
of the 56th Session International Statistical Institute 56th Session, CD-ROM, papers No.
1708, ISBN 978-972-8859-71-8, Portugal, July 2007, Centro de Estatística e
Aplicacŏes (CEAUL), Instituto Nacional de Estatística (INE) & International Statis-
tical Institute(ISI), Lisbon

Getka-Wilczyńska, E. (2008). The Internet sample, Statistics in Transition – new series, Journal
of Polish Statistical Association, Vol. 8, No. 3, December 2008, pp. 553-560

Hardy, G.H.; Littlewood, J.E. & Polya, G. (1934). Inequalities. Cambridge University Press,
Cambridge Internet and Innovative Data Collection (2001). Bulletin of the Interna-
tional Statistical Institute, 53rd Session, Proceedings, Tome LIX, Three books, Book 1,
Topic 16, pp. 229-253, ISBN 90-73592-20-8, South Korea, August 2001, International
Statistical Institute, Seoul

Kingman, J.F.C. (2002): Poisson’ processes (in Polish), Polish Scientific Publishers, ISBN 83-01-
13534-4, Warsaw

Kopociński, B. (1973). Outline of the renewal and reliability theory, (in Polish), Polish Scientific
Publishers, Warsaw

Kordos, J. (1982). Quality of statistical data (in Polish), Polish Economic Publisher, Warsaw
Koutra, M. V.; Tsitmidelis, S. & Zissmopoulos, V. (2003). Evaluation of reliability bounds by

set covering models, Statistics and Probability Letters, 61, 2003, pp. 163-175, ISSN
0167-7152

Lee, S. (2006). Propensity score adjustment as a weighting scheme for volunteer panel Web
surveys, Journal of Official Statistics, Vol. 22, No. 2, June 2006, pp. 329-349, ISSN
0282-423X

Särndal, C.E.; Swensson, B. & Wretman, J. (1992). Model assisted Survey Sampling, Springer-
Verlag New York Inc., ISBN 0-387-97528-4, New York

Sołowiew, A.D. (1983). Analytical methods in reliability theory (in Polish), Technical – Scientific
Publisher, ISBN 83-204-0473-8, Warsaw

Steczkowski, J. (1988). Application of survey sampling in social-economics research (in Polish),
Polish Economic Publisher, Warsaw

Tillě, Y. (2006). Sampling algorithms, Springer Science-Business Media, Inc., ISBN 10:0-387-
30814-8; ISBN 13:978-0387-30814-2, New York

Toepoel, V.; Das, M. & Van Soes, A. (2008). Effects of design in Web surveys, Public Opinion
Quarterly, Vol. 72, No. 5, 2008, Special Issue, pp. 985-1007, ISSN 0033-362X

Vehovar, V. (2007). Workshop on Internet Survey Methodology, Ullehammer, September
2007, http://vv.ris.org

www.WebSM.org
Wywiał, J. (1992). Statistical survey sampling in economics research (in Polish), Economic Acad-

emy, Katowice

Engineering the Computer Science and IT328

Toward Personalized RSS Retrieval Service: The Effect of Using User’s Context 329

Toward Personalized RSS Retrieval Service: The Effect of Using User’s
Context

Haesung Lee and Joonhee Kwon

X

Toward Personalized RSS Retrieval Service:
The Effect of Using User's Context

Haesung Lee1 and Joonhee Kwon2

 Dept. Computer Science, Kyonggi University
Republic of Korea

1. Introduction

Web 2.0 is a new way to find, save, and share information generated on the web. The goal of
Web 2.0 is to facilitate forming network and sharing knowledge between users. Useful
techniques that allow users easily to edit, store and publish contents on the web have been
created. After that, multiple personal contents platform or personal media platform such as
blog have developed. Using those platforms, a private individual publishes and shares his
or her useful knowledge with others on the web very easily (Tim Oreilly. 2007). In addition,
personalization is very critical concept to Web 2.0. Multiple personal contents platform or
media platforms such as a blog or YouTube [www.youtube] allow users easily to edit, store
and publish contents on the web. Moreover, those techniques help people publish and share
his or her useful knowledge with others on the web very easily (Maged N Kamel Boulos et
al. 2006). Web rapidly enlarges with explosively and newly increased information formed in
UCC (User Created Contents). More that 513 million people around the world now have
access to this global information resource (Lyman et al. 2000). However, how do all of these
people find the information they are most interested in from among all of those terabytes?
One among the most time-consuming human activities in modern times is keeping up
updated and useful information with a huge amount of continuously generated
information. The need of quickly obtaining and effectively sharing that information should
be more concerned.
In Web 2.0, it is very important that useful information should be found, acquired and
consumed efficiently. It is no longer the user who searches the information he or she is
looking for, but it is the information that reaches directly its consumers. Also, each user is
provided with the different information what he or she interests individually and shares his
or her own worth knowledge with others (Tim Oreilly. 2007).
After appearance of the World Wide Web, initial search engines possessing only 1000 Web
page indices, the method of acquiring information and ranking mechanisms have repeated a
numerous change to provide more satisfactory services to users (Sergey Brin et al. 1999). In
spite of dazzling technical development, the expansion of the web continually has
demanded new and epoch-making techniques relevant the mechanism through which a
search engine efficiently acquires information generated on the web and effectively provides
each user with useful information.

17

Engineering the Computer Science and IT330

The RSS is considered as the next generation information delivery technique, which
deliveries newly created information to users simultaneously and frequently without asking
them to visit the site every time when new content is published. Practically, many services
in Web 2.0 provide useful information in RSS feed format and a great many RSS feeds has
risen in quite short term (Don E. Descy. 2004).
Although there are actually millions of feeds available, finding those that are appealing and
relevant to user’s interests is not always easy. By rising RSS feed, consequently, many RSS
feed search services have appeared. Those RSS feed search service provide useful
information such as the best favorite feed or blog (A. Gulli. 2005). However, those RSS feed
search services are all tiptoeing around RSS search, but none have yet to launch a full-blown
personalized RSS search service.
As the scope of the internet gets larger and larger, the need for personalization to bring it
within our scope becomes more and more important. Nevertheless, typically existing RSS
retrieval systems offer user RSS feeds as results using mainly keyword based matching
mechanism or statistical approach such as favorite RSS feeds with many persons (Chris
Sherman. 2005). Therefore, existing RSS feed retrieval services have limitations to answer
efficiently to user’s need to obtain useful and appropriate RSS feeds. In other words, because
of this limitation, those services are not useful to many users.
To provide more useful and personalized RSS feed retrieval service to each user, it is
important to incorporate the feed characteristics and the user’s context. We describe this
corporation in this article later.
Contexts are any information that can be used to characterize the situation of an entity such
as a person, place or object (Jong-yi Hong et al. 2009). To provide each user or searcher more
personalized and useful information, number of applications or web services takes the
advantage of various contexts such as user’s preference (Haveliwala et al. 2003). For
realizing completely personalization in Web 2.0, the user’s preference is very efficiently used
to find and to acquire useful information among overexposure of information (Diane Kelly
et al. 2003). That is, user’s context has a large influence on the interest and intent of one
particular user.
Considering those described above, we introduce personalized RSS feed retrieval system in
which two factors are mainly considered, which are user’s context and existing information
retrieval techniques based on RSS characteristics.
In detail this article is organized as follows: Section 2 explores conceptual personalization in
Web 2.0 and important challenges to implementation of personalized application in Web 2.0;
Section 3 introduces RSS's potential ability to deriver personalized information to each user.
Also, in this section, we explore the existing RSS services or applications and their
limitations and introduce some solutions; Section 4 focuses on the use of user's context in
personalized RSS retrieval through the case of previous study; Section 5 outlines our design
of personalized RSS feed retrieval. For new and efficeint personalized RSS feed retrieval, we
describe some algorithms for incorporating information retrieval techniques and
characteristic of RSS. And we introduces each module of designed personalized RSS
retrieval system in detail and an equtation for ranking RSS feeds based on user's preference.
Section 7 looks at future possibilitof our proposed personalized RSS feed service in
ubiquitous computing environment and tha way of our research in the future.

Toward Personalized RSS Retrieval Service: The Effect of Using User’s Context 331

The RSS is considered as the next generation information delivery technique, which
deliveries newly created information to users simultaneously and frequently without asking
them to visit the site every time when new content is published. Practically, many services
in Web 2.0 provide useful information in RSS feed format and a great many RSS feeds has
risen in quite short term (Don E. Descy. 2004).
Although there are actually millions of feeds available, finding those that are appealing and
relevant to user’s interests is not always easy. By rising RSS feed, consequently, many RSS
feed search services have appeared. Those RSS feed search service provide useful
information such as the best favorite feed or blog (A. Gulli. 2005). However, those RSS feed
search services are all tiptoeing around RSS search, but none have yet to launch a full-blown
personalized RSS search service.
As the scope of the internet gets larger and larger, the need for personalization to bring it
within our scope becomes more and more important. Nevertheless, typically existing RSS
retrieval systems offer user RSS feeds as results using mainly keyword based matching
mechanism or statistical approach such as favorite RSS feeds with many persons (Chris
Sherman. 2005). Therefore, existing RSS feed retrieval services have limitations to answer
efficiently to user’s need to obtain useful and appropriate RSS feeds. In other words, because
of this limitation, those services are not useful to many users.
To provide more useful and personalized RSS feed retrieval service to each user, it is
important to incorporate the feed characteristics and the user’s context. We describe this
corporation in this article later.
Contexts are any information that can be used to characterize the situation of an entity such
as a person, place or object (Jong-yi Hong et al. 2009). To provide each user or searcher more
personalized and useful information, number of applications or web services takes the
advantage of various contexts such as user’s preference (Haveliwala et al. 2003). For
realizing completely personalization in Web 2.0, the user’s preference is very efficiently used
to find and to acquire useful information among overexposure of information (Diane Kelly
et al. 2003). That is, user’s context has a large influence on the interest and intent of one
particular user.
Considering those described above, we introduce personalized RSS feed retrieval system in
which two factors are mainly considered, which are user’s context and existing information
retrieval techniques based on RSS characteristics.
In detail this article is organized as follows: Section 2 explores conceptual personalization in
Web 2.0 and important challenges to implementation of personalized application in Web 2.0;
Section 3 introduces RSS's potential ability to deriver personalized information to each user.
Also, in this section, we explore the existing RSS services or applications and their
limitations and introduce some solutions; Section 4 focuses on the use of user's context in
personalized RSS retrieval through the case of previous study; Section 5 outlines our design
of personalized RSS feed retrieval. For new and efficeint personalized RSS feed retrieval, we
describe some algorithms for incorporating information retrieval techniques and
characteristic of RSS. And we introduces each module of designed personalized RSS
retrieval system in detail and an equtation for ranking RSS feeds based on user's preference.
Section 7 looks at future possibilitof our proposed personalized RSS feed service in
ubiquitous computing environment and tha way of our research in the future.

2. Personalization in Web 2.0

Web personalization can be described as any action that can customize the content or
structure of a web site to the user’s taste or preferences. Personalization has widely been
utilized by e- commerce organizations to better serve their customers (Bamshad Mobasher et
al. 2000).

Fig. 1. A person who has attributes

For personalization of Web 2.0, there are two important things: people, and content objects.
People are represented by identities (Ryan Turner, 2007). Most of people have many
attributes. Identities have information attached to them. In Fig. 1, there is a person. The
person has attributes.

Fig. 2. The user who has some account attributes

When a person comes to your web site, you often know a few things about them, like their
referring URL, their browser, etc. This isn't much. An early goal for conversion on Web 2.0
sites is account creation. In Figure 2, there is a person with a brand-new account. You know

Engineering the Computer Science and IT332

their account information, but not much else. The person has many attributes, but you don't
know what they are. A web site is made of contents objects, and the content objects have
attributes. In Web 2.0, you know what some of the attributes are. Other attributes, like user-
generated tags, might not yet be knowable. One of the most basic kinds of personalization is
access control. Based on the person's account information, they can access some content
objects and not others.

Fig. 3. A person frequently using your web site

Like the case saw in Figure 3, as a person uses your web site, you learn more about their
attributes. Sometimes they tell you ("subscribe to newsletter") and other times you learn
about people by knowing what they do ("I bought Scoble’s book about blogging").
Different content objects have different attributes. Some, like content type (photo, video,
downloadable document, product info) are structured, and others, like title, are unstructured.
Some, like tags on a Flickr photo, are added by users.

Fig. 4. Personalized information for an user

Toward Personalized RSS Retrieval Service: The Effect of Using User’s Context 333

their account information, but not much else. The person has many attributes, but you don't
know what they are. A web site is made of contents objects, and the content objects have
attributes. In Web 2.0, you know what some of the attributes are. Other attributes, like user-
generated tags, might not yet be knowable. One of the most basic kinds of personalization is
access control. Based on the person's account information, they can access some content
objects and not others.

Fig. 3. A person frequently using your web site

Like the case saw in Figure 3, as a person uses your web site, you learn more about their
attributes. Sometimes they tell you ("subscribe to newsletter") and other times you learn
about people by knowing what they do ("I bought Scoble’s book about blogging").
Different content objects have different attributes. Some, like content type (photo, video,
downloadable document, product info) are structured, and others, like title, are unstructured.
Some, like tags on a Flickr photo, are added by users.

Fig. 4. Personalized information for an user

Like Figure 4, basic content personalization is a matter of matching up the attributes of a
person with the attributes of a content object. You know the person likes basketball because
they bought a Duke Basketball jersey, so you show them a content object that has to do with
March Madness.
On the UK's Guardian newspaper site, writer Jemina Kiss suggested that web 3.0 will be
about recommendation. "If web 2.0 could be summarized as interaction, web 3.0 must be
about recommendation and personalization." she wrote (Jemima Kiss. 2008). We don't think
whether this day is web 2.0 or web 3.0, but we know that the personalized information
service is very important and needed service for information providers and information
consumers in both two generations.

Fig. 5. Amazon's personalization service

Like figure 5, Amazon (http://www.amazon.com) has been the early adopter of
personalization technology to recommend products to shoppers on its site, based upon their
previous purchases (Linden, G. Et al. 2003). Amazon makes extensive use of collaborative
filtering in its personalization technology.
Google provides a personalized service shown in figure 6, the gadget maker, which allows
users to make their personalized web page by themselves reflecting their preference.

Fig. 6. Gadget Maker

Engineering the Computer Science and IT334

Another example providing personalized service on the web is Pandora’s music genome
project offering users music streaming service based on their preference for music (Shane et
al. 2007). This provides very useful service that allows users not to take the time of searching
music related their preferences. With this service, user listens music related their preferences
continually. The use of those contexts in user-centered service makes it possible to provide
more useful and personalized information satisfying each user.
In Web 2.0, the concept of personalization is very important. As the scope of the Internet
gets larger and larger, the need for personalization to bring it within our scope becomes
more and more important (Udi Manber et al. 2000). But, any online examples where
personalization was really well integrated with the user experience currently are very few.
The best example we can come up with was Amazon’s personalization engine. However
this case is just scratching the surface of what’s possible.
Most application or studies about personalized information service mainly focus on
statistical or artificial intelligence techniques related with the semantic web. In this article,
however, we focus on the use of user's contexts. Using user's context in information
deliveries process is to satisfy user's need for information than other computational
approaches.
There are currently many projects underway exploring methods of personalization for
information seeking. The general starting point is to represent the interests of a user by
means of one or more keyword profiles expressing aspects of the user's interest. In a very
simple approach incoming information is compared with the profiles and is possessed to the
user if there is a sufficiently high match (Stephen S. Yau et al. 2003). This case is very simple
to standard information filtering techniques where the profiles represent topics of interest to
the users. The most important issue in personalized information retrieval is how the
interests of the user are captured. Various options are available; the user selects from a
number of preset topics, the user enters sets of keywords which they believe represent
topics that they are interested in, or the personalization system monitors the user's behavior
and learns profiles from this.
It is sure that personalization in Web 2.0 and future Web is very important thing. So, we use
user’s context to provide personalized information to each user.

3. The next generation information delivery technique, RSS

The amount of the different information generated on the broad-scale web increases
explosively. In Web 2.0, it is very important that useful information for each consumer
should be found, acquired and consumed effectively. It is no longer the user that searches
the information she is looking for, but it is the information she values that reaches directly
its consumers. RSS (Really simple syndication) is a very useful technique in Web 2.0
providing users a efficient new way to share content on their website with other users and
makes it available to offer them various information without asking them to visit the site
every time when new content is published (S. Jeff Cold. 2006).

Toward Personalized RSS Retrieval Service: The Effect of Using User’s Context 335

Another example providing personalized service on the web is Pandora’s music genome
project offering users music streaming service based on their preference for music (Shane et
al. 2007). This provides very useful service that allows users not to take the time of searching
music related their preferences. With this service, user listens music related their preferences
continually. The use of those contexts in user-centered service makes it possible to provide
more useful and personalized information satisfying each user.
In Web 2.0, the concept of personalization is very important. As the scope of the Internet
gets larger and larger, the need for personalization to bring it within our scope becomes
more and more important (Udi Manber et al. 2000). But, any online examples where
personalization was really well integrated with the user experience currently are very few.
The best example we can come up with was Amazon’s personalization engine. However
this case is just scratching the surface of what’s possible.
Most application or studies about personalized information service mainly focus on
statistical or artificial intelligence techniques related with the semantic web. In this article,
however, we focus on the use of user's contexts. Using user's context in information
deliveries process is to satisfy user's need for information than other computational
approaches.
There are currently many projects underway exploring methods of personalization for
information seeking. The general starting point is to represent the interests of a user by
means of one or more keyword profiles expressing aspects of the user's interest. In a very
simple approach incoming information is compared with the profiles and is possessed to the
user if there is a sufficiently high match (Stephen S. Yau et al. 2003). This case is very simple
to standard information filtering techniques where the profiles represent topics of interest to
the users. The most important issue in personalized information retrieval is how the
interests of the user are captured. Various options are available; the user selects from a
number of preset topics, the user enters sets of keywords which they believe represent
topics that they are interested in, or the personalization system monitors the user's behavior
and learns profiles from this.
It is sure that personalization in Web 2.0 and future Web is very important thing. So, we use
user’s context to provide personalized information to each user.

3. The next generation information delivery technique, RSS

The amount of the different information generated on the broad-scale web increases
explosively. In Web 2.0, it is very important that useful information for each consumer
should be found, acquired and consumed effectively. It is no longer the user that searches
the information she is looking for, but it is the information she values that reaches directly
its consumers. RSS (Really simple syndication) is a very useful technique in Web 2.0
providing users a efficient new way to share content on their website with other users and
makes it available to offer them various information without asking them to visit the site
every time when new content is published (S. Jeff Cold. 2006).

Fig. 7. RSS Feed

RSS can literally be used with just about any kind of web-based content. RSS fundamentally
is a simple specification that uses XML and a format for web-based content in a standard
way. RSS is a form of XML. An example of RSS feed is shown in Figure 7. A big advantage
of XML is that the data can be self-contained. Inside of XML, there’s an opportunity to
include a description of the methods required to use the data, along with the data itself.
Because RSS uses XML to glean relevant information, RSS may well become the universal
method people use to mine information from the Internet (Ronald J. Glotzbach et al. 2007).
Figure 9 shows a RSS format with number of tags. Those tags are composed structurally and
expressed in the tree as viewed at Figure 8.

Fig. 8. RSS feed structure

Engineering the Computer Science and IT336

RSS feeds are increasingly being used for other types of content. For example, you can get
RSS feeds with weather forecasts, company news and financial information, package
tracking and lots of others. RSS completely revolutionizes the paradigm according to which
people collect information generated at number of information sources. A recent Pew
Internet & American Life Project poll shows that only 9% of Americans understand what
RSS feeds can do, and according to Forrester Research, only 2% of households with Internet
access use RSS (Overhole et al. 2005)
Although there are actually millions of feeds available, finding those that are appealing and
relevant to a user isn't always easy. While RSS is not a widely used internet tool today, a
simple-to- use software client can make its use widespread in the near future. Email didn’t
go mainstream because people understood how data packets made their way around the
Net. It happened when an email client made that technology invisible and easy to use. RSS
will likely follow a similar path. Microsoft has already pledged to support all forms of RSS
in its new browser: Internet Explorer 7 (Langley. 2005). RSS will be used increasingly as a
way to cope with information overload.
News Aggregators (aggregators) or feed collectors download information from RSS feeds to
which you subscribe based on key. Increasingly, publishers are providing RSS feeds for
aggregation. This makes it easy to search their publications for research purposes. For example,
the New York Times provides a free RSS feed (http://www.nytimes.com/services/xml/rss/). The
range of current events and even topic-specific research that researchers can collect by
subscribing to several RSS feeds is significant (Richardson. et al). Using a web-based
aggregator, users can access their feeds from any place they have an internet connection.
Once users create a free account on web-based aggregator, they can add the RSS URL of
any information resource to begin the feed. But, this simple and efficient RSS aggregator (or
reader) services have some limitations to satisfy user's underlying need for information. To
provide each user RSS feeds automatically and periodically, these services request users to
input RSS feed URLs themselves. However those RSS feed search engine annoy users with
those requests. Because, it is very difficult to users to find which RSS channels publish
useful RSS feeds satisfying them.
Although there are actually millions of feeds available, finding those that are appealing and
relevant to a user isn't always easy. By rising necessity of RSS, consequently, RSS feed search
engines mainly dealing with RSS feed appear.

Fig. 9. Blogpulse

Toward Personalized RSS Retrieval Service: The Effect of Using User’s Context 337

RSS feeds are increasingly being used for other types of content. For example, you can get
RSS feeds with weather forecasts, company news and financial information, package
tracking and lots of others. RSS completely revolutionizes the paradigm according to which
people collect information generated at number of information sources. A recent Pew
Internet & American Life Project poll shows that only 9% of Americans understand what
RSS feeds can do, and according to Forrester Research, only 2% of households with Internet
access use RSS (Overhole et al. 2005)
Although there are actually millions of feeds available, finding those that are appealing and
relevant to a user isn't always easy. While RSS is not a widely used internet tool today, a
simple-to- use software client can make its use widespread in the near future. Email didn’t
go mainstream because people understood how data packets made their way around the
Net. It happened when an email client made that technology invisible and easy to use. RSS
will likely follow a similar path. Microsoft has already pledged to support all forms of RSS
in its new browser: Internet Explorer 7 (Langley. 2005). RSS will be used increasingly as a
way to cope with information overload.
News Aggregators (aggregators) or feed collectors download information from RSS feeds to
which you subscribe based on key. Increasingly, publishers are providing RSS feeds for
aggregation. This makes it easy to search their publications for research purposes. For example,
the New York Times provides a free RSS feed (http://www.nytimes.com/services/xml/rss/). The
range of current events and even topic-specific research that researchers can collect by
subscribing to several RSS feeds is significant (Richardson. et al). Using a web-based
aggregator, users can access their feeds from any place they have an internet connection.
Once users create a free account on web-based aggregator, they can add the RSS URL of
any information resource to begin the feed. But, this simple and efficient RSS aggregator (or
reader) services have some limitations to satisfy user's underlying need for information. To
provide each user RSS feeds automatically and periodically, these services request users to
input RSS feed URLs themselves. However those RSS feed search engine annoy users with
those requests. Because, it is very difficult to users to find which RSS channels publish
useful RSS feeds satisfying them.
Although there are actually millions of feeds available, finding those that are appealing and
relevant to a user isn't always easy. By rising necessity of RSS, consequently, RSS feed search
engines mainly dealing with RSS feed appear.

Fig. 9. Blogpulse

Blogpulse (www.blogpulse.com) viewed at Figure 9 is known primarily as a tool for tracking
trends and hot topics in the blogosphere. Also, it has the largest indexes of feed-based search
engine. Blogpulse's search service provides phrase search, all the words or any of the words
filters, and even allows a user to create her or his own free-form boolean queries.

Fig. 10. Bloglines

Figure 10 shows Bloglines(www.bloglines.com). It is both a feed search tool and a feed
reader/aggregator. A drop-down menu next to its search form allows a user to search all of
the indexed blogs or to add a feed to user’s subscription.
They are all tiptoeing around RSS search, but none have yet to launch a full-blown RSS
search service. While there are a number of smaller, specialized blog and feed search
engines, their lack of resources and the problem of blog and feed spam mean their search
results are often useless. So finding relevant feeds, at least for the time-being, often remains
a hit-or-miss affair. Also, those RSS feed search engines cannot provide effectively and
quickly useful results related each user’s need for some information.
To provide more relevant information to the user in RSS retrieval service, it is important to
incorporate the feed characteristics and the user’s contextual information into the retrieval
process. Because the previous retrieval services have not taken into account them, however,
they provide no personalized information to each user.
Using RSS techniques, information delivery service to each user is very efficient way for
implementing personalization in Web 2.0. We focus on this RSS potential. Also, we expand
its techniques to integrate user's context providing each users with their underlying
needing information. Later, we describe the integration of RSS and user's context in follow
sections.

4. The potential ability of user's context

In this section, we describe user's contexts in ubiquitous computing area and introduce
some applications to see potential ability of using user's context in our approach.
Contexts are any information that can be used to characterize the situation of an entity
(Gregory D.Abowd et al. 1999). An entity is a person, place, or object that is considered

Engineering the Computer Science and IT338

relevant to interaction between a user and an application. When humans talk with humans,
they are able to use implicit situational information, or context, to improve more
communicational functionalities. Unfortunately, this ability to convey ideas does not
transfer well to humans interacting with computers. By improving the application’s access
to context, it is available to increase the richness of communication in human-computer
interaction and make it possible to produce more useful computational services. There are
various human factor related context such as knowledge of habits and emotional state of
each user (Anind K. Dey. 2001).
That is an especially favorable case to use context to help select the information that is
needed by a user. To provide each user or searcher more interesting and useful information,
number of application or solution has been developed using many various contexts such as
user’s preference (Albrecht Schmidt et al. 1999). A user's context consists of the their present
state, their previous history and their predicted future states; this can be enhanced by the
contexts of other, similar or related, humans and other objects, or even by the context of
information itself.
Currently, a considerable amount of research has been done on providing personalized
information service. Existing personalization techniques on information retrieval can be
either manual personalization or automatic personalization. Manual personalization, such
as MyYahoo (http://my.yahoo.com), allows a user to select the user's own interests from a
predefined list. In these services, an account is created on the web page, and the user selects
checkboxes to determine what types of content are of interest to the user. There are some
problems in manual personalization; (1) It is inconvenient for users to specify many options,
(2) The provided options may be too coarse-grained to reflect users' preferences, (3) It is
static and requires users to update their profile after their preferences change. Perkowitz, et
al. demonstrated the feasibility of automatic personalization for desktop access to the Web (
M. Perkowiz et al. 1997). Different from manual personalization, automatic personalization
does not require explicit effort from users to customize their profiles. It automatically does
the personalization based on access logs using some machine learning, such as Daily
Learner, or data mining techniques, such as usage-based Web personalization (D. Billsus et
al. 2000 and M. Perkowitz et al. 1999). Widely used data mining techniques include
clustering, classification, association rules, etc. Clustering plays an important role in Web
mining and has found numerous applications, such as Web search engines, Web directories,
decision making assistance, and Web personalization. However, these techniques do not
adapt quickly to changing user interests along with the changes in various useful contexts,
such as time and location.
In conclusion, the existing systems that can provide personalized information either require
users to provide a lot of personal information through questionnaires or to use data-mining
techniques to gather and analyze information about users to generate user profiles. These
systems cannot effectively reflect the actual needs of users because the actual needs of users
may change according to current situation of users and many user actions (e.g. the most
recently visited web page) are not considered by this type of systems. So, we seek to more
useful user's context and different approach with existing studies to feed each users the
information that she want, when she want it. We know that retrieval is much more effective
if the context is richer than just location, and includes fields such as temperature, objects
nearby, user's current interests, even her emotional state and etc. A context used to aid

Toward Personalized RSS Retrieval Service: The Effect of Using User’s Context 339

relevant to interaction between a user and an application. When humans talk with humans,
they are able to use implicit situational information, or context, to improve more
communicational functionalities. Unfortunately, this ability to convey ideas does not
transfer well to humans interacting with computers. By improving the application’s access
to context, it is available to increase the richness of communication in human-computer
interaction and make it possible to produce more useful computational services. There are
various human factor related context such as knowledge of habits and emotional state of
each user (Anind K. Dey. 2001).
That is an especially favorable case to use context to help select the information that is
needed by a user. To provide each user or searcher more interesting and useful information,
number of application or solution has been developed using many various contexts such as
user’s preference (Albrecht Schmidt et al. 1999). A user's context consists of the their present
state, their previous history and their predicted future states; this can be enhanced by the
contexts of other, similar or related, humans and other objects, or even by the context of
information itself.
Currently, a considerable amount of research has been done on providing personalized
information service. Existing personalization techniques on information retrieval can be
either manual personalization or automatic personalization. Manual personalization, such
as MyYahoo (http://my.yahoo.com), allows a user to select the user's own interests from a
predefined list. In these services, an account is created on the web page, and the user selects
checkboxes to determine what types of content are of interest to the user. There are some
problems in manual personalization; (1) It is inconvenient for users to specify many options,
(2) The provided options may be too coarse-grained to reflect users' preferences, (3) It is
static and requires users to update their profile after their preferences change. Perkowitz, et
al. demonstrated the feasibility of automatic personalization for desktop access to the Web (
M. Perkowiz et al. 1997). Different from manual personalization, automatic personalization
does not require explicit effort from users to customize their profiles. It automatically does
the personalization based on access logs using some machine learning, such as Daily
Learner, or data mining techniques, such as usage-based Web personalization (D. Billsus et
al. 2000 and M. Perkowitz et al. 1999). Widely used data mining techniques include
clustering, classification, association rules, etc. Clustering plays an important role in Web
mining and has found numerous applications, such as Web search engines, Web directories,
decision making assistance, and Web personalization. However, these techniques do not
adapt quickly to changing user interests along with the changes in various useful contexts,
such as time and location.
In conclusion, the existing systems that can provide personalized information either require
users to provide a lot of personal information through questionnaires or to use data-mining
techniques to gather and analyze information about users to generate user profiles. These
systems cannot effectively reflect the actual needs of users because the actual needs of users
may change according to current situation of users and many user actions (e.g. the most
recently visited web page) are not considered by this type of systems. So, we seek to more
useful user's context and different approach with existing studies to feed each users the
information that she want, when she want it. We know that retrieval is much more effective
if the context is richer than just location, and includes fields such as temperature, objects
nearby, user's current interests, even her emotional state and etc. A context used to aid

retrieval can also usefully include fields that may be considered as aspects of the user
model.
Context can also be associated with each of the documents that are candidates for retrieval.
Thus a document may have contextual fields representing an associated preference or user's
current location. Sometimes these contextual fields are part of the explicit mark-up of a
document such as XML based RSS.
In later sections, we introduce related techniques for integrating information delivery
technique and user's context to provide each user with personalized information.

5. Personalized RSS Feed Service Using User's Context

In the future, we will be provided information that we want, when we want it. But, there are
no tries to integrate next generation syndication technique, RSS and user's context to
provide personalized information to each user. In this section, we attempt to look beyond
the needs of current personalization of Web 2.0.
In order to locate documents of interest users frequently make use of search engines such as
Google. However, current retrieval engines take no account of the individual user and their
personal interests or their physical context. We refer to extension of established information
retrieval as personalized information retrieval.
IR (Information Retrieval) and the related technology of IF (Information Filtering) are
concerned with the finding of information, often in the form of text documents, which are in
some sense about a topic that a user is interested in. But, both are not concerned with
satisfying the user's underlying information need. Typically, the user expresses their
information need as a query, which is then matched against the available documents. Then,
information is retrieved from a collection of discrete documents.
In a different way of typical RSS search engine, we subdivide each RSS feeds by feed tags
into fields. So, our proposed RSS retrieval service can match user’s query with not only
contents but also RSS tags. This is useful for users, because they can limit search range to
specific content of RSS feeds.

Name of
Field

Description Example

Title The title of content Information Retrieval Gupf
PubDate The publishing date

of content
Thu, 16 Apr 2009 21:11:40 +0000

Author The author of
content

jeremy

link URL of content http://www.irgupf.com/2009/04/16/impro
ving-findability-falls-short-of-the-mark/

Description The content of feed I came across this article by Vanessa Fox on
how government can improve the findability
of their web pages, and thereby allow citizens
to become better informed and government to

be more transparent.
Table 1. Subdivided fields

Engineering the Computer Science and IT340

These fields may be textual, such as title, author, keywords, and full text of content. Table 1
shows subdivided fields by RSS tags. The objective of incorporating contextual information
into the retrieval process is to attempt to deliver information most relevant to the user
within their current context. Use of context for retrieval within personalized information
retrieval is to determine the manner and timing of any information passed to the user. An
issue is that, since the information is based on the user's context, it should be delivered in a
timely fashion. So, for this consideration we take advantage of simple RSS techniques to
deliver information to each user in time when her or his interest changed.
We think to provide more relevant information to the user in RSS retrieval service, it is
important to incorporate the feed characteristics and the user’s contextual information into
the search process. However, the previous retrieval services have not taken into account
them. This seriously limits to offer users with useful information in RSS retrieval service.
To provide most relevant contents formed in RSS such as blog or news contents to the users
within their context, we incorporate user's contextual information into retrieval process. We
consider the following we use the RSS tag structure in query processing. It enables users or
search engine to limit retrieval range in a specific RSS feed tag, not searching full RSS
documents. Secondly, we consider both the query term frequency and the update frequency
in RSS channel. It enables users to get more useful RSS channel by considering multiple RSS
channel features. Thirdly, we use the user’s context in retrieval service. To provide a
personalized retrieval service, it is needed to understand the user’s interest or preference.
The context has a large influence on the interest and intent of one particular user.
The retrieval task is to deliver the RSS feed that best match the current user's context such as
the latest topic which is subscribed by the user. As the user's preference or interest changes,
new information may need to be retrieved.

Fig. 11. System Architecture

Toward Personalized RSS Retrieval Service: The Effect of Using User’s Context 341

These fields may be textual, such as title, author, keywords, and full text of content. Table 1
shows subdivided fields by RSS tags. The objective of incorporating contextual information
into the retrieval process is to attempt to deliver information most relevant to the user
within their current context. Use of context for retrieval within personalized information
retrieval is to determine the manner and timing of any information passed to the user. An
issue is that, since the information is based on the user's context, it should be delivered in a
timely fashion. So, for this consideration we take advantage of simple RSS techniques to
deliver information to each user in time when her or his interest changed.
We think to provide more relevant information to the user in RSS retrieval service, it is
important to incorporate the feed characteristics and the user’s contextual information into
the search process. However, the previous retrieval services have not taken into account
them. This seriously limits to offer users with useful information in RSS retrieval service.
To provide most relevant contents formed in RSS such as blog or news contents to the users
within their context, we incorporate user's contextual information into retrieval process. We
consider the following we use the RSS tag structure in query processing. It enables users or
search engine to limit retrieval range in a specific RSS feed tag, not searching full RSS
documents. Secondly, we consider both the query term frequency and the update frequency
in RSS channel. It enables users to get more useful RSS channel by considering multiple RSS
channel features. Thirdly, we use the user’s context in retrieval service. To provide a
personalized retrieval service, it is needed to understand the user’s interest or preference.
The context has a large influence on the interest and intent of one particular user.
The retrieval task is to deliver the RSS feed that best match the current user's context such as
the latest topic which is subscribed by the user. As the user's preference or interest changes,
new information may need to be retrieved.

Fig. 11. System Architecture

Considering those described above, we introduce personalized RSS feed retrieval system in
which two factors are mainly considered, characteristic of the RSS and user’s context. It is a
new RSS feed retrieval system that uses user's context for matching retrieval results to their
interests.
Figure 11 shows the new architecture of the personalized RSS retrieval system. The
architecture is composed of RSS feed crawler, RSS feed repository, and RSS feed retrieval
engine. RSS feed crawlers visit RSS feed sites on the Web, down their RSS channels. After
duplicated RSS feed elimination processing, captured RSS feeds are indexed in structured
RSS feed repository. Historical repository is for storing user's previous context and current
context from user’s behavior such as web search. From this historical repository, RSS feed
retrieval engine capture user's current interest or preference. Matching captured user's
interest with indexed RSS contents deliver personalized RSS feed to each user. User's
context history data can also associate with each of the RSS feeds in RSS feed repository. The
RSS feeds in RSS feed repository are candidates for retrieval.

5.1 Collecting and Updating User's Context

Traditional information retrieval techniques usually require the users to spend much effort
to repeatedly refine their request making their requests more specific to eliminate irrelevant
results to obtain the result they want. However, those request cause annoyances to each
user. And those techniques not provide related information with user's preference.
In order to get personalized RSS feeds based on user's preference, user's context data is
needed. So, we store user's context data in a context history tuple. Historical repository
showed in Figure 13 consists of a set of context history tuples. A context history tuple has
the following structure.

Context History Schema
Context Type Context Value RSS channel

Table 2. A context history schema

A tuple consists of context type, context value and context related data. The context type is
to record context attributes such as time, location. Context value data can describe user’s
context such as time or location. RSS channel data express URL of RSS channel in which the
user visit with some context value.

5.2 RSS feed crawler

Called periodically, RSS feed crawlers wander about on the web through the link to find
RSS feed link. When accessing corresponded URL address, RSS feed crawlers judge whether
the URL present RSS feed address or not. It is very important to acquire valid RSS feed
address promptly. Our each RSS feed crawler include feed information cash with which RSS
crawlers directly check whether acquired RSS feed URL is duplicated to elevate the whole
system’s performance. If acquired RSS feed URL is verified as new RSS feed URL, RSS feed
crawlers get the RSS feed URL to structured RSS feed database. Otherwise, RSS feed
crawlers extract new contents from the RSS feeds.

Engineering the Computer Science and IT342

Figure 13 shows the operation flowchart of RSS feed crawler. By periodical calls which
generate the crawler instance, the RSS feed crawler accesses site along hyperlink in the site
and then downs web page to determine whether this page is RSS channel or not. If accessed
page is RSS channel, RSS feed crawler checks duplicated accesses. RSS feed crawler acquire
RSS feeds, and then insert it into structured RSS feed database. RSS feed crawlers use depth-
first retrieval algorithm (DFS), which is used typically by many web crawlers (Allan Heydon
et al. 1999). Proposed RSS feed crawlers input links acquired from web pages to queue and
draw each links out orderly to judge whether the link is RSS channel link or not.

Fig. 12. Operation Flowchart of RSS Feed Crawler

The use of those structural characteristic of RSS not makes it very simple to express the web
contents but also makes the RSS feed data to be accessed by crawlers and retrieval engine
efficiently. The RSS feed data are structured by sub tags of item and stored in structured RSS
feed database. Structured RSS feed enables users to limit retrieval in a specific feed tag, not
searching all RSS feeds. This method can provide more useful RSS channel to users. For
example, it allows retrieval engine to limit results to content published within a particular
date range, and sort results by date reflecting user's context more efficiently.

5.3 RSS feed retrieval engine

In our proposed system, RSS feed retrieval engine takes important key role. The goal of
proposed RSS feed retrieval engine is to offer users more useful information. We consider
RSS feed characteristics and user’s contextual information. The proposed retrieval method is
comprised of four main tasks.
First, retrieval engine initiates the query and user’s context from each user. Then, RSS feed
retrieval engine accesses RSS feed repository and look up related contents using a Term

Toward Personalized RSS Retrieval Service: The Effect of Using User’s Context 343

Figure 13 shows the operation flowchart of RSS feed crawler. By periodical calls which
generate the crawler instance, the RSS feed crawler accesses site along hyperlink in the site
and then downs web page to determine whether this page is RSS channel or not. If accessed
page is RSS channel, RSS feed crawler checks duplicated accesses. RSS feed crawler acquire
RSS feeds, and then insert it into structured RSS feed database. RSS feed crawlers use depth-
first retrieval algorithm (DFS), which is used typically by many web crawlers (Allan Heydon
et al. 1999). Proposed RSS feed crawlers input links acquired from web pages to queue and
draw each links out orderly to judge whether the link is RSS channel link or not.

Fig. 12. Operation Flowchart of RSS Feed Crawler

The use of those structural characteristic of RSS not makes it very simple to express the web
contents but also makes the RSS feed data to be accessed by crawlers and retrieval engine
efficiently. The RSS feed data are structured by sub tags of item and stored in structured RSS
feed database. Structured RSS feed enables users to limit retrieval in a specific feed tag, not
searching all RSS feeds. This method can provide more useful RSS channel to users. For
example, it allows retrieval engine to limit results to content published within a particular
date range, and sort results by date reflecting user's context more efficiently.

5.3 RSS feed retrieval engine

In our proposed system, RSS feed retrieval engine takes important key role. The goal of
proposed RSS feed retrieval engine is to offer users more useful information. We consider
RSS feed characteristics and user’s contextual information. The proposed retrieval method is
comprised of four main tasks.
First, retrieval engine initiates the query and user’s context from each user. Then, RSS feed
retrieval engine accesses RSS feed repository and look up related contents using a Term

Frequency (TF) algorithm that retrieves RSS feeds on a similar topic (MJ Pazzani et al. 1996).
It is commonly used method in traditional search engines. Second, we consider the
publishing rate in RSS channel. The reason of considering the publishing frequency of RSS
channel is to conclude whether those RSS channels publish useful contents continually. So,
we use the pubDate tag of all feeds of each RSS channel to calculate update frequency.
Calculating publishing frequency of each RSS channel can make it possible to filter out the
spam RSS channel. Third, we conclude which content includes user’s preference. By using
user’s context, it is possible to provide information with user’s preference. Our RSS feed
search engine takes the step in providing personalized search results based on user's
preferences specifying what interests each users. By using a set of user's context history
tuples in the historical repository, we can assume information that the user prefer. Finally,
our method ranks RSS feeds using three tasks. Our ranking score is computed by (1) and (2).
The RSuki denotes the ranking score with respect to RSS feed i and term Tk of user u. It is
possible to compute RSuki with adjustable parameters , and (1):

(1)

Equation (2) computes the preference degree of user u in RSS channel Di. In equation (2), n
is the number of context types and Cuj is the current context value with respect to context
type j of user u.

nj

j

nj

1j
jujjui Where Cpd

1

1, (2)

After ranking RSS channels, RSS search engine provides result set of RSS channels in
descending order by the computed ranking score.

6. Conclusion

Web 2.0 is a new way to find, save, and share information on the Web. The goal of Web 2.0
is to facilitate forming network and sharing knowledge between users. In Web 2.0, RSS is a
one of the most important techniques and a new way to provide a simple way for user to
share contents on their website and make it available to users without asking them to visit
the site every time when new contents are added. Although there are a lot of RSS feeds
available, finding which information are appealing and relevant to user's underlying
information need is not easy. Therefore, it is important to incorporate the user’s contextual

Engineering the Computer Science and IT344

information and traditional information techniques based on RSS feed characteristics into
the retrieval process to get relevant information to user. However, the previous search
system have not taken into account them when provide retrieved information as a result to
user. This seriously limits to offer users with reliable and useful information automatically.
Personalized RSS feed retrieval needs to bring together a number of disparate technologies.
We have discussed related issues in personalized RSS feed retrieval. In this article, we
proposes a new RSS feed retrieval system using user’s context and traditional information
techniques based on the characteristics of RSS feed. The proposed RSS feed search system
efficiently collects the data from RSS service site by categorizing RSS feed structure and then
rank RSS channel using user’s context and relevant tag value.
Using user’s context, it does provide personalized RSS feeds that automatically find RSS
service site for user based on her or his interests and other RSS service site he or she read.
That is, our proposed RSS feed search system uses personal preferences to deliver custom
search results based on interests selected by users. Being different with the previous works,
our proposed system acquires RSS feed on various web sites more efficiently using RSS feed
structure and ranks information more reliably considering user’s context such as preference,
or predefined profile.
Consequently, RSS feed search engines can learn from what a user do to help him or her
find what he or she need. With integration of processes for each factor, we can effective rank
the retrieval set of searching result by reliable RSS channel, the source of RSS feed. It makes
it possible to provide users with more personalized contents generated on reliable RSS
feeds.

7. Future Work

Recent rapid advances in Internet-based information systems and handheld devices make it
possible for users to retrieve information anytime and anywhere. Mobile and ubiquitous
computing environments provide a challenging and exciting new domain for information
retrieval. Some of the challenges are related with providing relevant and reliable
information to users often engaged in other contexts of ubiquitous computing environment
or to agents acting on behalf of the users.
Through our study described in this article, we know that identification of relevant
information can be achieved by integration of existing methods from information retrieval
and user's context. In the future work, we take advantage of contributions of human -
computer interaction, mobile computing and context-awareness technologies to determine
how and when to deliver the information to the user or how best to act on their user's behalf
in ubiquitous computing environments. So, we will extend those techniques to meet the
challenges and opportunity of ubiquitous context-aware environment. We will focus on
context-awareness RSS feed retrieval mobile service in the ubiquitous computing
environments in the future.

8. Acknowledgement

This work was supported by the Gyonggi Regional Research Center (GRRC) and Contents
Convergence Software (CCS) Research Center.

Toward Personalized RSS Retrieval Service: The Effect of Using User’s Context 345

information and traditional information techniques based on RSS feed characteristics into
the retrieval process to get relevant information to user. However, the previous search
system have not taken into account them when provide retrieved information as a result to
user. This seriously limits to offer users with reliable and useful information automatically.
Personalized RSS feed retrieval needs to bring together a number of disparate technologies.
We have discussed related issues in personalized RSS feed retrieval. In this article, we
proposes a new RSS feed retrieval system using user’s context and traditional information
techniques based on the characteristics of RSS feed. The proposed RSS feed search system
efficiently collects the data from RSS service site by categorizing RSS feed structure and then
rank RSS channel using user’s context and relevant tag value.
Using user’s context, it does provide personalized RSS feeds that automatically find RSS
service site for user based on her or his interests and other RSS service site he or she read.
That is, our proposed RSS feed search system uses personal preferences to deliver custom
search results based on interests selected by users. Being different with the previous works,
our proposed system acquires RSS feed on various web sites more efficiently using RSS feed
structure and ranks information more reliably considering user’s context such as preference,
or predefined profile.
Consequently, RSS feed search engines can learn from what a user do to help him or her
find what he or she need. With integration of processes for each factor, we can effective rank
the retrieval set of searching result by reliable RSS channel, the source of RSS feed. It makes
it possible to provide users with more personalized contents generated on reliable RSS
feeds.

7. Future Work

Recent rapid advances in Internet-based information systems and handheld devices make it
possible for users to retrieve information anytime and anywhere. Mobile and ubiquitous
computing environments provide a challenging and exciting new domain for information
retrieval. Some of the challenges are related with providing relevant and reliable
information to users often engaged in other contexts of ubiquitous computing environment
or to agents acting on behalf of the users.
Through our study described in this article, we know that identification of relevant
information can be achieved by integration of existing methods from information retrieval
and user's context. In the future work, we take advantage of contributions of human -
computer interaction, mobile computing and context-awareness technologies to determine
how and when to deliver the information to the user or how best to act on their user's behalf
in ubiquitous computing environments. So, we will extend those techniques to meet the
challenges and opportunity of ubiquitous context-aware environment. We will focus on
context-awareness RSS feed retrieval mobile service in the ubiquitous computing
environments in the future.

8. Acknowledgement

This work was supported by the Gyonggi Regional Research Center (GRRC) and Contents
Convergence Software (CCS) Research Center.

9. References

A. Gulli.; (2005). The anatomy of a news search engine, proceedings of international World Wide
Web Conference, pp.880 - 881, ISBN: 1-59593-051-5.

Albrecht Schmidt.; Michael Beigl.; Hans-W. Gellersen.; (1999), There is more to context than
location, Computers & Graphics, pp. 893-901, Vol. 23, No. 6.

Allan Heydon.; Marc Najork.; (1999). Mercator: A scalable, extensible Web crawler, World
Wide Web, pp. 219-229, Vol. 2, No. 4, ISBN: 1573-1413.

Anind K. Dey.; Understanding and Using Context, Personal and Ubiquitous Computing,
Springer-Verlag, pp.4 – 7, Vol. 5, No. 1, ISSN:1617-4909

Bamshad Mobasher.; Robert Cooley.; Robert Cooley.; (2000). Automatic personalization
based on Web usage mining, Communications of the ACM, pp. 142 – 151, Vol. 43, NO.
8.

Chris Sherman.; (2005), RSS Search Engines, Search Engine Watch,
 http://searchenginewatch.com/3 531191.
D. Billsus.; J. Pazzani.; J. Chen.; A learning agent for wireless news access, Intelligent User

Interfaces, pp. 33-36, ISBN:1-58113-134-8
Diane Kelly.; Jaime Teevan.; (2003). Implicit feedback for inferring user preference: a

bibliography, ACM SIGIR Forum, pp. 18 – 28, Vol. 37, No. 2, ISSN:0163-5840
Don E. Descy.; (2004). All aboard the internet: Introducing rss: your one stop for news and

information!,Jounal of TechTrends, pp. 3-5, Vol.49, NO. 3.
Gregory D.Abowd.; Anind K. Dey.; Peter J. Brown.; Nigel Davies.; Mark Smith.; Pet

Steggles.;(1999). Towards a better understanding of context and context- awareness,
Proceedings of the 1st international symposium on Handheld and Ubiquitous Computing,
pp. 304-307, ISBN:3-540-66550-1.

Haveliwala.; T.H.; (2003). Topic-sensitive PageRank: a context-sensitive ranking algorithm
for Web search, Knowledge and Data Engineering, IEEE Transactions, pp. 784- 796,
Vol.15, No.4, SSN: 1041-4347.

Jemima Kiss.; (2008). Web 3.0 is all about rank and recommendation, Article history,
http://www.guardian.co.uk/media/2008/feb/04/web20?gusrc=rss&feed=media

Jong-yi Hong.; Eui-ho Suh.; Sung-Jin Kim.; (2009). Context-aware systems: A literature
review and classification, Expert Systems with Applications: An International Journal,
pp. 8509-8522, Vol.36, No. 4, ISSN:0957-4174.

Langley.; Nick.; (2005). Explorer 7 and Window Vista set to drive demand for RSS skills.
Computer Weekly (Septemper 6, 2006), pp. 40.

Linden, G.; Smith, B.; York, J.; (2003). Amazon.com recommendations item-to-item
collaborative filtering, Industry report of Amazon.com, pp. 76-79.

Maged N Kamel Boulos.; Inocencio Maramba.; Steve Wheeler.; (2006). Wikis, blogs and podcasts: a
new generation of Web-based tools for virtual collaborative clinical practice and
education, BMC Medical Education 2006,
http://www.biomedcentral.com/1472-6920/6/41.

M. Perkowitz.; Etzioni.; (1997). Adaptive web sites: an AI challenge, Proceedings of 15th
International Joint Conference on Artificial Intelligence, pp. 16-23, ISBN 1-55860-480-4

M. Perkowitz.; O. Etzioni.; (1999). Towards adaptive Web sites: conceptual framework and
case study, Computer Networks, pp. 1245-1258, Vol. 31, No. 11-16.

MJ Pazzani.; J Muramatsu.; D Billsus.; (1996). Syskill & Webert: Identifying interesting web
sites, Proceedings of the National Conference on Artificial Intelligence, pp. 69-77.

Engineering the Computer Science and IT346

Overholt.; Alison.; (2005). Learning to Love RSS. Fast Company , 99 (October, 2005), pp. 43.
Peter Lyman.; Hal R. Varian.; (2000). How Much Information?, Counting the Numbers, Vol. 6,

No. 2.
Richardson.;Will.; (2005). RSS: A Quick Start Guide for Educators,

http://www.weblogg- ed.com/rss_for_ed, Updated march 29, 2005.
Ronald J. Glotzbach.; James L. Mohler.; Jaime E. Radwan.; (2007). RSS as a course

information delivery method, International Conference on Computer Graphics and
Interactive Techniques, No. 16, ACM

Ryan Turner.; (2007). The Basic of Web 2.0 Personalization, http://www.websocial
architecture.com/community/2007/03/the_basics_of_w.html

Sergey Brin.; Lawrence Page.; (1999). The anatomy of a large-scale hypertextual Web search
engine, Proceedings of the Seventh International World Wide Web Conference, pp. 107-
117,Vol. 30, No. 1-7.

S. Jeff Cold.; (2006). Using Really Simple Syndication (RSS) to enhance student research,
ACM SIGITE Newsletter, pp. 6 – 9, Vol. 3, No. 1, ISBN: 1550-1469.

Stephen S. Yau.; Huan Liu; Dazhi Huang,; Yisheng Yao.; (2003). Situation-Aware
Personalized Information Retrieval for Mobile Internet, Proceedings of the 27th
Annual International Conference on Computer Software and Applications, pp. 638,
ISBN:0-7695-2020-0.

Tim Oreilly.; (2007). What is the Web 2.0, Communications & Strategies, pp. 17, No. 1, First
Quarter 2007.

Tim Oreilly.; (2007). What is Web 2.0: Design Patterns and Business Models for the Next
Generation of Software, Communications & Strategies, pp. 17, No. 1, First Quarter
2007 collaborative filtering, Internet Computing, IEEE, pp. 76- 80, Vol. 7, Vo. 1

Udi Manber.; Ash Patel.; John Robison.; (2000). Experience with personalization of Yahoo!,
Communications of the ACM, Vol.43, No. 8, ISBN: 0001-0782.

Client-based Relay Infrastructure for WiMAX MAN Networks 347

Client-based Relay Infrastructure for WiMAX MAN Networks

Gierłowski, Woźniak and Nowicki

X

Client-based Relay Infrastructure for
WiMAX MAN Networks

Gierłowski, Woźniak and Nowicki

Gdansk University of Technology
Poland

1. Introduction

New WiMAX technology, based on IEEE 802.16 (IEEE, 2004) standards family, offers several
advantages over currently available metropolitan-area wireless access solutions, which are
mainly GSM or UMTS-based. It is cost effective, evolving, and robust – able to provide
reliable, fast and Quality of Service (QoS) aware transmissions over significant distances.
WiMAX technology provides both line-of-sight (LOS) and no-line-of-sight (NLOS) solutions.
The LOS solution allows transmissions with rates over 70 Mbps over distances up to 50
kilometers (or even more), as long as antennas of both devices have straight (not shaded)
view of each other. The second one supplies a connectivity using reflected signals when a
path between antennas is shaded by various obstacles. In such case the range is limited to
about 5 kilometers. The technology also supports different modulation and coding schemes
coupled with their adaptive adjustment in order to maximize stable coverage area.
Other strong advantages of WiMAX systems include high security, reliability and integrated
QoS support, which jointly allow operators to guarantee their users a required level of
network services.
The most popular WiMAX system architecture follows a point-to-multipoint (PtMP) data
communications model with a coordinating base station (BS) and participating client
terminals (subscriber stations - SSs). Such architecture has undisputed advantages of easy
monitoring and management, relatively simple (and cheaper) client terminals and well
developed methods of deployment. It also proves adequate for most real-world scenarios.
Unfortunately, measurements conducted in our WiMAX test-bed installation uncovered the
“coverage white spots” effect – small areas lacking satisfactory signal quality, located within
otherwise well covered area. This effect strongly undermines the popular beliefs concerning
excellent performance of WiMAX NLOS mechanisms and can significantly raise cost of
network deployment – about the only solution, if we want to provide good coverage
(especially for nomadic and mobile users) in PtMP environment, is to install additional base
stations.
As the alternative to PtMP mode, the standard also specifies a foundation of a mesh-mode in
which peer stations participate in self-organizing network structure by creating logical links
between themselves and utilize multihop transmission mode. Such infrastructure provides
many unique advantages, including better coverage, as any connecting client will serve as

18

Engineering the Computer Science and IT348

BS and provide service to others. Scalability of properly configured mesh network is also
very good, as any connecting client extends available network resources and massive
redundancy makes it extremely resistant to malfunctions.
Regrettably WiMAX mesh mode is currently at very early stage of development while
mechanisms necessary for it to function trend to be both numerous and complicated.
Because of these reasons the idea of WiMAX mesh network receives at best limited support
of hardware manufacturers and we will probably wait for a long time to see it in fully
functional, standardized form. Instead, a relay-based approach is gaining momentum and
we should expect operational solution very soon.

In the following chapter we describe difficulties encountered in estimating the WiMAX
installation coverage by either theoretical or empirical methods. We propose our original
approach to fast WiMAX coverage estimation with use of standard subscriber equipment.
Moreover, we describe characteristics of existing WiMAX architectures and propose an
alternative, original solution based on both classical point to multipoint (PtMP) and
mesh/relay architectures, intended to offset aforementioned “coverage white spot” effect.
Our solution extends WiMAX subscriber station functionality to provide it with an ability to
act as relay and provide access to other clients. Furthermore, the relay architecture may
consist of several levels of relays, forming easily reconfigurable tree-like structure.
The proposed solution was designed to be as uncomplicated as possible and provide
maximum compatibility with existing installations. Therefore there is no deed for client
terminal modification to provide it with an ability to use our relaying clients for
communication. Moreover, in compatibility mode (one of our extension’s two basic modes
of operation), BS requires no modification and is not even aware that relay nodes are present
in the system.

Simulation tests proved that described system can provide solid coverage in vast majority of
difficult scenarios including countering the “coverage white spots” effect and can also be
used to extend range of a WiMAX system without need for additional, costly BSs.
Automatic tree reconfiguration ability makes it resistant to wide range of malfunctions, if
sufficient number of relay nodes is present. It is also simple, cost effective and retains most
advantages of a mesh mode, while the necessary mechanisms are much easier to design,
implement, operate and maintain.

2. Theoretical coverage models

In all types of wireless systems, including WiMAX, prediction of their coverage area is a
very challenging task, especially when we want to mark out the coverage with a required
accuracy. Because of this there is a need for methods to verify provisional results, obtained
via theoretical calculations. There are two basic methods used for current design practices.
The first one requires a test-bed installation and depends entirely on empirical
measurements. The second one includes software tools able to estimate system coverage
with use of one of available propagation models. As the first method is rather time
consuming and costly, the software tools are widely used to support coverage calculation
for wireless systems, such as short range local area systems (WLANs) or more complex wide
area networks, consisting of multiple BSs (WMANs, WWANs).

Client-based Relay Infrastructure for WiMAX MAN Networks 349

BS and provide service to others. Scalability of properly configured mesh network is also
very good, as any connecting client extends available network resources and massive
redundancy makes it extremely resistant to malfunctions.
Regrettably WiMAX mesh mode is currently at very early stage of development while
mechanisms necessary for it to function trend to be both numerous and complicated.
Because of these reasons the idea of WiMAX mesh network receives at best limited support
of hardware manufacturers and we will probably wait for a long time to see it in fully
functional, standardized form. Instead, a relay-based approach is gaining momentum and
we should expect operational solution very soon.

In the following chapter we describe difficulties encountered in estimating the WiMAX
installation coverage by either theoretical or empirical methods. We propose our original
approach to fast WiMAX coverage estimation with use of standard subscriber equipment.
Moreover, we describe characteristics of existing WiMAX architectures and propose an
alternative, original solution based on both classical point to multipoint (PtMP) and
mesh/relay architectures, intended to offset aforementioned “coverage white spot” effect.
Our solution extends WiMAX subscriber station functionality to provide it with an ability to
act as relay and provide access to other clients. Furthermore, the relay architecture may
consist of several levels of relays, forming easily reconfigurable tree-like structure.
The proposed solution was designed to be as uncomplicated as possible and provide
maximum compatibility with existing installations. Therefore there is no deed for client
terminal modification to provide it with an ability to use our relaying clients for
communication. Moreover, in compatibility mode (one of our extension’s two basic modes
of operation), BS requires no modification and is not even aware that relay nodes are present
in the system.

Simulation tests proved that described system can provide solid coverage in vast majority of
difficult scenarios including countering the “coverage white spots” effect and can also be
used to extend range of a WiMAX system without need for additional, costly BSs.
Automatic tree reconfiguration ability makes it resistant to wide range of malfunctions, if
sufficient number of relay nodes is present. It is also simple, cost effective and retains most
advantages of a mesh mode, while the necessary mechanisms are much easier to design,
implement, operate and maintain.

2. Theoretical coverage models

In all types of wireless systems, including WiMAX, prediction of their coverage area is a
very challenging task, especially when we want to mark out the coverage with a required
accuracy. Because of this there is a need for methods to verify provisional results, obtained
via theoretical calculations. There are two basic methods used for current design practices.
The first one requires a test-bed installation and depends entirely on empirical
measurements. The second one includes software tools able to estimate system coverage
with use of one of available propagation models. As the first method is rather time
consuming and costly, the software tools are widely used to support coverage calculation
for wireless systems, such as short range local area systems (WLANs) or more complex wide
area networks, consisting of multiple BSs (WMANs, WWANs).

There are two basic types of propagation models employed in wireless systems design [2,3]:
 empirical (or statistical) models, which are based on a stochastic analysis of series

of measurements conducted in the area of interest. They are relatively easy to
implement but not very sensitive to environment’s geometry,

 site-specific (or deterministic) models, which are far more accurate and do not need
signal measurements. However, they require huge amounts of data concerning
environment geometry, terrain profile, etc. and high computational efforts.

WiMAX systems should usually provide effective coverage in highly urbanized
environments. Following this requirement we are mostly interested in deterministic models,
as they can give us results sufficiently accurate for such areas.
Of course, there is always a theoretical possibility to calculate exact propagation
characteristics solving sets of Maxwell’s equations. However, this method would require
very complex data processing and very high computational power, causing such solution to
be very inefficient. Due to this fact, current software tools, based on a deterministic
propagation model, usually employ simplified simulations: mainly ray-tracing or ray-
lunching techniques, based on Uniform Geometrical Theory of Diffraction (UTD) (Sarkar T.
K. et al., 2003). Such approach enables significant simplification in calculations, making the
model an efficient design tool, but with a loss of accuracy.
WiMAX technology coverage characteristics differ significantly from other wireless network
technologies that are employed in similar environments (mainly due to its NLOS capability
– see Figure 1), thus a dedicated software model is required to give exact results (ATDI,
2007).

Fig. 1. Comparision of WiMAX coverage estimation results. Left picture – standard
propagation model, right picture – specialized, WiMAX propagation model.

Regardless of employed theoretical models and their accuracy, experience in wireless
systems design and implementation suggests a necessity of conducting empirical
measurements in order to confirm that the system design and theoretically obtained
parameters are correct (Olejnik R., 2007). In accordance with a good design practice we
implemented a test-bed installation of WiMAX with one base station, and conducted

Engineering the Computer Science and IT350

extensive measurements and tests of its coverage and transmission parameters (Gierłowski
K. & Nowicki K., 2006).

3. Test-bed installation and example measurements

From both modeling procedures and hardware manufacturers’ tests it is clear that WiMAX
technology is indeed very well suited for metropolitan environment and generally offers
good coverage, even in highly urbanized areas (WiMAX Forum, 2007). To verify these
statements and prove accuracy of available software design tools as well as to gather
practical design experience, we prepared a study test-bed installation consisting of a single
WiMAX BS located at Gdansk University of Technology.
We employed a BreezeMAX Micro Base Station (Alvarion, 2006) provided by Alvarion
company and using 3.5 GHz licensed frequency band.
We also developed a dedicated software package consisting of a number of control and
monitoring tools. They communicate with BS, client terminals, GPS receivers and are able to
automate the experiments to a significant degree.
Moreover, we are currently monitoring long term operation parameters of WiMAX
installation, with use of SNMP-based monitoring system developed especially for this
purpose. It allows gathering and presentation of over 200 parameters concerning BS, SSs
and provided services.
One of our main points of interest was the coverage of WiMAX services in a densely
populated metropolitan environment. We performed a variety of tests including:

 measurements of BS signal strength in physical layer,
 modulation and coding profile usage as function of signal quality,
 efficiency of transmission in media access control layer (BER, PER),
 quality of service contract adherence for transport layer services.

The tests were performed with use of hardware spectrum analyzer, equipped with an
omnidirectional antenna, BreezeMAX PRO BS, SS subscriber stations (PRO and Si models)
(Alvarion, 2006) and transmission performance counters of the base station.
Overall test results confirmed that, in case of LOS, using the equipment mentioned above,
we could expect a reliable communication up to 30 km, and 5 km in majority of cases related
to NLOS scenarios (Gierłowski K. & Nowicki K., 2006).
Such general statements sound promising. However, we also made quite unexpected
observations. It turned out that in case of NLOS communication the network did not cover
entirely the tested area. We were able to find multiple small areas not covered by our BS
(“coverage white spots”). In some cases, using WiMAX specific propagation models, it
would be possible to predict such areas - taking into account terrain profiles and buildings
layout.
At the same time, we also detected that there are many locations at which the measured
coverage (signal parameters) differs significantly from theoretical estimates. In some places
the coverage was a result of repeatedly reflected signals or signals reflected by various
objects either improbable or difficult to map, like trees, billboards, trains, trucks, etc. Other
places showed a lack of the coverage despite of relatively minor obstacles between BS and a
client terminal, thus creating coverage white spots (Figure 2). Our measurements also
showed that even a very small displacement (20 m horizontal and/or 3 m vertical) of a client
station can result in a dramatic degradation of the transmission parameters - from the best

Client-based Relay Infrastructure for WiMAX MAN Networks 351

extensive measurements and tests of its coverage and transmission parameters (Gierłowski
K. & Nowicki K., 2006).

3. Test-bed installation and example measurements

From both modeling procedures and hardware manufacturers’ tests it is clear that WiMAX
technology is indeed very well suited for metropolitan environment and generally offers
good coverage, even in highly urbanized areas (WiMAX Forum, 2007). To verify these
statements and prove accuracy of available software design tools as well as to gather
practical design experience, we prepared a study test-bed installation consisting of a single
WiMAX BS located at Gdansk University of Technology.
We employed a BreezeMAX Micro Base Station (Alvarion, 2006) provided by Alvarion
company and using 3.5 GHz licensed frequency band.
We also developed a dedicated software package consisting of a number of control and
monitoring tools. They communicate with BS, client terminals, GPS receivers and are able to
automate the experiments to a significant degree.
Moreover, we are currently monitoring long term operation parameters of WiMAX
installation, with use of SNMP-based monitoring system developed especially for this
purpose. It allows gathering and presentation of over 200 parameters concerning BS, SSs
and provided services.
One of our main points of interest was the coverage of WiMAX services in a densely
populated metropolitan environment. We performed a variety of tests including:

 measurements of BS signal strength in physical layer,
 modulation and coding profile usage as function of signal quality,
 efficiency of transmission in media access control layer (BER, PER),
 quality of service contract adherence for transport layer services.

The tests were performed with use of hardware spectrum analyzer, equipped with an
omnidirectional antenna, BreezeMAX PRO BS, SS subscriber stations (PRO and Si models)
(Alvarion, 2006) and transmission performance counters of the base station.
Overall test results confirmed that, in case of LOS, using the equipment mentioned above,
we could expect a reliable communication up to 30 km, and 5 km in majority of cases related
to NLOS scenarios (Gierłowski K. & Nowicki K., 2006).
Such general statements sound promising. However, we also made quite unexpected
observations. It turned out that in case of NLOS communication the network did not cover
entirely the tested area. We were able to find multiple small areas not covered by our BS
(“coverage white spots”). In some cases, using WiMAX specific propagation models, it
would be possible to predict such areas - taking into account terrain profiles and buildings
layout.
At the same time, we also detected that there are many locations at which the measured
coverage (signal parameters) differs significantly from theoretical estimates. In some places
the coverage was a result of repeatedly reflected signals or signals reflected by various
objects either improbable or difficult to map, like trees, billboards, trains, trucks, etc. Other
places showed a lack of the coverage despite of relatively minor obstacles between BS and a
client terminal, thus creating coverage white spots (Figure 2). Our measurements also
showed that even a very small displacement (20 m horizontal and/or 3 m vertical) of a client
station can result in a dramatic degradation of the transmission parameters - from the best

possible modulation and coding profile (QAM64 3/4) to the complete loss of connectivity.
This effect makes a WiMAX system design a very difficult task, requiring empirical
measurements to validate the project.

Fig. 2. WiMAX coverage white spot effect. Measurements taken in testbed employing a
single BS working in 3.5 GHz band. Colors show stable modulation chosen by a terminal: x
– no connectivity, blue – BPSK, green – QPSK, yellow – QAM16, orange – QAM64 1/2, red –
QAM64 3/4.

The described “coverage white spots” effect shows difficulties in precise prediction of a real
system coverage and system parameters. If a service provider is interested in a complete and
continuous coverage of an area it can lead to higher system deployment costs. Also, there is
no efficient way to validate this kind of coverage.
In case of a mobile operator the problem becomes even more serious, because mobile
terminals can loose and regain connectivity as they move. Such effects can be especially
laborious in WiMAX, because in this technology each network entry procedure is
complicated and consumes significant network (bandwidth, BS processing power) and
client terminal (battery) resources.
Summarizing measurement results we can state, that while WiMAX NLOS capability indeed
makes it fit for highly urbanized areas, it is not without disadvantages and requires a careful
design and troublesome practical validation.

4. Empirical coverage assessment

The above theoretical analysis and practical measurements clearly show, that an empirical
coverage assessment should be performed to verify and supplement simulation modeling.

Engineering the Computer Science and IT352

In case of WiMAX network however, such coverage measurements can be difficult, time
consuming and not very precise.
The problem originates in WiMAX ability to function in strictly NLOS environment and to
very efficiently utilize reflected signals. This characteristic causes WiMAX coverage area to
be a rather abstract concept – in densely urbanized areas the coverage area consists of many
small separate regions where good quality signal is present, neighboring regions where
there is none available (aforementioned “white spots”). Up to 30 dB of SNR difference has
been observed over distances of about 20 m.
To accurately measure coverage in such environment, we require a specialized equipment –
for example:

 a spectrum analyzer equipped with an omnidirectional antenna, both able to
support an RF band correct for our WiMAX installation,

 a sensitive GPS receiver (in case of densely urbanized area equipped with external
antenna),

 a hardware or software analysis solution, able to calculate coverage based on
readings from the above devices.

Such equipment tends to be costly (with a possible exception of a GPS receiver) and thus
available mostly to larger, commercial network operators. However in case of small
installations where specialized equipment is unavailable, we can still employ standard
WiMAX subscriber station hardware to obtain a rough assessment of our BS coverage.
During our research, we have developed an original method of assessing WiMAX coverage
in such way.
Each WiMAX subscriber station must be able to precisely measure BS signal in order to
support WiMAX mandatory physical layer control mechanisms, but there are two
difficulties which can prevent us from easily exploiting this SS ability to conduct coverage
measurements:

 user interface of a particular SS model may not allow access to signal measurement
results,

 most of WiMAX client hardware available on the market is intended for use a
stationary equipment and thus outfitted with directional antennas.

If user or installer interface of SS provides access to measured values of BS signal quality, we
can utilize a laptop with a local application, which captures measured values from SS,
geographic location from GPS receiver and records them in database. Such measurements
can later be used to create coverage map, provided that enough measurements were made
and their spatial layout adequately covered our area of interest – ideally measurement
points should form a dense (about 10-20 meters apart) grid. In a real situation we should
approximate such grid as closely as possible. Such high density of necessary measurements
is a result of unpredictability of WiMAX coverage (discussed earlier).
To help with the task we have developed our original application, which is able to perform
the function described above in fully automatic manner. It obtains signal quality
measurements from WiMAX client equipment with use of SNMP protocol or, if it is
unavailable, by parsing www/telnet output of user/installer interface. In our measurements
we decided to use signal to noise ratio (SNR) as it directly influences modulation scheme
choice for a given SS. Geographic location is obtained from a standard GPS receiver with use
of NMEA protocol.

Client-based Relay Infrastructure for WiMAX MAN Networks 353

In case of WiMAX network however, such coverage measurements can be difficult, time
consuming and not very precise.
The problem originates in WiMAX ability to function in strictly NLOS environment and to
very efficiently utilize reflected signals. This characteristic causes WiMAX coverage area to
be a rather abstract concept – in densely urbanized areas the coverage area consists of many
small separate regions where good quality signal is present, neighboring regions where
there is none available (aforementioned “white spots”). Up to 30 dB of SNR difference has
been observed over distances of about 20 m.
To accurately measure coverage in such environment, we require a specialized equipment –
for example:

 a spectrum analyzer equipped with an omnidirectional antenna, both able to
support an RF band correct for our WiMAX installation,

 a sensitive GPS receiver (in case of densely urbanized area equipped with external
antenna),

 a hardware or software analysis solution, able to calculate coverage based on
readings from the above devices.

Such equipment tends to be costly (with a possible exception of a GPS receiver) and thus
available mostly to larger, commercial network operators. However in case of small
installations where specialized equipment is unavailable, we can still employ standard
WiMAX subscriber station hardware to obtain a rough assessment of our BS coverage.
During our research, we have developed an original method of assessing WiMAX coverage
in such way.
Each WiMAX subscriber station must be able to precisely measure BS signal in order to
support WiMAX mandatory physical layer control mechanisms, but there are two
difficulties which can prevent us from easily exploiting this SS ability to conduct coverage
measurements:

 user interface of a particular SS model may not allow access to signal measurement
results,

 most of WiMAX client hardware available on the market is intended for use a
stationary equipment and thus outfitted with directional antennas.

If user or installer interface of SS provides access to measured values of BS signal quality, we
can utilize a laptop with a local application, which captures measured values from SS,
geographic location from GPS receiver and records them in database. Such measurements
can later be used to create coverage map, provided that enough measurements were made
and their spatial layout adequately covered our area of interest – ideally measurement
points should form a dense (about 10-20 meters apart) grid. In a real situation we should
approximate such grid as closely as possible. Such high density of necessary measurements
is a result of unpredictability of WiMAX coverage (discussed earlier).
To help with the task we have developed our original application, which is able to perform
the function described above in fully automatic manner. It obtains signal quality
measurements from WiMAX client equipment with use of SNMP protocol or, if it is
unavailable, by parsing www/telnet output of user/installer interface. In our measurements
we decided to use signal to noise ratio (SNR) as it directly influences modulation scheme
choice for a given SS. Geographic location is obtained from a standard GPS receiver with use
of NMEA protocol.

In case when our WiMAX client equipment is unable to provide us with measured values of
signal quality, our application can still be employed in its alternate mode of operation. In
this mode it works in cooperation with our second software product – WiMAX base station
monitoring system.
The monitoring system is able to gather and record in database over 200 of performance
parameters reported by base station, which can be used for both short term monitoring and
long term performance tuning. Ability to analyze data in varied time-frames makes it a
useful tool in both didactic/research testbed (second by second monitoring) and commercial
installation (both short and long term analysis) environment.
Based on gathered data system administrator can create any number of different graphs
(Figure 3), by choosing BS parameters to include and additional characteristics such as
graph type, X/Y scale, time period, colors, size etc. Defined graphs are then organized in
“profiles” – pages which can be configured as a whole – for example: a change of profile
time period changes time period of all included graphs.

Fig. 3. WiMAX monitoring system – “GG” terminal RF parameters graph.

Such approach allows administrator to customize the visualization for his needs in various
situations, for example a dedicated profile can be created to monitor: a given set of
subscriber stations, overall RF environment of BS or statistics of transmitted network traffic,
system’s conformance with its traffic contracts etc.
The system is also able to automatically monitor configured parameters and issue alerts in a
number of forms: visual, audio, email, script execution etc.
With such functionality, the monitoring system is a comprehensive solution, able to fulfill
most of the monitoring-related tasks necessary in case of a small WiMAX installation.
To further expand system’s capabilities, we are currently developing a number of additional
modules able to take action in case of WiMAX installation failure or inefficiency to
automatically solve the problem by altering configurable BS configuration parameters.
The monitoring system is also able to assist in WiMAX coverage assessment, especially in
case when client terminal equipment is does not allow access to measured values of signal

Engineering the Computer Science and IT354

quality parameters. In that case the remote (client side) software package of our design does
not perform any signal measuring or analysis tasks – the only function it performs is
gathering location data from GPS receiver and transmitting it, accompanied with
appropriate timestamps, to the monitoring system by any network link supporting IP traffic.
Apart from independent connectivity providers, the measured WiMAX link can be used for
this purpose, as the application is able to buffer the data for extended periods of time in case
of link failure. There is even a possibility of conducting a completely offline measurement
with no network connectivity whatsoever, and then sending data to the monitoring system
as a standard file.
It is a straightforward task for the monitoring system to correlate location data from the
remote application with its own (BS provided) measurements of link quality to a given
terminal, to calculate coverage data.
This method allows us to conduct measurements even in case of a very simple terminal,
unable to provide user with measured values of signal quality, but it has its limitations. The
most important one is its inability to record signal quality parameters that are below the
level necessary for a client terminal to successfully connect to BS, as BS can provide the
monitoring system only with performance parameters of active terminals.

The second problem that we face if we plan to use standard WiMAX client equipment for
coverage assessment is the type of installed antenna. Very often the only equipment that we
have at our disposal is a terminal designed for stationary installation and thus outfitted with
directional antenna. This is a serious difficulty, as the measurements will only describe
quality of signal coming from a particular direction, which most probably will not be the
optimal one and manual reorienting antenna at each measurement point is impractical.
Moreover, due to NLOS characteristics of WiMAX operation, we are unable to predict
which antenna position will be most appropriate at a given location.
To solve this problem in an efficient way, while still retaining an accuracy of measurement
sufficient for coverage assessment, we propose to employ a multi-pass method.
We should start with analysis of our antenna beam characteristics, to assess how many
separate orientations will be sufficient to roughly cover all angles (relative to our movement
vector) from which we expect the signal at any of measurement points.
Then we set antenna to first of these orientations and perform measurements along our
patch through a grid of measurement points. When this first pass is finished, we set antenna
to second orientation and repeat the same exact patch through the grid. We repeat this
process for each antenna orientation. As a result, we have a set of grid measurements, which
can be aggregated to provide an assessment of signal quality at measurement points.
In our experiments we employed a simple maximum as aggregating function, which
resulted in ample approximation of our installation’s coverage, which we verified by
comparing the results with detailed measurements conducted with use of dedicated,
physical layer measuring equipment.
Our test measurements covered Wrzeszcz district of the city of Gdansk (Poland). It is a
district with dense concentration of 5-6 floor buildings, with a number of small open areas
present (city squares). Such terrain is a very complex environment for WiMAX coverage
assessment.
In our measurements we have often encountered areas where SNR changes reached 30dB at
20 meter distance. It clearly shows that precise statements declaring WiMAX transmission

Client-based Relay Infrastructure for WiMAX MAN Networks 355

quality parameters. In that case the remote (client side) software package of our design does
not perform any signal measuring or analysis tasks – the only function it performs is
gathering location data from GPS receiver and transmitting it, accompanied with
appropriate timestamps, to the monitoring system by any network link supporting IP traffic.
Apart from independent connectivity providers, the measured WiMAX link can be used for
this purpose, as the application is able to buffer the data for extended periods of time in case
of link failure. There is even a possibility of conducting a completely offline measurement
with no network connectivity whatsoever, and then sending data to the monitoring system
as a standard file.
It is a straightforward task for the monitoring system to correlate location data from the
remote application with its own (BS provided) measurements of link quality to a given
terminal, to calculate coverage data.
This method allows us to conduct measurements even in case of a very simple terminal,
unable to provide user with measured values of signal quality, but it has its limitations. The
most important one is its inability to record signal quality parameters that are below the
level necessary for a client terminal to successfully connect to BS, as BS can provide the
monitoring system only with performance parameters of active terminals.

The second problem that we face if we plan to use standard WiMAX client equipment for
coverage assessment is the type of installed antenna. Very often the only equipment that we
have at our disposal is a terminal designed for stationary installation and thus outfitted with
directional antenna. This is a serious difficulty, as the measurements will only describe
quality of signal coming from a particular direction, which most probably will not be the
optimal one and manual reorienting antenna at each measurement point is impractical.
Moreover, due to NLOS characteristics of WiMAX operation, we are unable to predict
which antenna position will be most appropriate at a given location.
To solve this problem in an efficient way, while still retaining an accuracy of measurement
sufficient for coverage assessment, we propose to employ a multi-pass method.
We should start with analysis of our antenna beam characteristics, to assess how many
separate orientations will be sufficient to roughly cover all angles (relative to our movement
vector) from which we expect the signal at any of measurement points.
Then we set antenna to first of these orientations and perform measurements along our
patch through a grid of measurement points. When this first pass is finished, we set antenna
to second orientation and repeat the same exact patch through the grid. We repeat this
process for each antenna orientation. As a result, we have a set of grid measurements, which
can be aggregated to provide an assessment of signal quality at measurement points.
In our experiments we employed a simple maximum as aggregating function, which
resulted in ample approximation of our installation’s coverage, which we verified by
comparing the results with detailed measurements conducted with use of dedicated,
physical layer measuring equipment.
Our test measurements covered Wrzeszcz district of the city of Gdansk (Poland). It is a
district with dense concentration of 5-6 floor buildings, with a number of small open areas
present (city squares). Such terrain is a very complex environment for WiMAX coverage
assessment.
In our measurements we have often encountered areas where SNR changes reached 30dB at
20 meter distance. It clearly shows that precise statements declaring WiMAX transmission

range in urbanized environment should be threaded as a very rough approximation and the
real coverage area is by no means uniform or even continuous. A good illustration of this
unpredictability is presented in Table 1, which shows SNR value for a number of
measurement points located in a straight line from the BS.

Distance from BS [km] SNR [dB]
0.30 20
0.70 32
1.23 3
1.37 24
1.64 0
2.30 20

Table 1. WiMAX base station signal SNR at measurement points located in a straight line
from base station.

An example visualization (created in Google Earth environment) of measurements obtained
with use of our software and described method of employing WiMAX client equipment
with directional (90 degree) antenna is shown below (Figure 4).

Fig. 4. Example results of WiMAX coverage fast assessment method (results in dB).
Standard client equipment with 90 degree directional antenna, 4 measurement passes.

Comparison of results obtained with our method and measured with use of dedicated
equipment with omnidirectional antenna shows up to 10 dB (after taking into account
different antenna gains) differences. In majority of the measurement points (over 85%) this

0
4

12

16

20

24
28
32

8

Engineering the Computer Science and IT356

error is below 4 dB (accuracy strongly depends on proper selection of employed antenna
orientations).
Moreover, our method tends to underestimate measured signal quality, so the assessment
can be considered a worst case scenario while assessing BS coverage. It should be clear
however, that our method is only intended as a very rough, fast assessment solution, to be
used when dedicated equipment is not available.

5. Network design considerations

In the case of simple WiFi (IEEE 802.11) (IEEE, 1999) - wireless local area network - we use
test measurements to appropriately design a system. Its usual 50-300 m range makes such
approach possible. In case of WiMAX technology, where the range is counted in kilometers
such solution seems to be highly impractical, as it is almost impossible to compile a full,
detailed, empirical coverage map, by measuring all meaningful points within system’s
range. In a dense metropolitan area with WiMAX NLOS capability we would have to
measure an extremely thick layout of measurement points. Also as we pointed out in the
previous section we would need a resolution of about 10-20 m horizontally. Moreover we
should not limit such measurements to a 2-dimensional case, because there are significant
variations of effective signal strength related to a client station vertical placement, especially
prominent near ground level.
Computational propagation models can help us in highlighting potential trouble-spots and
suggest important measurement points. They offer a great support during the design
process. Regrettably, their application can be costly, because they usually require detailed 3-
dimensional digital maps, which may be expensive or even unavailable for the area of
interest (Hewitt M. T., 1993).
Furthermore, commercial products, based on ray-tracing and ray-launching models (Sarkar
T. K. et al., 2003), are not well suited to detect coverage anomalies as small as the described
“coverage hole effect”. Our research shows that in order to detect them we must employ a
very high resolution of modeling – often higher than popular 3-dimensional map resolution
(Rossi J. P. & Gabillet Y., 2002). In case of modeling at such resolution, the simplifications
common for these models no longer work in our favor. This leads to the need for much
higher computational power and longer modeling time and still does not guarantee
detection of all significant anomalies.
Wherever we are able or not to detect the coverage holes, to provide consistent coverage of
the area we need much higher number of BSs than we can expect from theoretical modeling.
Also, in many places such coverage holes are almost impossible to eliminate without
installation of economically impractical number of BSs.
There are at least two basic approaches that could be proposed as possible solutions to this
problem:

 heterogonous approach - a number of different connectivity technologies are used
in order to provide services for the user,

 homogenous approach - only one wireless technology, i.e. WiMAX is employed.
Currently there is a strong trend towards creation of heterogeneous systems, where users
can use a variety of connectivity technologies (Matusz P. et al., 2005).
The emerging IEEE 802.21 standard (IEEE, 2007) is devoted to a seamless handover between
networks of the same or different types. In this case the best connection (ABC strategy –

Client-based Relay Infrastructure for WiMAX MAN Networks 357

error is below 4 dB (accuracy strongly depends on proper selection of employed antenna
orientations).
Moreover, our method tends to underestimate measured signal quality, so the assessment
can be considered a worst case scenario while assessing BS coverage. It should be clear
however, that our method is only intended as a very rough, fast assessment solution, to be
used when dedicated equipment is not available.

5. Network design considerations

In the case of simple WiFi (IEEE 802.11) (IEEE, 1999) - wireless local area network - we use
test measurements to appropriately design a system. Its usual 50-300 m range makes such
approach possible. In case of WiMAX technology, where the range is counted in kilometers
such solution seems to be highly impractical, as it is almost impossible to compile a full,
detailed, empirical coverage map, by measuring all meaningful points within system’s
range. In a dense metropolitan area with WiMAX NLOS capability we would have to
measure an extremely thick layout of measurement points. Also as we pointed out in the
previous section we would need a resolution of about 10-20 m horizontally. Moreover we
should not limit such measurements to a 2-dimensional case, because there are significant
variations of effective signal strength related to a client station vertical placement, especially
prominent near ground level.
Computational propagation models can help us in highlighting potential trouble-spots and
suggest important measurement points. They offer a great support during the design
process. Regrettably, their application can be costly, because they usually require detailed 3-
dimensional digital maps, which may be expensive or even unavailable for the area of
interest (Hewitt M. T., 1993).
Furthermore, commercial products, based on ray-tracing and ray-launching models (Sarkar
T. K. et al., 2003), are not well suited to detect coverage anomalies as small as the described
“coverage hole effect”. Our research shows that in order to detect them we must employ a
very high resolution of modeling – often higher than popular 3-dimensional map resolution
(Rossi J. P. & Gabillet Y., 2002). In case of modeling at such resolution, the simplifications
common for these models no longer work in our favor. This leads to the need for much
higher computational power and longer modeling time and still does not guarantee
detection of all significant anomalies.
Wherever we are able or not to detect the coverage holes, to provide consistent coverage of
the area we need much higher number of BSs than we can expect from theoretical modeling.
Also, in many places such coverage holes are almost impossible to eliminate without
installation of economically impractical number of BSs.
There are at least two basic approaches that could be proposed as possible solutions to this
problem:

 heterogonous approach - a number of different connectivity technologies are used
in order to provide services for the user,

 homogenous approach - only one wireless technology, i.e. WiMAX is employed.
Currently there is a strong trend towards creation of heterogeneous systems, where users
can use a variety of connectivity technologies (Matusz P. et al., 2005).
The emerging IEEE 802.21 standard (IEEE, 2007) is devoted to a seamless handover between
networks of the same or different types. In this case the best connection (ABC strategy –

Always Best Connected) is automatically selected at a given user location and the handover
is performed without losing quality of service, if possible (Machań P., 2007).
This approach takes into account several different wireless technologies and we will not
consider it here. We will concentrate on the homogenous approach, limited to WiMAX
technology, considering WiMAX mesh architecture, as a promising solution for coverage
issues.

6. WiMAX Mesh Mode

In WiMAX-Mesh mode, there is no prominent BS, but SSs communicate directly with their
neighbors forming a dynamic, self-organizing, multi-hop network. In this way a client
station does not need to be in range of one of relatively few BSs, but it is sufficient to be in
range of any other participating client station and number of these devices is usually much
higher (Figure 5). Moreover, with correctly designed control protocols and effective
methods of joining the network by new stations, its available capacity can be increased
instead of going down.

Fig. 5. Coverage comparison in case of classical PtMP mode and mesh mode, for the equal
number of operator-provided nodes.

Unfortunately such network architecture requires much more advanced support
mechanisms than a simple PtMP setup, where a single entity (BS) sees and controls all the
network activity. In case of wireless ad-hoc mesh architecture, these mechanisms (medium
access control, security…) have to be significantly extended and be able to operate in a
distributed environment. Also new mechanisms (listed below) not required in PtMP setup
(which utilizes star architecture), are necessary:

 Topology control – selects logical network node neighborhood based on its
physical neighborhood. Running in all network nodes, it is responsible for overall
network topology and vast number of derived characteristics (path lengths,
bandwidth available, network capacity, transmission delay, error rates…).

 Route discovery – set of mechanisms able to find a route through network nodes to
any required destination within and outside wireless mesh. In case of WiMAX, it
should be able to provide paths that able to provide specified QoS guarantees.

 Data forwarding – responsible for retransmitting received traffic addressed to
remote nodes, with accordance to routing information obtained from discovery
mechanisms and QoS guarantees.

In majority of research works and test implementations a mesh network utilizes short range
wireless technologies (WLANs or sensor networks) to ensure wide area coverage and high

Engineering the Computer Science and IT358

reliability. We claim that, also in case of a wireless metropolitan network (WMAN) of much
higher basic range WiMAX-based ad-hoc mesh architecture can provide required
functionalities and become practical and economically viable solution (Gierłowski K. &
Nowicki K., 2007).
Due to relatively high complexity the WiMAX-mesh mode is not yet specified in the IEEE
802.16 standard. This fact (lack of detailed specification) gives us a possibility to incorporate
into the created standard new mechanisms which will make 802.16 especially attractive for
metropolitan environments - being definitely its prime areas of deployment.
Our research related to IEEE 802.16 and measurements in the test-bed shows that mesh
architecture based on WiMAX metropolitan area network is likely to solve the coverage-hole
problems, as long as sufficient number of client stations will participate in the network. In
such case it will provide much better terrain coverage than reasonably designed PtMP
WiMAX installation. Also the costs of infrastructure will be significantly lower.
We predict that in metropolitan environment the number of client station will not pose a
problem, with currently observable user demand and manufacturers’ support for the
technology. It should also be possible to keep prices of mesh-capable subscriber stations
similar to classical PtMP WiMAX terminals.
WiMAX-based ad-hoc mesh network can provide much better terrain coverage and its
development costs are significantly lower than in corresponding coverage scenario
supported only by classical BSs in PtMP mode. Of course, there is still need for a number of
operator-provided network nodes as a foundation of the network.
Moreover, mesh architecture can provide high reliability due to high number of redundant
network devices, wireless links and paths to most destinations. It will also scale well,
because any participating node brings additional resources to an overall network poll.
The coverage hole problem can be solved by sufficiently dense network of mesh nodes and
their redundant links, but network control mechanisms need to be able to deal with rapidly
changing mesh topology. In a static mesh configuration (as in static PtMP scenario), the
problem is not dangerous, as in most cases the placement of network nodes can be
optimized, but in case of mobile mesh nodes even small movement (as mentioned before)
can lead to unpredictable breakdowns and reappearances of inter-node links.

Fig. 6. Use of redundant path routing and coverage hole aware topology control as a
solution for short-period link losses at mobile stations.

Client-based Relay Infrastructure for WiMAX MAN Networks 359

reliability. We claim that, also in case of a wireless metropolitan network (WMAN) of much
higher basic range WiMAX-based ad-hoc mesh architecture can provide required
functionalities and become practical and economically viable solution (Gierłowski K. &
Nowicki K., 2007).
Due to relatively high complexity the WiMAX-mesh mode is not yet specified in the IEEE
802.16 standard. This fact (lack of detailed specification) gives us a possibility to incorporate
into the created standard new mechanisms which will make 802.16 especially attractive for
metropolitan environments - being definitely its prime areas of deployment.
Our research related to IEEE 802.16 and measurements in the test-bed shows that mesh
architecture based on WiMAX metropolitan area network is likely to solve the coverage-hole
problems, as long as sufficient number of client stations will participate in the network. In
such case it will provide much better terrain coverage than reasonably designed PtMP
WiMAX installation. Also the costs of infrastructure will be significantly lower.
We predict that in metropolitan environment the number of client station will not pose a
problem, with currently observable user demand and manufacturers’ support for the
technology. It should also be possible to keep prices of mesh-capable subscriber stations
similar to classical PtMP WiMAX terminals.
WiMAX-based ad-hoc mesh network can provide much better terrain coverage and its
development costs are significantly lower than in corresponding coverage scenario
supported only by classical BSs in PtMP mode. Of course, there is still need for a number of
operator-provided network nodes as a foundation of the network.
Moreover, mesh architecture can provide high reliability due to high number of redundant
network devices, wireless links and paths to most destinations. It will also scale well,
because any participating node brings additional resources to an overall network poll.
The coverage hole problem can be solved by sufficiently dense network of mesh nodes and
their redundant links, but network control mechanisms need to be able to deal with rapidly
changing mesh topology. In a static mesh configuration (as in static PtMP scenario), the
problem is not dangerous, as in most cases the placement of network nodes can be
optimized, but in case of mobile mesh nodes even small movement (as mentioned before)
can lead to unpredictable breakdowns and reappearances of inter-node links.

Fig. 6. Use of redundant path routing and coverage hole aware topology control as a
solution for short-period link losses at mobile stations.

Such environment greatly lowers efficiency of network mechanisms leading to, for example,
frequent activation of ad-hoc routing protocol’s discovery mechanisms, which flood the
network with control traffic. Also QoS guarantees are extremely difficult to maintain in such
environment as fast and frequent, short-term connectivity losses can occur.
Fortunately massive redundancy which exists in a sufficiently dense mesh network can be
used to offset the effect without losing transmission reliability and QoS guarantees.
Furthermore, our observations and measurements tell us, that signal losses and
corresponding link breakdowns caused by coverage hole effect are mostly short term events
and as such can be efficiently countered with properly designed network control
mechanisms.
Our present research leads us to believe, that efficient topology control, taking into account
possibility of short-time disappearance of network links, coupled with redundant path
routing and stability-aware routing metric can solve the described problem (Figure 6). We
are currently working on a simulation model of WiMAX-based self-organizing mesh
network, resistant to the topology stability issues, described above.

7. WiMAX Relay Usage

As the full WiMAX mesh architecture is far from completion and the advantages of having
multiple network nodes supporting BS functionality scattered through our area of interest
are undisputed, a less complicated solution has been proposed. Instead of creating a
dynamic network of mesh-capable subscriber stations, a number of relay stations is to be
deployed by network operator.
Relay station (RS) is a simplified version of a full base station, which can provide similar
functionality to subscriber stations, but only in cooperation with a fully capable BS.
Due to significant simplifications in its functionality RS is much cheaper than full BS. It also
does not require a direct connection to a network backbone, because RS connects to its
parent BS via a WiMAX connection. The only external resource required is electrical power.
These characteristics make RS an economical solution, when we are interested in extending
range of our WiMAX installation (Figure 7), especially in areas lacking decent
communication infrastructure (for example: rural areas). Moreover, such regions do not
have a high user density, so the controlling BS should have no problem with allocating
enough resources to support its connected RSs.

Fig. 7. WiMAX BS coverage extension with relay station infrastructure.

Engineering the Computer Science and IT360

While coverage range extension is very desirable in areas of sparse user density, for example
rural ones, it has limited utility in case of densely urbanized areas. In this case we are often
interested in limiting the range of a single BS, as such approach allows the network to
support a higher number of users. It is possible mainly due to division of area into
independent cells in which radio-frequency resources can be reused and by dividing
medium access control mechanisms workload between multiple controlling BSs.
In such environment, we can also profit from deploying RS, as they allow us to divide area
maintained by a single BS into smaller regions, at least partially controlled by dedicated RSs.
A higher number of entities able to provide coverage and service to users (BSs and RSs)
helps to eliminate coverage white spots and can also allow a higher number of subscriber
stations to connect (Figure 8), due to transference of a part of BS’s management functions to
cooperating RSs.

Fig. 8. Different scenarios of relay station (RS) and mobile relay station (MRS) deployment.

The advantages of employing relay stations in WiMAX environment are considerable. The
complication of necessary mechanisms and their number is much lower than in case of fully
capable mesh architecture. Despite this relatively low complication, there are two main tasks
which must be addressed: BS-RS communication and resource management.
There are two basic methods of BS-RS communication, each providing certain advantages
and bringing specific complications:

 In-band communication – in this scenario RS communicates with BS using the same
physical channel that it uses to provide service to connected clients. Such RSs are
significantly cheaper, but their efficiency is limited, especially if deployed in areas
of high user density.

 Out-of-band communication – links that connect RSs and BS (thus creating local
“backbone”) are established using physical channel different from the one utilized
for RS-client communication. The gain in efficiency is obvious and considerable,
but the costs of equipment (processing power, multiple radio modules, etc.) and

Client-based Relay Infrastructure for WiMAX MAN Networks 361

While coverage range extension is very desirable in areas of sparse user density, for example
rural ones, it has limited utility in case of densely urbanized areas. In this case we are often
interested in limiting the range of a single BS, as such approach allows the network to
support a higher number of users. It is possible mainly due to division of area into
independent cells in which radio-frequency resources can be reused and by dividing
medium access control mechanisms workload between multiple controlling BSs.
In such environment, we can also profit from deploying RS, as they allow us to divide area
maintained by a single BS into smaller regions, at least partially controlled by dedicated RSs.
A higher number of entities able to provide coverage and service to users (BSs and RSs)
helps to eliminate coverage white spots and can also allow a higher number of subscriber
stations to connect (Figure 8), due to transference of a part of BS’s management functions to
cooperating RSs.

Fig. 8. Different scenarios of relay station (RS) and mobile relay station (MRS) deployment.

The advantages of employing relay stations in WiMAX environment are considerable. The
complication of necessary mechanisms and their number is much lower than in case of fully
capable mesh architecture. Despite this relatively low complication, there are two main tasks
which must be addressed: BS-RS communication and resource management.
There are two basic methods of BS-RS communication, each providing certain advantages
and bringing specific complications:

 In-band communication – in this scenario RS communicates with BS using the same
physical channel that it uses to provide service to connected clients. Such RSs are
significantly cheaper, but their efficiency is limited, especially if deployed in areas
of high user density.

 Out-of-band communication – links that connect RSs and BS (thus creating local
“backbone”) are established using physical channel different from the one utilized
for RS-client communication. The gain in efficiency is obvious and considerable,
but the costs of equipment (processing power, multiple radio modules, etc.) and

operation (multiple licensed RF bands, etc.) are also significantly higher than in
case of in-band communication scenario.

The second, even more important and complex problem in implementing relay station
infrastructure is network resource management organization. One of the main advantages
of WiMAX system is its ability to provide QoS guarantees to users, by means of careful
resource monitoring, management and access scheduling. At the same time, such approach
makes advanced reservation and physical medium access control mechanisms strictly
necessary. As we are interested in minimizing complexity and cost of relay stations, there
are two popular approaches to implementing resource reservation and medium access
control mechanisms in BS-RS architectures:

 Centralized scheduling – relay stations tunnel requests from clients to BS and BS’s
responses to clients in a transparent manner. All monitoring, scheduling and
control mechanisms are located at BS. Such approach allows us to employ very
simple and cheap relay stations. Unfortunately, we do not gain any additional
system capacity or performance, because BS is unable to offload its tasks to RSs.
Moreover, it must handle additional load due to a need to coordinate RS
infrastructure. There is also a necessity to maintain a low latency communication
between client and BS, which is still the only control entity in the system. This
requirement drastically limits number of consecutive RS which can be chained (see
Figure 7) and creates a likely point of failure.

 Distributed scheduling – relay stations are fully capable of receiving clients’
requests and performing scheduling / medium access control tasks for their clients.
Relay stations coordinate their actions with BS, which performs overall resource
management tasks across its entire controlled area, but does not need to handle
work-intensive client-related work. In this scenario BS workload is drastically
lower and there is no latency in interpreting client’s requests as they are handled
by its serving RS. This solution allows easy extension of both system’s coverage
area and its capacity. Moreover, relay stations can be safely chained, due to their
relatively infrequent and not time-critical control communication with BS.

Relay architecture seems to be a promising solution for WiMAX networks. While it does not
have the remarkable and diverse advantages of fully capable mesh architecture, it is much
easier to implement. As such we should expect its rapid standardization (currently in
progress as IEEE 802.16j amendment to a base IEEE 802.16 standard) and appearance in
production grade systems. At the same time we hope, that popularity of relay architecture
will not hinder standardization work on the full WiMAX mesh mode, concurrently planed
as an optional part of IEEE 802.16m specification.

8. Client-based Relay Infrastructure

Relay-based WiMAX architecture is an economical and easy to deploy alternative for
utilizing a high number of expensive base stations, which would otherwise be necessary to
provide (more or less) continuous coverage in dense urban environment. However, these
relay stations are still financed, deployed and maintained by a network operator. As such
they are deployed in limited numbers, according to operator’s coverage plan.
We would like to propose a slightly different solution, which we call WiMAX support-mesh
mode (SMM). It is a relay-based solution designed to utilize modified client equipment to

Engineering the Computer Science and IT362

create simple relay stations, while maintaining compatibility with a standard WiMAX
system. The solution can be deployed by clients on their own initiative (for example: to
provide indoor WiMAX coverage) and should not negatively impact network access
experience of other clients.
Our main priority in creating this solution was keeping necessary modifications of existing
systems to minimum. Unfortunately, this goal is in contradiction with resulting system’s
efficiency, as WiMAX PtMP environment is strictly controlled by BS and without
modification of functions obtaining efficient solution is very difficult. In this situation we
decided to take two approaches:

 Variant 1 – a completely transparent one, which requires no alternations to BS
hardware or software, only slight modifications in functionality of SS that is to
function as a relay-station.

 Variant 2 – requires slight modification of BS software, but promises higher system
efficiency and robustness.

Both variants allow seamless coexistence of standard and modified subscriber stations,
which significantly raises practicability of the solution.
In most circumstances the operation of support-mesh mode enabled installation does not
differ from classic WiMAX PtMP system. Only in case of low quality link or connectivity
loss between SS and BS the new functionality is utilized (Figure 9).

Fig. 9. WiMAX support mesh mode.

In such case support-mesh mode enabled subscriber station (SMM-SS) can connect to
another SMM-SS instead of BS and use it as a proxy to maintain its presence in WiMAX
PtMP system. The SMM-SS used as a proxy (PSS) is then responsible for providing
communication between BS and its connected SMM-SSs (Indirectly connected SS – ISS).
It is even possible to create multiple layers of proxying in case when PSS loses connectivity
to BS and becomes an ISS itself, without abandoning its PSS role (Figure 10).

Fig. 10. Multilayer proxying in WiMAX support mesh mode.

Client-based Relay Infrastructure for WiMAX MAN Networks 363

create simple relay stations, while maintaining compatibility with a standard WiMAX
system. The solution can be deployed by clients on their own initiative (for example: to
provide indoor WiMAX coverage) and should not negatively impact network access
experience of other clients.
Our main priority in creating this solution was keeping necessary modifications of existing
systems to minimum. Unfortunately, this goal is in contradiction with resulting system’s
efficiency, as WiMAX PtMP environment is strictly controlled by BS and without
modification of functions obtaining efficient solution is very difficult. In this situation we
decided to take two approaches:

 Variant 1 – a completely transparent one, which requires no alternations to BS
hardware or software, only slight modifications in functionality of SS that is to
function as a relay-station.

 Variant 2 – requires slight modification of BS software, but promises higher system
efficiency and robustness.

Both variants allow seamless coexistence of standard and modified subscriber stations,
which significantly raises practicability of the solution.
In most circumstances the operation of support-mesh mode enabled installation does not
differ from classic WiMAX PtMP system. Only in case of low quality link or connectivity
loss between SS and BS the new functionality is utilized (Figure 9).

Fig. 9. WiMAX support mesh mode.

In such case support-mesh mode enabled subscriber station (SMM-SS) can connect to
another SMM-SS instead of BS and use it as a proxy to maintain its presence in WiMAX
PtMP system. The SMM-SS used as a proxy (PSS) is then responsible for providing
communication between BS and its connected SMM-SSs (Indirectly connected SS – ISS).
It is even possible to create multiple layers of proxying in case when PSS loses connectivity
to BS and becomes an ISS itself, without abandoning its PSS role (Figure 10).

Fig. 10. Multilayer proxying in WiMAX support mesh mode.

Such multilayer network layout is not especially efficient and should be avoided by ISSs by
finding alternative (directly connected) PSS, but it is possible which can be useful in case of
low-bandwidth, high-reliability applications.

For the system to function effectively it is advisable for the stations (most importantly PSSs)
to utilize omnidirectional antennas – in case of directional antennas their field of coverage
will be very limited and advantage of employing such PSS is questionable. This requirement
is currently in contrast with a large percentage of WiMAX hardware available on the
market, but the situation in going to change as there is a strong trend towards
omnidirectional antennas.
Proxy-capable subscriber stations work in the same frequency channel as their main BS, and
need to perform all operations in their allocated (by BS) transmission times. That includes:

 their own traffic to/from BS,
 receiving transmissions form ISS and retransmitting them to BS,
 receiving transmissions from BS and retransmitting them to ISS,
 maintenance of their own proxy-WiMAX cell.

PSSs will advertise their capabilities by emulating BS frame structure inside their allocated
transmission times, which will allow potential ISSs to detect them, connect and transmit
traffic. This task may seem highly hardware intensive, as the PSS need to conduct network
maintenance tasks similar to that of BS, but there are many simplifications that can be made,
taking into account a small expected number of ISSs and small range. Advanced physical
transmission control, QoS, network control mechanisms can be radically simplified or, in
some cases, removed. If we will allow only SMM-capable SS to connect to proxy stations (in
contrast to allowing even unmodified SSs to connect to PSS), the simplifications can be even
greater. The exact degree of simplification is currently a subject of our research.
Connecting ISSs can choose PSS according to a number of factors and it is possible use
multiple simultaneous links to many PSSs (as described in earlier chapter) to perform
dynamic, soft-handover for mobile ISS.

8.1 SMM infrastructure – Variant 1
In this variant our main priority is compatibility with existing, unmodified WiMAX systems.
Because of this requirement PSS makes all request to BS – both to accommodate its own
needs and needs of ISSs it serves.
Because ISSs are not visible to BS, it is responsibility of PSS to:

 Authenticate connecting ISSs and grant them resources using its own
authentication and access control mechanisms.

 Obtain bandwidth grants from BS, necessary to: service its own traffic,
communicate with its connected ISSs, retransmit ISS traffic to and from BS.

 Handle PSS-ISS communication and correctly retransmit unidirectional ISS-BS
traffic.

Detailed aspects of authentication and access control we consider out of scope of this paper,
because there are many appropriate solutions (both strictly local and centralized or
distributed) which can be employed.
The remaining problem is conducting PSS-ISS communication within constraints of strictly
controlled WiMAX PtMP environment.

Engineering the Computer Science and IT364

The WiMAX downlink phase is exclusively controlled by BS according to both connections’
traffic contracts and level of currently buffered traffic waiting transmission – when BS does
not have traffic to transmit through a particular connection, there is no downlink
transmission time allocated for it. In this situation it is impossible to use WiMAX downlink
phase for communication with ISS – all such communications need to be conducted during
uplink phase (Figure 11).
Transmission time in WiMAX uplink phase is also granted by BS according to SSs’ traffic
contracts, but there are no optimizations made by BS. That makes it possible for PSS to
obtain necessary transmission time.

Fig. 11. SMM Variant 1 – transmission organization.

In variant 1 of SMM, PS reserves uplink time to handle (Figure 11):

 Its own uplink traffic to BS,
 Retransmission of ISS uplink traffic from PSS to BS,
 ISS uplink traffic to PSS,
 PSS downlink traffic to ISS.

In presented SMM variant 1 the only stations which require software modification and are
aware of SMM operation are indirectly connected subscriber stations (ISSs) and their
respective proxy subscriber stations (PSSs). Base station and other subscriber stations are not
modified nor aware of SMM operation.

8.2 SMM infrastructure – Variant 2
In event of SMM variant 2 we extend WiMAX BS functionality making it aware of indirectly
connected subscriber stations. While it requires BS software modification, it also provides
vast advantages in terms of efficiency and system control.
In this case ISS communicate with BS with proxy stations acting as repeaters by
retransmitting both control and user traffic between ISS and BS. This allows ISSs to
participate in standard network entry procedure, establish WiMAX connections and make
their own bandwidth requests (Figure 12).

Client-based Relay Infrastructure for WiMAX MAN Networks 365

The WiMAX downlink phase is exclusively controlled by BS according to both connections’
traffic contracts and level of currently buffered traffic waiting transmission – when BS does
not have traffic to transmit through a particular connection, there is no downlink
transmission time allocated for it. In this situation it is impossible to use WiMAX downlink
phase for communication with ISS – all such communications need to be conducted during
uplink phase (Figure 11).
Transmission time in WiMAX uplink phase is also granted by BS according to SSs’ traffic
contracts, but there are no optimizations made by BS. That makes it possible for PSS to
obtain necessary transmission time.

Fig. 11. SMM Variant 1 – transmission organization.

In variant 1 of SMM, PS reserves uplink time to handle (Figure 11):

 Its own uplink traffic to BS,
 Retransmission of ISS uplink traffic from PSS to BS,
 ISS uplink traffic to PSS,
 PSS downlink traffic to ISS.

In presented SMM variant 1 the only stations which require software modification and are
aware of SMM operation are indirectly connected subscriber stations (ISSs) and their
respective proxy subscriber stations (PSSs). Base station and other subscriber stations are not
modified nor aware of SMM operation.

8.2 SMM infrastructure – Variant 2
In event of SMM variant 2 we extend WiMAX BS functionality making it aware of indirectly
connected subscriber stations. While it requires BS software modification, it also provides
vast advantages in terms of efficiency and system control.
In this case ISS communicate with BS with proxy stations acting as repeaters by
retransmitting both control and user traffic between ISS and BS. This allows ISSs to
participate in standard network entry procedure, establish WiMAX connections and make
their own bandwidth requests (Figure 12).

Fig. 12. SMM Variant 2 – transmission organization.

This approach allows us to retain security and management capabilities of classic PtMP
WiMAX system, as ISS stations are fully recognized by BS. It also brings us an ability to
utilize both downlink and uplink phases for communication with ISS, resulting in their
much more balanced usage. Such balance improves system reliability and can provide a big
increase in efficiency in case of WiMAX hardware implementations which does not support
a dynamic change of WiMAX uplink and downlink phase duration ratio.
In this variant there is also a possibility of utilizing a spatial division multiple access
(SDMA) to allow utilization of a single frequency channel by many PSSs and ISSs at the
same time (Figure 13). This can be done due to BS’s complete knowledge of its network
structure (including ISSs), by utilizing additional raging phase to gather additional
information about spatial separation of nodes.

Fig. 13. Use of SDMA in SMM Variant 2.

Ranging is the process of measuring quality of link between BS and SS, conducted during a
time period especially reserved for this purpose in each WiMAX frame. This time period can
be used by BS to locate SSs which are unable to interfere with each other, by conducting
measurements of link existence and quality between pairs or groups of SSs. This task could
be also accomplished by SS passive measurements of normal traffic generated by other
stations, but the use of ranging mechanisms makes the process independent of station
activity and their physical transmission characteristics, such as dynamically adjusted power
and modulation.

Engineering the Computer Science and IT366

9. Simulation results

To verify usefulness of our solution we conducted a series of coverage tests, using a
modified, WiMAX NLOS-compatible propagation model.
As stated before, the classical propagation models are inefficient in detecting anomalies as
small as “coverage white-spots” and thus unfit for the task, we developed and employed a
modified version. Its operation is supplemented by a data file containing real-world
coverage measurements, which allows localized increase of modeling accuracy. That way
the model is able to check the presence of small “white-spots”, while still keeping
calculation costs within acceptable limits.
We considered two urbanized area types:

 Terrain A: dense urbanized area with blocks 5-6 floor buildings, 3.5 km2 – Gdansk-
Wrzeszcz area.

 Terrain B: sparse residential area with 12 story buildings (building length 30-300 m)
and a limited number of smaller buildings and objects, 4 km2 – Gdansk-Zaspa area.

In these areas we randomly distributed 30 SMM-SS in two scenarios:
 Scenario 1: 30 stationary SMM-SS on rooftops and building walls.
 Scenario 2: 20 stationary SMM-SS on rooftops and building walls, 10 mobile SMM-

SS slowly moving at street level.
Below we include results of coverage modeling in percent of previously uncovered area
which is now covered by SMM-capable subscriber stations.

 Area A, scenario 1: 80%
 Area A, scenario 2: 85%
 Area B, scenario 1: 95%
 Area B, scenario 2: 100%

Form these scenarios it seems evident, that support-mesh mode subscriber stations can
provide significantly better coverage in urbanized areas, that strictly PtMP setup. It vast
advantage is a distributes layout of PSSs, which cover target area from varied angles,
maximizing chances of archiving through coverage. The result is especially promising in
case of relatively small number of large obstacles (area B).

The results above convinced us that WiMAX SMM can efficiently solve coverage issues, so
we prepared simulation model of both its variants. We employed a relatively simple
WiMAX simulation model, covering in detail only ISO-OSI layer 2 network mechanisms,
with very simplified layer 1 modeling, as that was the only such model available to us. We
are currently working on development of more through simulation tool.
Simulation test confirmed basic operation principles of WiMAX support-mesh mode, but
also uncovered some limitations.
Variant 1 of SMM, from the beginning designed as temporary, low-efficiency, emergency
solution proved operable for up to 2 layers of proxying. Additional layers refuse to function
due to strict timing constraints of the system. Moreover there is an additional, up to 8 % per
layer, performance degradation over one expected from the need for repeated
retransmission of data. This degradation applies only to indirectly connected stations and
does not impact SSs in classical PtMP setup.
Variant 2 provides better service and was tested for up to 5 layers of proxy stations, at which
point it still remained operable. The loss of performance for indirectly connected stations is

Client-based Relay Infrastructure for WiMAX MAN Networks 367

9. Simulation results

To verify usefulness of our solution we conducted a series of coverage tests, using a
modified, WiMAX NLOS-compatible propagation model.
As stated before, the classical propagation models are inefficient in detecting anomalies as
small as “coverage white-spots” and thus unfit for the task, we developed and employed a
modified version. Its operation is supplemented by a data file containing real-world
coverage measurements, which allows localized increase of modeling accuracy. That way
the model is able to check the presence of small “white-spots”, while still keeping
calculation costs within acceptable limits.
We considered two urbanized area types:

 Terrain A: dense urbanized area with blocks 5-6 floor buildings, 3.5 km2 – Gdansk-
Wrzeszcz area.

 Terrain B: sparse residential area with 12 story buildings (building length 30-300 m)
and a limited number of smaller buildings and objects, 4 km2 – Gdansk-Zaspa area.

In these areas we randomly distributed 30 SMM-SS in two scenarios:
 Scenario 1: 30 stationary SMM-SS on rooftops and building walls.
 Scenario 2: 20 stationary SMM-SS on rooftops and building walls, 10 mobile SMM-

SS slowly moving at street level.
Below we include results of coverage modeling in percent of previously uncovered area
which is now covered by SMM-capable subscriber stations.

 Area A, scenario 1: 80%
 Area A, scenario 2: 85%
 Area B, scenario 1: 95%
 Area B, scenario 2: 100%

Form these scenarios it seems evident, that support-mesh mode subscriber stations can
provide significantly better coverage in urbanized areas, that strictly PtMP setup. It vast
advantage is a distributes layout of PSSs, which cover target area from varied angles,
maximizing chances of archiving through coverage. The result is especially promising in
case of relatively small number of large obstacles (area B).

The results above convinced us that WiMAX SMM can efficiently solve coverage issues, so
we prepared simulation model of both its variants. We employed a relatively simple
WiMAX simulation model, covering in detail only ISO-OSI layer 2 network mechanisms,
with very simplified layer 1 modeling, as that was the only such model available to us. We
are currently working on development of more through simulation tool.
Simulation test confirmed basic operation principles of WiMAX support-mesh mode, but
also uncovered some limitations.
Variant 1 of SMM, from the beginning designed as temporary, low-efficiency, emergency
solution proved operable for up to 2 layers of proxying. Additional layers refuse to function
due to strict timing constraints of the system. Moreover there is an additional, up to 8 % per
layer, performance degradation over one expected from the need for repeated
retransmission of data. This degradation applies only to indirectly connected stations and
does not impact SSs in classical PtMP setup.
Variant 2 provides better service and was tested for up to 5 layers of proxy stations, at which
point it still remained operable. The loss of performance for indirectly connected stations is

about 5% for level of proxying, but in this case BS can compensate for it, and provide given
ISS with suitably higher bandwidth.
In both cases (variant 1 and 2) there is also need for retransmission of data by PSSs, which is
a main source of performance degradation, halving bandwidth with each level of proxying.
Because of that, performance of variant 2 SMM with SDMA mechanisms is in vast majority
of cases drastically better, as it allows to conduct multiple retransmissions simultaneously.
The exact results depend on station locations and terrain layout.

10. Conclusions

Based on our theoretical research and practical experiments, we observed a possibly
dangerous effect present in wireless networks based on WiMAX technology, resulting in
small coverage holes in areas of otherwise good coverage. Such white spots are difficult to
predict, even with the use of deterministic propagation models, which are amongst the most
popular wireless network design support tools, used today.
Such situation can lead to lower than expected service level, requiring repositioning or
installation of additional hardware in case of stationery users and can be especially harmful
for mobile users that will experience periodic losses of connectivity.
Despite the fact that the same coverage problem would affect mesh nodes (especially in case
of mobile nodes) potentially leading to topology instability, it is possible to design network
control mechanisms to counter the effect. That would allow WiMAX mesh networks to
provide continuous coverage of a given area eliminating “coverage holes”, which is very
difficult in classical BS-based architecture without large additional hardware costs.
We propose WiMAX mesh networks as viable method of dealing with coverage difficulties
in metropolitan areas as they are simultaneously providing additional crucial advantages,
such as: well-scaling high network capacity, high reliability based on multiple redundancy,
low cost of deployment etc.
As a fully-functional mesh mode requires a significant number of additional, advanced
mechanisms and in case of WiMAX network is still in very early stage of research and
development, we developed a client-based relay solution (support-mesh mode). It provides
subscriber stations with proxying capabilities thus providing many of mesh mode
advantages (including coverage and reliability) with use of considerably simpler
mechanisms. Both variants of our solution require only limited modification to subscriber
station software and only in case of more advanced variant 2 there is a need for modification
of base station software.
Operation of both variant of our solution have been confirmed by simulation test and
yielded satisfactory results. Variant 1 should be treated as a temporary/emergency solution
for currently available systems, while variant 2 can be considered for further development
and incorporation as an option in upcoming versions of WiMAX hardware.

Engineering the Computer Science and IT368

11. References

Alvarion (2006). BreezeMAX Whitepapers and Manuals, http://www.alvarion.com/
ATDI, (2007), The WiMax technologies with ICS telecom: Fixed, Nomadic and Mobile!

http://www.atdi.com/
Gierłowski K. & Nowicki K. (2006). Test Installation of WiMAX-based Wireless Network on

Gdansk University of Technology (in Polish), In: Multimedia in economy and
education, L. Kiełtyka (Ed.), pp. 269-277, DIFIN, ISBN 83-7251-673-1, Warszawa.

Gierłowski K. & Nowicki K. (2007). Wireless Networks as an Infrastructure for Mission-
Critical Business Applications, Notes in Computer Science Vol. 4658, pp. 49-58,
ISBN 3-540-74572-6, Regensburg, September 2007, Springer-Verlag, Berlin

Hewitt M. T. (1993). Surface feature data for propagation modeling, Proceedings of IEEE
Colloquium on Terrain Modelling and Ground Cover Data for Propagation Studies,
pp. 4/1 - 4/6

IEEE (1999), IEEE 802.11-1999: IEEE Standard for Information Technology –
Telecommunications and Information Exchange between Systems – Local and
Metropolitan Area Networks – Specific requirements – Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) specifications, IEEE
Explore.

IEEE (2007). IEEE P802.21/D05.00: Draft IEEE Standard for Local and Metropolitan Area
Networks: Media Independent Handover Services, IEEE Explore.

IEEE, (2004). IEEE 802.16-2004: IEEE Standard for Local and Metropolitan Area Networks
Part 16: Air Interface for Fixed Broadband Wireless Access Systems, IEEE Explore.

Machań P. et al. (2007). IEEE 802.21 Standard – mobility support mechanisms,
Telecommunication Review and Telecommunication News, No 7/2007, July 2007,
pp. 211-216

Matusz P. et al. (2005). Heterogeneous wireless networks - selected operational aspects,
Telecommunication Review and Telecommunication News, No. 8-9/2005, August
2005, pp. 284-295, ISSN 1230-3496

Olejnik R. (2007). Methods of designing wireless networks and parametric design method
(in Polish), Computer Networks – T. 1: New technologies, pp. 347-356,
Wydawnictwo Komunikacji i Łączności, Warszawa.

Rossi J. P. & Gabillet Y. (2002). A mixed ray launching/tracing method for full 3-D UHF
propagation modeling and comparison with wide-band measurements, IEEE
Transactions on Antennas and Propagation, Vol. 50, Issue 4, April 2002, pp. 517 –
523, ISSN 0018-926X

Sarkar T. K. et al. (2003). A Survey of Various Propagation Models for Mobile
Communication, IEEE Antennas and Propagation Magazine, Vol. 45, No. 3, ISSN
1045-9243

WiMAX Forum (2007). WiMAX Forum Whitepaper Library,
http://www.wimaxforum.org/

The Decoding Algorithms as Techniques for Creation
the Anomaly Based Intrusion Detection Systems 369

The Decoding Algorithms as Techniques for Creation the Anomaly
Based Intrusion Detection Systems

Evgeniya Nikolova and Veselina Jecheva

X

The Decoding Algorithms as Techniques for
Creation the Anomaly Based
Intrusion Detection Systems

Evgeniya Nikolova and Veselina Jecheva

Burgas Free University, Faculty for Computer Science and Engineering
Bulgaria

1. Introduction

Since information and related infrastructure have become a very important part of today’s
companies and public organizations’ networks, increasing attention has been given to
security policies and mechanisms, that can help minimize the risk of unauthorized access
and availability threats. Intrusion Detection Systems (IDS) are among the most disseminated
security tools usually applied in order to detect attacks. These systems are categorized into
misuse detection and anomaly detection systems (Ghosh et al., 1999). Misuse IDSs detect
known attacks using preliminarily defined intrusion patterns and signatures in the system
activity data. This method is similar to the approach most antivirus programs detect
malware.
Anomaly-based approaches in IDS have the advantage of being able to detect unknown
attacks since they look for patterns that deviate from the normal behavior
(Bahrololum&Khaleghi, 2008). These systems lie on the assumption that an intrusion can be
detected by observing a deviation from the normal or expected behavior of the system or
network. They monitor network traffic and compare it against a preliminarily established
baseline. The baseline describes what behavior is considered to be “normal” for that system
and any activity, which deviates significantly from this baseline, is considered to be
anomalous. The anomaly IDS have the following advantages over misuse detection
approaches: can detect attempts to exploit new and unforeseen vulnerabilities without
specific knowledge of details; can detect ‘abuse-of-privilege’ types of attacks, which usually
do not exploit any security vulnerabilities and can recognize unusual network traffic based
on network packet characteristics. The major challenges that anomaly IDS have to solve are
the improvement of the detection process and the reduction of the number of the false
alarms (Dagorn, 2008).

2. Outline of the methodology

The task of an intrusion detection system (IDS) is modelled as a classification problem in a
machine-learning context. A typical anomaly recognition model will analyze data, compare to

19

Engineering the Computer Science and IT370

a known profile, run statistical analysis to determine if any deviation is significant, and flag
the event(s) as a normal activity or an attack. This problem is very similar to the problem of
decoding in the coding theory, that’s why we consider this recognition as a decoding problem
and we apply the well-known techniques as the Bahl-Cocke-Jelinek-Raviv (BCJR or the MAP)
decoding algorithm or the max log MAP algorithm and the junction tree algorithm (JTA).
First, we described the system using an oriented graph with nodes – the system state and
edges - the system states transitions and applied BCJR algorithm as a method for intrusion
detection during the system work. The second present method consists of two stages – the first
contains the HMM creation and its adjustment using the gradient method, and the second one
includes the intrusion recognition using the decoding algorithm – BCJR or the max-log-MAP
algorithm. The forwards-backwards algorithm, also known as the BCJR, for HMM is
equivalent to the JTA. The third presented method applies the JTA for the intrusion detection.
More details about the results, which are obtained by the methodology based on the
enumerated algorithms, are presented in our previous works (Jecheva& Nikolova, 2007,
Nikolova&Jecheva, 2007, Nikolova& Jecheva, 2008).

2.1 The system model
As it was already outlined in the introduction, anomaly IDS models operate by building a
model of “normal” system behavior. Normal system behavior is determined by observing
the standard activity of the system, which has to be protected. In anomaly intrusion
detection, how to model the normal behavior of activities performed by a user is an
important issue. To extract the normal behavior as a profile, conventional data mining
techniques are widely applied to a finite audit data set.
There are various methods for describing the legal user activities. One of them is the Hidden
Markov Model (HMM) (Rabiner 1989, Qiao et al., 2002, Vigna 2003, Joshi 2005; Tan 2008),
which provides a unifying framework for many tasks, where a measure of uncertainty is
needed. The formal definition of a HMM is as follows: (, ,)A B , where A is the state
transition probability matrix, B is the observation probability distribution and the vector

1 2(, ,...,)N is the initial probability distribution.
Let S=(S1, S2, …, SN) be our state alphabet set, and V= (v1, v2, · · · , vM) is the observation
alphabet set. We define Q=(q1, q2, …, qT) to be a fixed state sequence of length T, and
corresponding observations О=(O1, O2, … OT), where each Ot is a certain element vkV. The

square matrix A={aij, 1≤i≤N, 1≤j≤N}, 0 1ija and
1

1
N

ij
j

a

 contains elements, which

represent the probability of transitioning from a given state to another possible state. The
observation probability distribution is a non-square matrix B={bj(Ok), 1≤j≤N, 1≤k≤M}, with
dimensions number of states by number of observations. It represents the probability that a
given observable symbol will be emitted by a given state.
We consider those processes only in which the state transition probabilities do not change
with time, i.e. P(qt = Sj| qt-1 = Si) = aij the probability of transiting from state Si to state Sj does
not depend on the moment of time t (stationarity assumption) and depends on the previous
state only (first-order HMM).
The main goal of the HMM is to describe the system behavior during specific period of time.
In order to achieve this goal we determine the model parameters A, B and π for given

The Decoding Algorithms as Techniques for Creation
the Anomaly Based Intrusion Detection Systems 371

a known profile, run statistical analysis to determine if any deviation is significant, and flag
the event(s) as a normal activity or an attack. This problem is very similar to the problem of
decoding in the coding theory, that’s why we consider this recognition as a decoding problem
and we apply the well-known techniques as the Bahl-Cocke-Jelinek-Raviv (BCJR or the MAP)
decoding algorithm or the max log MAP algorithm and the junction tree algorithm (JTA).
First, we described the system using an oriented graph with nodes – the system state and
edges - the system states transitions and applied BCJR algorithm as a method for intrusion
detection during the system work. The second present method consists of two stages – the first
contains the HMM creation and its adjustment using the gradient method, and the second one
includes the intrusion recognition using the decoding algorithm – BCJR or the max-log-MAP
algorithm. The forwards-backwards algorithm, also known as the BCJR, for HMM is
equivalent to the JTA. The third presented method applies the JTA for the intrusion detection.
More details about the results, which are obtained by the methodology based on the
enumerated algorithms, are presented in our previous works (Jecheva& Nikolova, 2007,
Nikolova&Jecheva, 2007, Nikolova& Jecheva, 2008).

2.1 The system model
As it was already outlined in the introduction, anomaly IDS models operate by building a
model of “normal” system behavior. Normal system behavior is determined by observing
the standard activity of the system, which has to be protected. In anomaly intrusion
detection, how to model the normal behavior of activities performed by a user is an
important issue. To extract the normal behavior as a profile, conventional data mining
techniques are widely applied to a finite audit data set.
There are various methods for describing the legal user activities. One of them is the Hidden
Markov Model (HMM) (Rabiner 1989, Qiao et al., 2002, Vigna 2003, Joshi 2005; Tan 2008),
which provides a unifying framework for many tasks, where a measure of uncertainty is
needed. The formal definition of a HMM is as follows: (, ,)A B , where A is the state
transition probability matrix, B is the observation probability distribution and the vector

1 2(, ,...,)N is the initial probability distribution.
Let S=(S1, S2, …, SN) be our state alphabet set, and V= (v1, v2, · · · , vM) is the observation
alphabet set. We define Q=(q1, q2, …, qT) to be a fixed state sequence of length T, and
corresponding observations О=(O1, O2, … OT), where each Ot is a certain element vkV. The

square matrix A={aij, 1≤i≤N, 1≤j≤N}, 0 1ija and
1

1
N

ij
j

a

 contains elements, which

represent the probability of transitioning from a given state to another possible state. The
observation probability distribution is a non-square matrix B={bj(Ok), 1≤j≤N, 1≤k≤M}, with
dimensions number of states by number of observations. It represents the probability that a
given observable symbol will be emitted by a given state.
We consider those processes only in which the state transition probabilities do not change
with time, i.e. P(qt = Sj| qt-1 = Si) = aij the probability of transiting from state Si to state Sj does
not depend on the moment of time t (stationarity assumption) and depends on the previous
state only (first-order HMM).
The main goal of the HMM is to describe the system behavior during specific period of time.
In order to achieve this goal we determine the model parameters A, B and π for given

HMM λ such that ()L P O takes the maximal value for the observation sequence O. This
problem is known as learning problem. There are several optimization criteria for learning,
out of which a suitable one is selected depending on the application. We apply the
Maximum Likelihood (ML) as optimization criteria.

2.2 ML criterion
The ML criterion is based on the gradient based method, in which any parameter of the
HMM is updated according to the standard formula

,
old

new old
J

 (1)

where J is a quantity to be minimized. In our case we set log logJ p O L . The

minimization of J is equivalent to the maximization of L. We have

1 1

, ,
N N

t t t
i i

L p O q i i i

 (2)

where the forward variable t i can be calculated using the following recursive steps:

1 1() (), 1 ,j jj b O j N

1 1 2 1
1

() (, ,..., , |) () () , 1 , 1 1
N

t t t i j t t ij
i

j p O O O q S b O i a j N t T

(3)

and the backward variable t i can be calculated efficiently recursively as follows:

() 1, 1 ,T i i N

1 2 1 1
1

() (, ,..., , |) () (), 1 , 1 1
N

t t t T t i t ij j t
j

i p O O O q S j a b O i N t T

(4)

Since there are two main parameter sets in the HMM, transition probabilities aij and

observation probabilities bj(Ok), we can find the gradient
J

 for each of the parameter sets.

 Gradient with respect to the transition probabilities

 1
1

1 .
T

t j t t
tij

J j b O i
a L

 (5)

 Gradient with respect to the observation probabilities

Engineering the Computer Science and IT372

1 .t t

ij j t

j jJ
a L b O

 (6)

2.3 The BCJR algorithm
The BCJR decoding algorithm estimates random parameters with prior distributions. In the
case examined the algorithm scans the traces of the system activity and compares the
current activity with the patterns of normal user activity (Bahl et al., 1974). If the deviation
from the normal data of system activity is above the preliminarily defined threshold, then
the current system call is marked as abnormal, i.e. an intrusion is detected. The description
of the BCJR algorithm can be performed based on log-likelihood ratios (LLR). The LLR are
represented as follows:

1
ln

0
i i

i i

P m O
LLR

P m O

 (7)

where mi is the message bit associated with the state transition qi to qi+1 and 1i iP m O is

the a posteriory probability in which the bit, determining the presence of attack, is equal to
1. If the LLR of an observation is positive, it implies that im is most likely to be a 1 and if it
is negative, im is most likely to be zero. The algorithm consists of three steps:

 Forward recursion. The forward state metrics t ts represent the probability that

the current state is ts given the noisy observation vector 1,..., tO O and are
recursively calculated

 0
0 0

1, 0
,

0,
s

s
otherwise

1

1 1 1
, 0,1

, , .
t

t t t t i t t t
s i

s s O s s

(8)

 Backward recursion. The backward state metrics t ts represent the probability

that the final state is 1ts and are recursively calculated

1, 0

,
0,

M
M M

s
s

otherwise

1

1 1 1 1
, 0,1

, , .
t

t t i t t t t t
s i

s O s s s

(9)

 Log-Likelihood Ratios

The Decoding Algorithms as Techniques for Creation
the Anomaly Based Intrusion Detection Systems 373

1 .t t

ij j t

j jJ
a L b O

 (6)

2.3 The BCJR algorithm
The BCJR decoding algorithm estimates random parameters with prior distributions. In the
case examined the algorithm scans the traces of the system activity and compares the
current activity with the patterns of normal user activity (Bahl et al., 1974). If the deviation
from the normal data of system activity is above the preliminarily defined threshold, then
the current system call is marked as abnormal, i.e. an intrusion is detected. The description
of the BCJR algorithm can be performed based on log-likelihood ratios (LLR). The LLR are
represented as follows:

1
ln

0
i i

i i

P m O
LLR

P m O

 (7)

where mi is the message bit associated with the state transition qi to qi+1 and 1i iP m O is

the a posteriory probability in which the bit, determining the presence of attack, is equal to
1. If the LLR of an observation is positive, it implies that im is most likely to be a 1 and if it
is negative, im is most likely to be zero. The algorithm consists of three steps:

 Forward recursion. The forward state metrics t ts represent the probability that

the current state is ts given the noisy observation vector 1,..., tO O and are
recursively calculated

 0
0 0

1, 0
,

0,
s

s
otherwise

1

1 1 1
, 0,1

, , .
t

t t t t i t t t
s i

s s O s s

(8)

 Backward recursion. The backward state metrics t ts represent the probability

that the final state is 1ts and are recursively calculated

1, 0

,
0,

M
M M

s
s

otherwise

1

1 1 1 1
, 0,1

, , .
t

t t i t t t t t
s i

s O s s s

(9)

 Log-Likelihood Ratios

1

1

1 1 0 1
,

1 1 1 1
,

, ,
ln ,

, ,
t t

t t

t t t t t t t
s s

t
t t t t t t t

s s

s O s s s
LLR m

s O s s s

 1 1 1 1, , , , , .i t t t t t t t t t t t tO s s q m i s s P O m i s s P s s

(10)

(11)

2.4 Max log MAP algorithm
The t ts and t ts parameters in the MAP algorithm are approximated in the max-
log-MAP algorithm by maximization operation (Robertson et al., 1995, Benedetto et al.,
1997). The estimated LLRs are computed by exhaustively exploring all possible state
transitions from 1ts to ts using forward and backward recursion.

 Forward recursion. The forward state metrics t ts are recursively calculated

 0
0 0

1, 0
,

0,
s

s
otherwise

1

1 1 1, 0,1
max , , .
t

t t t t i t t ts i
s s O s s

(12)

 Backward recursion. The backward state metrics t ts are recursively calculated

1, 0

,
0,

M
M M

s
s

otherwise

1

1 1 1 1, 0,1
max , , .
t

t t i t t t t ts i
s O s s s

(13)

 LLR computation. The output for each bit at time t is computed by using the

backward state metrics t ts and the corresponding forward state metrics

 t ts as follows

1

1

1 1 0 1,

1 1 1 1,

max , ,
ln .

max , ,
t t

t t

t t t t t t ts s
t

t t t t t t ts s

s O s s s
LLR m

s O s s s

 (14)

2.5 The junction tree algorithm
The JTA is an inference algorithm for any graphical model, which gives a solution for the
following problem: calculating the conditional probability of a node or a set of nodes, given
the observed values of another set of nodes. The idea of this algorithm is to find ways to
decompose a global calculation on a joint probability into a linked set of local computations.
The algorithm consists of the following steps (Lauritzen at al., 1988, Lauritzen , 1996):

Engineering the Computer Science and IT374

 Given directed graph is converted into an undirected graph G , so an uniform
treatment of directed and undirected graphs is possible.

 Form a triangulated graph G by adding edges as necessary. (Chord is a link
joining two non-consecutive vertices of a loop. An undirected graph is triangulated
if every loop of length 4 or more has a chord.)

 Given a triangulated graph, a junction tree is constructed by forming a maximal
spanning tree from the cliques in that graph. A clique is a subset of vertices
containing only one vertex or such that any two vertices are neighbours. A clique
tree (in which nodes are cliques of the triangulated graph) will be constructed with
separators.

 Extract a junction tree. A clique tree is a junction tree if it has the following two
properties:

o singly connected: there is exactly one path between each pair of nodes;
o running intersection: all nodes on the path between v and w contain the

intersection v ∩ w.
 Run sum-product, which is the basic decoding algorithm for nodes on graphs, on

the resulting junction tree.
Except finding marginal probabilities, JTA helps to answer another natural question: what is
the most likely state of the distribution? In our case the considered junction tree is presented
in Figure 1:

Fig. 1. The junction tree representing the system work

where the vector O=(O1, O2, …, OT) is the current observation sequence and Q=(q1, q2, …, qT)
is the state sequence at the moments t=1, 2, …, T. Each tq is one of the elements of the set

 1,..., NS s s .
As a first step, all clique and separator potentials have been initialized with 1s. Then the
conditional probability of each node in the original graph is multiplied onto the clique to
which it is assigned. If we assume initially that the nodes, containing observations Ot, are
hidden, the potentials at the node qtOt will be all 1s and the potentials along the node
qtqt+1 will be as follows:

q1q2 (12)q1q1O1

q2 (2)

q2O2 (2)

q2 (2) q2q3 q3q4

q3

q3O3

q4

q4O4

The Decoding Algorithms as Techniques for Creation
the Anomaly Based Intrusion Detection Systems 375

 Given directed graph is converted into an undirected graph G , so an uniform
treatment of directed and undirected graphs is possible.

 Form a triangulated graph G by adding edges as necessary. (Chord is a link
joining two non-consecutive vertices of a loop. An undirected graph is triangulated
if every loop of length 4 or more has a chord.)

 Given a triangulated graph, a junction tree is constructed by forming a maximal
spanning tree from the cliques in that graph. A clique is a subset of vertices
containing only one vertex or such that any two vertices are neighbours. A clique
tree (in which nodes are cliques of the triangulated graph) will be constructed with
separators.

 Extract a junction tree. A clique tree is a junction tree if it has the following two
properties:

o singly connected: there is exactly one path between each pair of nodes;
o running intersection: all nodes on the path between v and w contain the

intersection v ∩ w.
 Run sum-product, which is the basic decoding algorithm for nodes on graphs, on

the resulting junction tree.
Except finding marginal probabilities, JTA helps to answer another natural question: what is
the most likely state of the distribution? In our case the considered junction tree is presented
in Figure 1:

Fig. 1. The junction tree representing the system work

where the vector O=(O1, O2, …, OT) is the current observation sequence and Q=(q1, q2, …, qT)
is the state sequence at the moments t=1, 2, …, T. Each tq is one of the elements of the set

 1,..., NS s s .
As a first step, all clique and separator potentials have been initialized with 1s. Then the
conditional probability of each node in the original graph is multiplied onto the clique to
which it is assigned. If we assume initially that the nodes, containing observations Ot, are
hidden, the potentials at the node qtOt will be all 1s and the potentials along the node
qtqt+1 will be as follows:

q1q2 (12)q1q1O1

q2 (2)

q2O2 (2)

q2 (2) q2q3 q3q4

q3

q3O3

q4

q4O4

1,2 2 1 1

, 1 1

,

,

j i i

t t t j t i

i j P q s q s P q s

i j P q s q s

(15)

(16)

 Forward steps. The potentials were initialized with evidence

 * *
t t t i ti P O q s i (17)

Running the forward algorithm, the following potentials were obtained:

 * * *
1, 1 1: 1, 1, , , , .t t t t t t t t ti j P q q O i j i j (18)

Marginalizing yields:

 * *
1: 1,, , .t t i t t t

i
j P q s O i j (19)

 Backward steps. In the backward steps, the potentials are

*
1,** **

1, 1 1: *

,
, , , .t t

t t t i t j T t
t

i j
i j P q s q s O j

j

 (20)

Marginalizing yields:

 ** **
1: 1,, , .t t j T t t

i
j P q s O i j (21)

If the messages were propagated from children to their parents in the rooted junction tree,
the result of the induction after the forwards steps (after collecting to root) will be

 *
, 1 1, , ,t t t i t ji j P q s q s *

t t ii P q s and all the other potentials will be

unchanged (all 1s). After the backward steps we have **
1, 1, , ,t t t i t ji j P q s q s

 ** ** ** .t t t t ii i i P q s The result from the JTA is the most likely state
sequence during the examined period of time, whereupon the state transition probabilities
can easily be computed from the result state sequence.

3. Simulation experiments and statistical methods of evaluating the
effectiveness of IDS

3.1 Simulation experiments
A large number of simulation experiments, which were based on the described model, were
carried out in order to test the proposed methodology. The experimental data were

Engineering the Computer Science and IT376

obtained from Computer Immune Systems Project (University of New Mexico), performed
by the researches in the Computer Science Department, University of New Mexico.
The simulation data are collected from Unix system examination during a period of time
and consist of system call sequences, which were obtained from observation of some
privileged processes executed on behalf of the root account as well some anomalous data.
Each data file contains sequences of system call numbers, obtained by the examined process
activity. The input data files are sequences of ordered pairs of numbers, where each line
consists of one pair. The first number in each pair is the process ID (PID) of the process
executed, and the second one is the system call number. Forks are taken into account as
separate processes and their execution results are considered as normal user activity.
The privileged processes are among the major targets of the attacker as they are granted
access to system resources that are inaccessible to ordinary users. The methods for pattern
generation are described in (Forrest at al., 1996, Forrest at al., 1998). They prove the short
sequences of system calls can be successfully applied for discriminating between normal
and anomalous activities in the system.
The normal activity data patterns compose the system states set S and the intrusion activity
patterns compose the set V. The system model, which contains the transition probabilities,
was created according to the normal and anomalous data sets. This model is considered as a
database, describing normal system activity. Each of the decoding algorithms, which were
described in section 2, was applied during the detection stage in order to distinguish normal
traces from abnormal ones.

3.2 The results obtained by the BCJR algorithm
The experimental data include normal user activity traces as well as intrusion data. A slide
window with length T was applied in order to cross the traces of current user activity, i.e.
the system observations, which compose the set O. The experiments were accomplished
with the values of T=10, 15 and 20. The LLRs which represent the probability of intrusion
occurrence at the given moment of time were obtained as a result of BCJR algorithm. Each
LLR is the logarithmic ratio of the probability of attack presence and the probability of
normal activity at specific moment t. Figure 2 presents some of the results of the LLRs for
the process synthetic sendmail for T=20. The positive values of LLR denote an attack
presence, while the negative values imply that the examined system call is a pattern of
normal activity.

LLR

-140

-120

-100

-80

-60

-40

-20

0

20

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Fig. 2. Some results for LLR for the process synthetic sendmail for T=20

The Decoding Algorithms as Techniques for Creation
the Anomaly Based Intrusion Detection Systems 377

obtained from Computer Immune Systems Project (University of New Mexico), performed
by the researches in the Computer Science Department, University of New Mexico.
The simulation data are collected from Unix system examination during a period of time
and consist of system call sequences, which were obtained from observation of some
privileged processes executed on behalf of the root account as well some anomalous data.
Each data file contains sequences of system call numbers, obtained by the examined process
activity. The input data files are sequences of ordered pairs of numbers, where each line
consists of one pair. The first number in each pair is the process ID (PID) of the process
executed, and the second one is the system call number. Forks are taken into account as
separate processes and their execution results are considered as normal user activity.
The privileged processes are among the major targets of the attacker as they are granted
access to system resources that are inaccessible to ordinary users. The methods for pattern
generation are described in (Forrest at al., 1996, Forrest at al., 1998). They prove the short
sequences of system calls can be successfully applied for discriminating between normal
and anomalous activities in the system.
The normal activity data patterns compose the system states set S and the intrusion activity
patterns compose the set V. The system model, which contains the transition probabilities,
was created according to the normal and anomalous data sets. This model is considered as a
database, describing normal system activity. Each of the decoding algorithms, which were
described in section 2, was applied during the detection stage in order to distinguish normal
traces from abnormal ones.

3.2 The results obtained by the BCJR algorithm
The experimental data include normal user activity traces as well as intrusion data. A slide
window with length T was applied in order to cross the traces of current user activity, i.e.
the system observations, which compose the set O. The experiments were accomplished
with the values of T=10, 15 and 20. The LLRs which represent the probability of intrusion
occurrence at the given moment of time were obtained as a result of BCJR algorithm. Each
LLR is the logarithmic ratio of the probability of attack presence and the probability of
normal activity at specific moment t. Figure 2 presents some of the results of the LLRs for
the process synthetic sendmail for T=20. The positive values of LLR denote an attack
presence, while the negative values imply that the examined system call is a pattern of
normal activity.

LLR

-140

-120

-100

-80

-60

-40

-20

0

20

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Fig. 2. Some results for LLR for the process synthetic sendmail for T=20

Another strategy for checking whether the particular activity data is normal or anomalous is
prior to determine the model parameters A, B for given HMM λ and given sequence of
observations O using standard gradient method and then to apply the BCJR decoding
algorithm. Given an unknown observation sequence, the ML-criterion finds the model
which maximizes the value of ()L P O . For standard gradient descent learning rate η
were used the following values: from 0,000001 to 0,000009 with step 0,000001, from 0,00001
to 0,00009 with step 0,00001 and from 0,0001 to 0,0009 with step 0,0001 for both observation
and transition probabilities. Some of the results for the process synthetic sendmail are
summarized in Table 1, which present the number of iterations and the values of L for
η=0,0001-0,0005 and η=0,00001-0,00005 and T=10 or 15.

T=10 T=15

η Number of
iterations L η Number of

iterations L

η=0,0001 322 4.20353e-13 η=0,0001 322 2.88298e-17
η=0,0002 161 3.41980e-13 η=0,0002 162 1.88268e-17
η=0,0003 107 3.21028e-13 η=0,0003 108 4.77443e-18
η=0,0004 80 7.60207e-14 η=0,0004 82 8.53916e-18
η=0,0005 64 1.15635e-13 η=0,0005 65 5.47520e-19
η=0,00001 3224 3.94035e-13 η=0,00001 3207 2.54814e-17
η=0,00002 1611 3.78713e-13 η=0,00002 1604 2.47694e-17
η=0,00003 1074 3.87351e-13 η=0,00003 1070 2.46345e-17
η=0,00004 805 3.58734e-13 η=0,00004 802 2.22364e-17
η=0,00005 644 3.58219e-13 η=0,00005 642 2.21205e-17

Table 1. Numbers of iterations and the values of L depending on the values of η

The algorithm exhibits a tendency to growth of the number of iterations when we increase
the number of observations and decrease the learning rate η. The number of iterations
necessary for the model training is similar when T=10 and 15. One of the greatest problems
in training large models with gradient descent is to find an optimal learning rate. A small
one will slow down the speed and significantly increase the number of iterations. On the
other hand, a large one will probably cause oscillations during training and finally leading
to no useful model would be trained.
Anomalous data was examined using the BCJR decoding algorithm which compares the
traces of the system activity for T=10, 15 and 20 with the patterns of normal user activity.
The intrusion detection problem is considered as а decoding problem. The results of the
algorithm are the values of LLR, where each LLR is the logarithmic ratio of the probability of
attack presence and the probability of normal activity at specific moment t. We assume that
the values of LLR greater than 0 denote an attack presence. Some of the results for T=10,
η=0,00001-0,00009 and the input files: synthetic ftp, named and xlock are summarized in the
Figures 3, 4 and 5. For instance, from Figure 3 one can see that the method registers O2 and
O4, as possible attacks.

Engineering the Computer Science and IT378

synthetic ftp

-100

-80

-60

-40

-20

0

20

40

1 2 3 4 5 6 7 8 9 10

η=0,00001
η=0,00002
η=0,00003
η=0,00004
η=0,00005
η=0,00006
η=0,00007
η=0,00008
η=0,00009

Fig. 3. Values of LLR depending on the value of η when T=10 for synthetic ftp

named

-450
-400
-350
-300
-250
-200
-150
-100

-50
0

50
100

1 2 3 4 5 6 7 8 9 10

η=0,00001
η=0,00002
η=0,00003
η=0,00004
η=0,00005
η=0,00006
η=0,00007
η=0,00008
η=0,00009

Fig. 4. Values of LLR depending on the value of η when T=10 for named

xlock T=10

-140

-120

-100

-80

-60

-40

-20

0
1 2 3 4 5 6 7 8 9 10

η=0,00001

η=0,00002

η=0,00003

η=0,00004

η=0,00005

η=0,00006

η=0,00007

η=0,00008

η=0,00009

Fig. 5. Values of LLR depending on the value of η when T=10 for xlock

The results of BCJR algorithm were compared against its results over training which was
performed using the gradient based method. Figures 6, 7 and 8 present the values of the
LLRs for the process synthetic sendmail, obtained by applying the above presented two
methods - BCJR algorithm and BCJR algorithm over gradient training for T=10, 15 and 20
and η=0,00005. From Figure 8 one could see that the second method registers O6, O8, O14,
O19 and O20 as possible attacks, while the first method registers these patterns as results of
normal system work. It is worth to mention that the decoding based on BCJR algorithm is
more consistent with preceding gradient training.

The Decoding Algorithms as Techniques for Creation
the Anomaly Based Intrusion Detection Systems 379

synthetic ftp

-100

-80

-60

-40

-20

0

20

40

1 2 3 4 5 6 7 8 9 10

η=0,00001
η=0,00002
η=0,00003
η=0,00004
η=0,00005
η=0,00006
η=0,00007
η=0,00008
η=0,00009

Fig. 3. Values of LLR depending on the value of η when T=10 for synthetic ftp

named

-450
-400
-350
-300
-250
-200
-150
-100

-50
0

50
100

1 2 3 4 5 6 7 8 9 10

η=0,00001
η=0,00002
η=0,00003
η=0,00004
η=0,00005
η=0,00006
η=0,00007
η=0,00008
η=0,00009

Fig. 4. Values of LLR depending on the value of η when T=10 for named

xlock T=10

-140

-120

-100

-80

-60

-40

-20

0
1 2 3 4 5 6 7 8 9 10

η=0,00001

η=0,00002

η=0,00003

η=0,00004

η=0,00005

η=0,00006

η=0,00007

η=0,00008

η=0,00009

Fig. 5. Values of LLR depending on the value of η when T=10 for xlock

The results of BCJR algorithm were compared against its results over training which was
performed using the gradient based method. Figures 6, 7 and 8 present the values of the
LLRs for the process synthetic sendmail, obtained by applying the above presented two
methods - BCJR algorithm and BCJR algorithm over gradient training for T=10, 15 and 20
and η=0,00005. From Figure 8 one could see that the second method registers O6, O8, O14,
O19 and O20 as possible attacks, while the first method registers these patterns as results of
normal system work. It is worth to mention that the decoding based on BCJR algorithm is
more consistent with preceding gradient training.

LLR

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10

Gradient method and
MAP with T=10
MAP

Fig. 6. The LLRs for the process synthetic sendmail for T=10

LLR

-100,00%

-80,00%

-60,00%

-40,00%

-20,00%

0,00%

20,00%

40,00%

60,00%

80,00%

100,00%

1 3 5 7 9 11 13 15

Gradient method
and MAP with T=15

MAP

Fig. 7. The LLRs for the process synthetic sendmail for T=15

LLR

-100,00%

-80,00%

-60,00%

-40,00%

-20,00%

0,00%

20,00%

40,00%

60,00%

80,00%

1 3 5 7 9 11 13 15 17 19

Gradient method and
MAP with T=20
MAP

Fig. 8. The LLRs for the process synthetic sendmail for T=20

3.3 The results obtained by the Max-log MAP algorithm
The initial HMM was created according to the system states set S, whereupon it was tuned
up using the gradient method. The result model was utilized as a normal user activity
description. Then the Max log-MAP decoding algorithm was applied in order to distinguish
normal activities from abnormal ones. The results of this algorithm are LLRs, which
represent the probability of intrusion occurrence at a given moment of time. As in the
previous case, the intrusion data were examined consequently with sliding window with
length T: 10, 15 and 20. For standard gradient descent learning rate η was applied with the
values from 0,00001 to 0,00009 with step 0,00001 for both observation and transition
probabilities.

Engineering the Computer Science and IT380

Figures 9, 10 and 11 contain the result values of LLRs in the case of T=10, when η takes the
values between 0.00001 and 0.00009, for the processes synthetic ftp, named and xlock. As
the Max log-MAP algorithm follows only the path that maximizes the transition
probabilities, this may cause a lack of precision in the intrusion detection. In contrast, the
MAP algorithm takes into account the whole trellis of possible system paths.

synthetic ftp

-30

-20

-10

0

10

20

30

40

1 2 3 4 5 6 7 8 9 10

η=0,00001
η=0,00002
η=0,00003
η=0,00004
η=0,00005
η=0,00006
η=0,00007
η=0,00008
η=0,00009

Fig. 9. Values of LLR depending on the value of η when T=10 for synthetic ftp

named

-400

-350

-300

-250

-200

-150

-100

-50

0

50

100

1 2 3 4 5 6 7 8 9 10
η=0,00001
η=0,00002
η=0,00003
η=0,00004
η=0,00005
η=0,00006
η=0,00007
η=0,00008
η=0,00009

Fig. 10. Values of LLR depending on the value of η when T=10 for named

xlock

-70

-60

-50

-40

-30

-20

-10

0

10

20

1 2 3 4 5 6 7 8 9 10 11

η=0,0001
η=0,0002
η=0,0003
η=0,0004
η=0,0005
η=0,0006
η=0,0007
η=0,0008
η=0,0009

Fig. 11. Values of LLR depending on the value of η when T=10 for xlock

3.4 The results obtained by the JTA
The state transition probabilities were evaluated based on the normal user activity patterns
during the system work in attack absence. A slide window with length T=10 was used in
order to cross the traces of current user activity. The most likely states sequence and the
corresponding state transition probabilities were obtained for each unknown observation
sequence. Comparing the obtained state transition probabilities with the state transition

The Decoding Algorithms as Techniques for Creation
the Anomaly Based Intrusion Detection Systems 381

Figures 9, 10 and 11 contain the result values of LLRs in the case of T=10, when η takes the
values between 0.00001 and 0.00009, for the processes synthetic ftp, named and xlock. As
the Max log-MAP algorithm follows only the path that maximizes the transition
probabilities, this may cause a lack of precision in the intrusion detection. In contrast, the
MAP algorithm takes into account the whole trellis of possible system paths.

synthetic ftp

-30

-20

-10

0

10

20

30

40

1 2 3 4 5 6 7 8 9 10

η=0,00001
η=0,00002
η=0,00003
η=0,00004
η=0,00005
η=0,00006
η=0,00007
η=0,00008
η=0,00009

Fig. 9. Values of LLR depending on the value of η when T=10 for synthetic ftp

named

-400

-350

-300

-250

-200

-150

-100

-50

0

50

100

1 2 3 4 5 6 7 8 9 10
η=0,00001
η=0,00002
η=0,00003
η=0,00004
η=0,00005
η=0,00006
η=0,00007
η=0,00008
η=0,00009

Fig. 10. Values of LLR depending on the value of η when T=10 for named

xlock

-70

-60

-50

-40

-30

-20

-10

0

10

20

1 2 3 4 5 6 7 8 9 10 11

η=0,0001
η=0,0002
η=0,0003
η=0,0004
η=0,0005
η=0,0006
η=0,0007
η=0,0008
η=0,0009

Fig. 11. Values of LLR depending on the value of η when T=10 for xlock

3.4 The results obtained by the JTA
The state transition probabilities were evaluated based on the normal user activity patterns
during the system work in attack absence. A slide window with length T=10 was used in
order to cross the traces of current user activity. The most likely states sequence and the
corresponding state transition probabilities were obtained for each unknown observation
sequence. Comparing the obtained state transition probabilities with the state transition

probabilities of the normal user activity patterns the intrusions presence or absence was
determined. Some of the results from the distribution of anomaly signal for the processes
synthetic ftp, named and xlock are presented in Figures 12, 13and 14:

synthetic ftp

0
0,05
0,1

0,15
0,2

0,25
0,3

0,35
0,4

0,45

1 2 3 4 5 6 7 8 9 10

Number of observations

A
no

m
al

y
S
ig

na
l P

ro
ba

bi
lit

y

Fig. 12. The distribution of anomaly signal

named

0

0,05

0,1

0,15

0,2

0,25

1 2 3 4 5 6 7 8 9 10

Number of observations

A
no

m
al

y
S
ig

na
l P

ro
ba

bi
lit

y

Fig. 13. The distribution of anomaly signal

xlock

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

1 2 3 4 5 6 7 8 9 10

Number of observations

A
no

m
al

y
S
ig

na
l P

ro
ba

bi
lit

y

Fig. 14. The distribution of anomaly signal

4. Evaluation of the obtained results

4.1 Statistical methods of evaluating the effectiveness of IDS
The goal of the hypothesis testing is to determine whether a variation between two sample
distributions can be explained by chance or not. For every possible criterion value we select
to discriminate the two sets, there will be some cases with the intrusion correctly classified
as positive (TP – True Positive), but some cases with the intrusion will be classified negative
(FN - False Negative). On the other hand, some cases without the intrusion will be correctly
classified as negative (TN - True Negative), but some cases without the intrusion will be
classified as positive (FP - False Positive).

FP = Condition absent + Positive result

Engineering the Computer Science and IT382

FN = Condition present + Negative result

As are measure of the quality of binary classification can be used the Matthews correlation
coefficient (MCC) (Matthews, 1975):

. . ,TP TN FP FNMCC

TP FP TP FN TN FP TN FN

MCC takes into account true and false positives and negatives and is generally regarded as
a balanced measure which can be used even if the classes are of very different sizes.
MCC=+1 represents a perfect prediction, while MCC=-1 represents the worst possible
prediction. It considers both the true positives and the true negatives as successful
predictions.
The false positive rate (FPR) is the frequency with which the IDS reports malicious activity
in error. The probability that an observed positive result is a false positive may be
calculated using Bayes’s theorem, whose basic concept is that the true rates of false positives
and false negatives are not a function of the accuracy of the test alone, but also the actual
rate or frequency of occurrence within the test set.

 ==

The true danger of a high FPR lies in fact that it may cause to ignore the system’s output
when legitimate alerts are raised. The false negative rate (FNR) is the frequency with which
the IDS fails to raise an alert when malicious activity actually occurs, i.e. they represent
undetected attacks on a system.

 ==

FNR changes in an inverse proportion to FPR.
The crossover error rate (CER) is defined as adjusting the system’s sensitivity until the FPR
and the FNR are equal. In order to achieve a balance between FPR and FNR, we may select
the IDS with the lowest CER.
Sensitivity is a probability that a test result will be positive when the intrusion is present
(true positive rate - TPR).

FNR = 1 – Sensitivity

A sensitivity of 100% means that the test recognizes all intrusion as such. In the language of
statistical hypothesis testing, it is called the statistical power of the test. Specificity is a
probability that a test result will be negative when the intrusion is not present (true negative
rate - TNR).

FPR = 1 – Specificity

The Decoding Algorithms as Techniques for Creation
the Anomaly Based Intrusion Detection Systems 383

FN = Condition present + Negative result

As are measure of the quality of binary classification can be used the Matthews correlation
coefficient (MCC) (Matthews, 1975):

. . ,TP TN FP FNMCC

TP FP TP FN TN FP TN FN

MCC takes into account true and false positives and negatives and is generally regarded as
a balanced measure which can be used even if the classes are of very different sizes.
MCC=+1 represents a perfect prediction, while MCC=-1 represents the worst possible
prediction. It considers both the true positives and the true negatives as successful
predictions.
The false positive rate (FPR) is the frequency with which the IDS reports malicious activity
in error. The probability that an observed positive result is a false positive may be
calculated using Bayes’s theorem, whose basic concept is that the true rates of false positives
and false negatives are not a function of the accuracy of the test alone, but also the actual
rate or frequency of occurrence within the test set.

 ==

The true danger of a high FPR lies in fact that it may cause to ignore the system’s output
when legitimate alerts are raised. The false negative rate (FNR) is the frequency with which
the IDS fails to raise an alert when malicious activity actually occurs, i.e. they represent
undetected attacks on a system.

 ==

FNR changes in an inverse proportion to FPR.
The crossover error rate (CER) is defined as adjusting the system’s sensitivity until the FPR
and the FNR are equal. In order to achieve a balance between FPR and FNR, we may select
the IDS with the lowest CER.
Sensitivity is a probability that a test result will be positive when the intrusion is present
(true positive rate - TPR).

FNR = 1 – Sensitivity

A sensitivity of 100% means that the test recognizes all intrusion as such. In the language of
statistical hypothesis testing, it is called the statistical power of the test. Specificity is a
probability that a test result will be negative when the intrusion is not present (true negative
rate - TNR).

FPR = 1 – Specificity

A specificity of 100% means that the test recognizes all normal activity as normal activity.
The receiver operating characteristic (ROC) curve (Ferri et al., 2005, Hanley&McNeil, 1982)
is a method of graphically demonstrating the relationship between sensitivity and
specificity. An ROC space is defined by 1-specificity and sensitivity as x and y respectively,
which depicts relative trade-offs between TP and FP. As the decision threshold moves to the
right along the x-axis, sensitivity ranges from one, when all tests are read as abnormal (no
FN), to 0, when all are normal (no TP). Maximal sensitivity is realized when all tests are
reported as abnormal. Specificity moves in concert from 0 (no TN) to one (no FP). Maximal
specificity is achieved by reporting all tests as normal. The best possible prediction method
would yield a point in upper left corner (0,1) of the ROC space, representing 100%
sensitivity (all TP are found) and 100% specificity (no FP are found). This point is called a
perfect classification. The diagonal line (from the left bottom to the right corner) divides the
ROC space in areas of good and bad classification. Points above this line indicate good
classification results, while points below the line indicate wrong results. Accuracy is
measured by the area under the ROC curve. An area from 0.9 to 1 represents an excellent
result; an area from 0,8 to 0,9 represents a good result, form 0,7 to 0,8 – a fair result, from 0,6
to 0,7 – a poor result and from 0.5 to 0,6 – a fail result.
The positive predictive value is the probability that the intrusion is present when the test is
positive. It is applied to evaluate the usefulness of a recognizable test.

 = == =

The negative predictive value is the probability that the intrusion is not present when the
test is negative.

 = == =

Accuracy is degree of conformity of a calculated quantity of the anomaly detection method
accurately verify a given unknown sequence to be normal or anomalous (Taylor, 1999).

 ==

An accuracy of 100% means that the test identifies all anomalous and normal activity
correctly.

4.2 The effectiveness of IDS based on the BCJR decoding algorithm
In order to evaluate the FPR we applied a method used by Hoang (Hoang et.al., 2003). This
approach is based on the assumption that as a normal traces sequence does not contain any
intrusions, any reported alarms could be considered as false alarms. From the normal traces
we generated a list of n consecutive short sequences of system calls, using a sliding window
of length T. Then, each short sequence of the list is evaluated by the detection method to
determine if it is normal or abnormal. We counted all abnormal sequences for the whole list
as m. The FPR is calculated as m/n.

Engineering the Computer Science and IT384

0,000
0,050
0,100
0,150
0,200
0,250
0,300
0,350
0,400
0,450

10 30 10
0

30
0

50
0

70
0

90
0

number of observations

er
ro

r r
at

e

False positive rate
synthetic ftp
False negative rate
synthetic ftp
False positive rate
named
False negative rate
named
False positive rate
xlock
False negative rate
xlock

Fig. 15. The FNR and the FPR for the examined processes

Figure 15 contains graphs of the FNR and the FPR for the input processes. Table 2 contains
the values of the FPR, FNR, CER, the accuracy and MCC for processes synthetic sendmail,
synthetic ftp, named and xlock.

Process FPR FNR CER Accuracy MCC
synthetic
sendmail

5%

21%

0,04

83%

0,67

synthetic ftp 17% 39% 0,07 72% 0,41
named 5% 23% 0,05 86% 0,72
xlock 3% 15% 0,03 91% 0,82

Table 2. The false alarms rate and the algorithm accuracy

The proposed methodology achieves low level of the false positive rate values for the
processes xlock, synthetic sendmail and named. The obtained value of 17% for synthetic ftp
and the relatively high false negative rates should be further examined. As FPR and FNR are
interrelated, we can reduce one at the expense of increasing the other. CER is the point at
which the system is tuned so that both kinds of false responses occur with the same
frequency. So the obtained values of CER could be applied as points of trade-off between
FPR and FNR. Since the CER is the point at which these rates are equal, from Table 2 could
be seen that for the examined processes the obtained values of CER are between 0,03 and
0,07, which implies low error and high accuracy rate of the proposed methodology.
The conducted experiments indicate the proposed methodology produces results with high
level of accuracy, since all obtained values are between 72% and 91% for all examined
processes. The obtained values of MCC are between 0.41 and 0.82, which indicate significant
correlation between the current activity data and the data from the normal activity
description, as the value of 1 denotes a perfect correlation.
In a ROC curve each sensitive value can be plotted against its corresponding specificity
value to create the diagram for the examined processes in Figure 16. A methodology with
perfect discrimination has a ROC plot that passes through the upper left corner,
consequently the closer the ROC plot is to the upper left corner, the higher the overall
accuracy of the test (Zweig&Campbell, 1993). The points in the upper left corner of the ROC
space, which are produced by the proposed methodology for the processes synthetic ftp,
named and xlock are (0,09; 0,97), (0,05; 0,98), (0,03; 0,99) respectively.

The Decoding Algorithms as Techniques for Creation
the Anomaly Based Intrusion Detection Systems 385

0,000
0,050
0,100
0,150
0,200
0,250
0,300
0,350
0,400
0,450

10 30 10
0

30
0

50
0

70
0

90
0

number of observations

er
ro

r r
at

e

False positive rate
synthetic ftp
False negative rate
synthetic ftp
False positive rate
named
False negative rate
named
False positive rate
xlock
False negative rate
xlock

Fig. 15. The FNR and the FPR for the examined processes

Figure 15 contains graphs of the FNR and the FPR for the input processes. Table 2 contains
the values of the FPR, FNR, CER, the accuracy and MCC for processes synthetic sendmail,
synthetic ftp, named and xlock.

Process FPR FNR CER Accuracy MCC
synthetic
sendmail

5%

21%

0,04

83%

0,67

synthetic ftp 17% 39% 0,07 72% 0,41
named 5% 23% 0,05 86% 0,72
xlock 3% 15% 0,03 91% 0,82

Table 2. The false alarms rate and the algorithm accuracy

The proposed methodology achieves low level of the false positive rate values for the
processes xlock, synthetic sendmail and named. The obtained value of 17% for synthetic ftp
and the relatively high false negative rates should be further examined. As FPR and FNR are
interrelated, we can reduce one at the expense of increasing the other. CER is the point at
which the system is tuned so that both kinds of false responses occur with the same
frequency. So the obtained values of CER could be applied as points of trade-off between
FPR and FNR. Since the CER is the point at which these rates are equal, from Table 2 could
be seen that for the examined processes the obtained values of CER are between 0,03 and
0,07, which implies low error and high accuracy rate of the proposed methodology.
The conducted experiments indicate the proposed methodology produces results with high
level of accuracy, since all obtained values are between 72% and 91% for all examined
processes. The obtained values of MCC are between 0.41 and 0.82, which indicate significant
correlation between the current activity data and the data from the normal activity
description, as the value of 1 denotes a perfect correlation.
In a ROC curve each sensitive value can be plotted against its corresponding specificity
value to create the diagram for the examined processes in Figure 16. A methodology with
perfect discrimination has a ROC plot that passes through the upper left corner,
consequently the closer the ROC plot is to the upper left corner, the higher the overall
accuracy of the test (Zweig&Campbell, 1993). The points in the upper left corner of the ROC
space, which are produced by the proposed methodology for the processes synthetic ftp,
named and xlock are (0,09; 0,97), (0,05; 0,98), (0,03; 0,99) respectively.

ROC curve

0

0,2

0,4

0,6

0,8

1

1,2

-0,2 0 0,2 0,4 0,6 0,8 1 1,2

1-specificity

se
ns

iti
vi

ty

synthetic ftp
xlock
named

Fig. 16. The ROC curve for IDS based on BCJR algorithm

4.3 The effectiveness of IDS based on the Max-log MAP algorithm
In order to evaluate the effectiveness of IDS based on the Max-log MAP algorithm we
determine the sensitivity, specificity, PPV, NPV and accuracy for the processes named,
synthetic sendmail, synthetic ftp and xlock, which results are presented in Tables 3, 4, 5 and
6 respectively.

synthetic
sendmail

true false

positive True positive=12 False positive=125 PPV=8,7%
negative False negative=9 True negative=1223 NPV=99,3%
 Sensitivity=57,1% Specificity=90,7% Accuracy=90,2%

Table 3. The sensitivity, specificity, PPV, NPV and accuracy for the process synthetic
sendmail

synthetic ftp true false
positive True positive=8 False positive=154 PPV=4,9%
negative False negative=6 True negative=1140 NPV=99,5%
 Sensitivity=57,1% Specificity=88,1% Accuracy=87,8%

Table 4. The sensitivity, specificity, PPV, NPV and accuracy for the process synthetic ftp

named true false
positive True positive=11 False positive=135 PPV=7,5%
negative False negative=7 True negative=1244 NPV=99,4%
 Sensitivity=61,1% Specificity=90,2% Accuracy=89,8%

Table 5. The sensitivity, specificity, PPV, NPV and accuracy for the process named

xlock true false
positive True positive=9 False positive=104 PPV=7,9%
negative False negative=7 True negative=1125 NPV=99,4%
 Sensitivity=56,2% Specificity=91,5% Accuracy=91,1%

Table 6. The sensitivity, specificity, PPV, NPV and accuracy for the process xlock

Engineering the Computer Science and IT386

The CER and the MCC for the examined processes are represented in Table 7. As the smaller
value of CER, the better the intrusion detection performance, the presented results show the
proposed method gives its best results for processes named, synthetic ftp and synthetic
sendmail and satisfactory value for xlock. Since the CER value indicates that the proportion
of false acceptances is equal to the proportion of false rejections, the lower the equal error
rate value is, the higher the accuracy of the proposed methodology is.
As a single measure of the performance of the test, the values of the MCC in Table 7 indicate
that the proposed method gives feasible results during the recognition stage. The MCC
values for all processes are between 0.44 and 0.63, which indicate significant correlation
between the examined data and the data from the normal activity description.

Process CER MCC
synthetic ftp 0,05 0,44
synthetic sendmail 0,04 0,63
named 0,03 0,57
xlock 0,12 0,59

Table 7. The value of CER and MCC for the examined processes

The sensitivity, also referred to as recall rate, reveals how good the methodology is at
correctly identifying anomalous patterns. The obtained sensitivity values, presented in
Tables 3-6, indicate the proposed methodology produces good sensitivity rates, since all
calculated values belong to the interval (56%, 62%). Specificity, on the other hand, is
concerned with how good the methodology is at correctly identifying patterns of normal
system activity. Both of them may range from 0 to +1 and the latter value is associated with
perfect predictions. The proposed methodology achieves high specificity rates, as the
obtained values for all processes are between 88% and 92%.
Considering the obtained predictive values, we see in Tables 3-6 that all PPV are between
4,9% and 8,7%, while all NPV are between 99,3% and 99,5%. Since the positive predictive
values refers to the chance that a positive test result will be correct, the obtained results
show that the proposed method correctly classifies the patterns with high degree of
probability. On the other hand, negative predictive value is concerned only with negative
test results. From the Tables 3-6 we see that the proposed methodology produces results
with excellent negative predictive values. The both predictive values depend on the
prevalence of the intrusions, since they depend on the number of true positives and false
negatives and true negatives and false positives, respectively.
Since the accuracy values for all processes belong to the interval (87%, 92%), we can
conclude that the proposed methodology produces precise and reliable detection results.

The Decoding Algorithms as Techniques for Creation
the Anomaly Based Intrusion Detection Systems 387

The CER and the MCC for the examined processes are represented in Table 7. As the smaller
value of CER, the better the intrusion detection performance, the presented results show the
proposed method gives its best results for processes named, synthetic ftp and synthetic
sendmail and satisfactory value for xlock. Since the CER value indicates that the proportion
of false acceptances is equal to the proportion of false rejections, the lower the equal error
rate value is, the higher the accuracy of the proposed methodology is.
As a single measure of the performance of the test, the values of the MCC in Table 7 indicate
that the proposed method gives feasible results during the recognition stage. The MCC
values for all processes are between 0.44 and 0.63, which indicate significant correlation
between the examined data and the data from the normal activity description.

Process CER MCC
synthetic ftp 0,05 0,44
synthetic sendmail 0,04 0,63
named 0,03 0,57
xlock 0,12 0,59

Table 7. The value of CER and MCC for the examined processes

The sensitivity, also referred to as recall rate, reveals how good the methodology is at
correctly identifying anomalous patterns. The obtained sensitivity values, presented in
Tables 3-6, indicate the proposed methodology produces good sensitivity rates, since all
calculated values belong to the interval (56%, 62%). Specificity, on the other hand, is
concerned with how good the methodology is at correctly identifying patterns of normal
system activity. Both of them may range from 0 to +1 and the latter value is associated with
perfect predictions. The proposed methodology achieves high specificity rates, as the
obtained values for all processes are between 88% and 92%.
Considering the obtained predictive values, we see in Tables 3-6 that all PPV are between
4,9% and 8,7%, while all NPV are between 99,3% and 99,5%. Since the positive predictive
values refers to the chance that a positive test result will be correct, the obtained results
show that the proposed method correctly classifies the patterns with high degree of
probability. On the other hand, negative predictive value is concerned only with negative
test results. From the Tables 3-6 we see that the proposed methodology produces results
with excellent negative predictive values. The both predictive values depend on the
prevalence of the intrusions, since they depend on the number of true positives and false
negatives and true negatives and false positives, respectively.
Since the accuracy values for all processes belong to the interval (87%, 92%), we can
conclude that the proposed methodology produces precise and reliable detection results.

4.4 The effectiveness of IDS based on the JTA
Figure 17 contains graphs of the FNR and the FPR for the processes synthetic sendmail,
synthetic ftp, named and xlock. From the graphs could be seen that the CER values as trade-
offs between the FPR and the FNR are between 0,02 and 0,18 for the examined processes.
Since the CER is the point at which FPR and FNR are equal, the obtained results imply low
error and high accuracy rate of the proposed methodology.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

1 2 3 4 5 6 7 8 9 10
number of observations

er
ro

r r
at

e

False positive rate
synthetic sendmail
False negative rate
synthetic sendmail
False positive rate
synthetic ftp
False negative rate
synthetic ftp
False positive rate
named
False negative rate
named
False positive rate
xlock
False negative rate
xlock

Fig. 17. The FPR and the FNR for the examined processes

A ROC curve is a non-parametric approach to evaluate a binary classification method. It is a
two-dimensional depiction of the results, where each sensitive value can be plotted against
its corresponding specificity value to create the diagram for the examined processes in
Figure 18. The points in the upper left corner of the ROC space for the processes synthetic
sendmail, synthetic ftp, named and xlock are (0,06; 0,94), (0,05; 0,99), (0,55; 0,95) and
(0,25; 0,85) respectively. As the point (0, 1) denotes the perfect detection, the proposed
methodology produces reliable and qualitative results while distinguishing the normal
activity from abnormal one.

ROC curve - JTA

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

1-specificity

se
ns

iti
ve

ty synthetic sendmail
synthetic ftp
named
xlock

Fig. 18. ROC curve for IDS based on JTA

Table 8 contains the values of the FPR, the FNR, the accuracy and MCC for the following
processes: synthetic ftp, synthetic sendmail, named and xlock.

Engineering the Computer Science and IT388

Processes FPR FNR Accuracy CER MCC
synthetic ftp 5% 1% 94% 0,04 0,85
synthetic sendmail 16% 6% 78% 0,02 0,60
named 11% 3% 87% 0,09 0,70
xlock 7% 2% 90% 0,18 0,69

Table 8. The false alarms rate and the algorithm accuracy

The methodology, which applies JTA during the detection stage, achieves low level of the
FPR values for the processes synthetic ftp and xlock and low level of the FNR for all
examined processes. The reasons of obtaining values of 16% for synthetic sendmail and 11 %
for named should be further examined.
The accuracy is a key feature of each diagnostic algorithm. Analyzing the obtained accuracy
values, presented in Table 8, we see that the proposed methodology produces precise and
reliable results, since all accuracy values are between 78% and 94 %. The highest accuracy is
achieved for the process synthetic ftp; the balanced accuracy results are obtained for the
processes xlock and named; and the lowest, but still satisfactory result is obtained for the
process synthetic sendmail.
One can observe that the values of MCC, presented in Table 8, are between 0,69 and 0,85,
which reveals that there is a substantial correlation between the normal activity sequences
from the created database and the observed sequences of current system activity.

4.5 Discussions
Let designate with A the methodology, based on the BCJR decoding algorithm during the
detection stage, with B the methodology, based on the Max-log MAP decoding algorithm
during the detection stage, and with C the methodology, based on the JTA during the
detection stage. From Table 2 we see that method A achieves the highest accuracy value of
91% for the process xlock, while the lowest accuracy value of 72% is obtained for the process
synthetic ftp. As one can see in Tables 3-6 method B achieves its highest accuracy value of
91,1% for the process xlock, since its lowest value of 87,8% is achieved for the process
synthetic ftp. At last method C achieves its highest accuracy value of 94% for the process
synthetic ftp, and reaches its lowest accuracy value of 78% for the process synthetic
sendmail. Comparing all methods when accuracy alone is concerned, we can conclude the
method B outperforms other methods, since it produces stable and reliable accuracy results
for all examined processes.
Comparing the proposed methods when MCC alone is concerned, we see that method C
yields the best overall correlation results, followed by methods A and B respectively. This
means the overall correlation for all processes between the predicted and observed behavior
is greater, when the methodology applies JTA, than the case when BCJR or Max-log MAP is
applied.
The results indicate the proposed methodology with HMM, that describes the normal
system activity, could lead to development of IDS with qualitative performance and high
level of classification accuracy. The major drawbacks of the approach are the relatively high
amount of resources necessary for the normal activity description and the relatively high
false positives rate. But we have to outline the normal behavior creation is performed only
once during system initialization.

The Decoding Algorithms as Techniques for Creation
the Anomaly Based Intrusion Detection Systems 389

Processes FPR FNR Accuracy CER MCC
synthetic ftp 5% 1% 94% 0,04 0,85
synthetic sendmail 16% 6% 78% 0,02 0,60
named 11% 3% 87% 0,09 0,70
xlock 7% 2% 90% 0,18 0,69

Table 8. The false alarms rate and the algorithm accuracy

The methodology, which applies JTA during the detection stage, achieves low level of the
FPR values for the processes synthetic ftp and xlock and low level of the FNR for all
examined processes. The reasons of obtaining values of 16% for synthetic sendmail and 11 %
for named should be further examined.
The accuracy is a key feature of each diagnostic algorithm. Analyzing the obtained accuracy
values, presented in Table 8, we see that the proposed methodology produces precise and
reliable results, since all accuracy values are between 78% and 94 %. The highest accuracy is
achieved for the process synthetic ftp; the balanced accuracy results are obtained for the
processes xlock and named; and the lowest, but still satisfactory result is obtained for the
process synthetic sendmail.
One can observe that the values of MCC, presented in Table 8, are between 0,69 and 0,85,
which reveals that there is a substantial correlation between the normal activity sequences
from the created database and the observed sequences of current system activity.

4.5 Discussions
Let designate with A the methodology, based on the BCJR decoding algorithm during the
detection stage, with B the methodology, based on the Max-log MAP decoding algorithm
during the detection stage, and with C the methodology, based on the JTA during the
detection stage. From Table 2 we see that method A achieves the highest accuracy value of
91% for the process xlock, while the lowest accuracy value of 72% is obtained for the process
synthetic ftp. As one can see in Tables 3-6 method B achieves its highest accuracy value of
91,1% for the process xlock, since its lowest value of 87,8% is achieved for the process
synthetic ftp. At last method C achieves its highest accuracy value of 94% for the process
synthetic ftp, and reaches its lowest accuracy value of 78% for the process synthetic
sendmail. Comparing all methods when accuracy alone is concerned, we can conclude the
method B outperforms other methods, since it produces stable and reliable accuracy results
for all examined processes.
Comparing the proposed methods when MCC alone is concerned, we see that method C
yields the best overall correlation results, followed by methods A and B respectively. This
means the overall correlation for all processes between the predicted and observed behavior
is greater, when the methodology applies JTA, than the case when BCJR or Max-log MAP is
applied.
The results indicate the proposed methodology with HMM, that describes the normal
system activity, could lead to development of IDS with qualitative performance and high
level of classification accuracy. The major drawbacks of the approach are the relatively high
amount of resources necessary for the normal activity description and the relatively high
false positives rate. But we have to outline the normal behavior creation is performed only
once during system initialization.

5. Conclusion

The present work introduces an intrusion detection methodology that uses HMM for normal
activity description and some decoding algorithms for detecting attacks targeted at essential
server processes. The methodology relies on probabilistic methods for both algorithm
stages: the normal activity description and the intrusion detection itself. The learning-based
approach was applied in order to increase the system ability to detect novel attacks, which is
among the most important features of the anomaly IDS. The feasibility of the proposed
approach was justified by simulation experiments and evaluation of the obtained results.

6. References

Bahl L., J.Cocke, F.Jelinek, and J.Raviv, (1974). Optimal Decoding of Linear Codes for
minimizing symbol error rate, IEEE Transactions on Information Theory, vol. IT-20(2),
pp. 284-287.

Bahrololum M., M. Khaleghi (2008). Anomaly Intrusion Detection System Using Gaussian
Mixture Model, Third International Conference on Convergence Information Technology,
pp. 1162-1167, Busan, Nov. 2008, vol. 1, no. 1.

Benedetto S., D. Divsalar, G. Montorsi, F. Pollara, "A soft-input soft-output APP module for
iterative decoding of concatenated codes," IEEE Comm. Letters, Vol. 1, No. 1, pp.
22-24, Jan. 1997.

Dagorn N. (2008). WebIDS: A Cooperative Bayesian Anomaly-Based Intrusion Detection
System for Web Applications, Recent Advances in Intrusion Detection, LNCS, Vol.
5230/2008, Springer Berlin / Heidelberg, pp. 392-393.

Ferri C., N. Lachinche, S. A. Macskassy, A. Rakotomamonjy, eds., (2005). Second Workshop
on ROC Analysis in ML, Bonn, Germany, August 2005.

Forrest S., S.A. Hofmeyr, A. Somayaji, (1998). Intrusion detection using sequences of system
calls, Journal of Computer Security, Vol. 6, pp. 151-180.

Forrest S., S.A. Hofmeyr, A. Somayaji, T.A. Longtaff, (1996). A Sense of Self for Unix
Processes, Proceedings of the 1996 IEEE Symposium on Security and Privacy, pp.120-
128, IEEE Computer Society Press, Los Alamitors, CA.

Ghosh K.A. et.al (1999). Study in Using Neural Networks for Anomaly and Misuse
Detection, Proceedings of the 8th SENIX Security Symposium, pp 131-142, August
1999, Washington D.C.

Hanley JA, McNeil BJ (1982). The meaning and use of the area under the Receiver Operating
Characteristic (ROC) curve. Radiology, Vol 143, pp. 29-36.

Hoang X.D., J. Hu, P. Bertok, (2003). A Multi-layer Model for Anomaly Intrusion Detection
Using Program Sequences of System Calls, 11th IEEE International Conference on
Networks (ICON 2003), Sydney, Australia.

Jecheva V., E. Nikolova, (2007). An Application of Learning Problem in Anomaly-based
Intrusion Detection Systems, Second International Conference of Availability, Reliability
and Security ARES 2007, pp. 853-860, Vienna, April 2007.

Joshi S.S., V.V. Phoha (2005), Investigating hidden Markov models capabilities in anomaly
detection, Proceedings of the 43rd ACM annual Southeast regional conference, pp. 98 –
103, Vol. 1, Kennesaw, Georgia, USA.

Lauritzen S.L., (1996). Graphical Models, Oxford Science Publications.

Engineering the Computer Science and IT390

Lauritzen, Steffen L.; Spiegelhalter, David J. (1988). Local Computations with Probabilities
on Graphical Structures and their Application to Expert Systems, Journal of the Royal
Statistical Society, Series B (Blackwell Publishing) 50, pp.157–224.

Matthews B.W., (1975). Comparison of the predicted and observed secondary structure of T4
phage lysozyme. Biochim. Biophys. Acta, 405, pp.442-451.

Nikolova E., V. Jecheva, (2007). Anomaly Based Intrusion Detection Based on the Junction
Tree Algorithm, Journal of Information Assurance and Security, Dynamic Publishers
Inc., Vol. 2, Issue 3, pp. 184-188.

Nikolova E., V. Jecheva, (2008). Some Evaluations of the Effectiveness of Anomaly Based
Intrusion Detection Systems Based on the Junction Tree Algorithm, Proceedings of
the 5th CITSA 2008, Orlando, Florida, June 29th - July 2nd, 2008, vol. 1, pp.115-120.

Qiao, Y., Xin, X.W., Bin, Y. & Ge, S.(2002) Anomaly intrusion detection method based on
HMM, IEEE Electronic Letters, Online No: 20020467.

Rabiner L. R., B. H. Juang, (1986). An introduction to Hidden Markov Models, IEEE ASSP
Magazine, pp.4-16.

Robertson P., E. Villebrun, P. Höher, (1995). A comparison of optimal and sub-optimal MAP
decoding algorithms operating in the log domain, IEEE Int. Conf. On
Communications, pp. 1009-1013, Seattle, WA, Jun. 1995.

Tan X., H. Xi (2008), Hidden semi-Markov model for anomaly detection, Applied Mathematics
and Computation, Vol. 205, Issue 2, November 2008, Special Issue on Advanced
Intelligent Computing Theory and Methodology in Applied Mathematics and
Computation, pp. 562-567.

Taylor J. R., (1999). An Introduction to Error Analysis: The Study of Uncertainties in Physical
Measurements, University Science Books, pp.128-129.

University of New Mexico, Computer Immune Systems Project,
 http://www.cs.unm.edu/~immsec/systemcalls.htm
Vigna G., E. Jonsson, C. Kruegel, (2003). Recent Advances in Intrusion Detection, Proceedings

of 6th International Symposium, RAID 2003, Pittsburgh, PA, USA, September 2003,
Springer.

Zweig M.H., G. Campbell, (1993). Receiver-operating characteristic (ROC) plots: a
fundamental evaluation tool in clinical medicine, Clinical Chemistry, Vol. 39, Num.
4, pp. 561-577.

Transition Parameters For Successful Reuse Business 391

Transition Parameters For Successful Reuse Business

Jasmine K.S.

X

Transition Parameters For Successful
Reuse Business

Jasmine K.S.

Dept. of MCA, R.V. College of Engineering
Bangalore-59, Karnataka

India

1. Introduction

For any industrial organizations, improving the business performance often means the
improvement in their software development performance. The growing popularity of
developing the software using reusable components could dramatically reduce
development effort, cost and accelerate delivery. Software professionals generally need most
help in controlling requirements, coordinating changes, managing (and making) plans,
managing interdependencies, and coping with various systems’ issues. Since the energy
spent on these and similar problems generally consumes a large part of every software
professional’s time, these are where management can provide the most immediate help.

The primary function of ongoing business management is to monitor the progress of the
rollout plans towards achieving these business goals, and to adjust expectations and
schedule to meet business and organizational realities. Detailed measurement is crucial to
ensure that overall reuse business goals are met. Management should clearly define what is
meant by reuse to different parts of the organization, and how to match reuse measurements
to business goals of the organization. Reuse measurements must take into account political
and organizational realities. When setting up a measurement program, it is must decide
what kind of metrics, or what changes in current metrics, are needed to successfully manage
a reuse business at the hands-on level. Most of the metrics that software managers use today
are aimed at a standalone project group, which does its own estimating, requirements
capture, architecting, analysis, design, implementation, and testing.
The need of adjustment in goals and metrics and changes in process and development and
implementation methods are mandatory to become success in the transition to reuse
business process.

The chapter mainly focuses on the results obtained from my own study and also the lessons
learned from the literature survey. In writing this chapter, I have incorporated ideas;
suggestions and experience of leading software reuse experts working in various software
companies. I am convinced that the lessons and insight provided in this chapter will be of
crucial value to any company dependent on software reuse.

20

Engineering the Computer Science and IT392

2. Transition management –An essential step towards New Business
Opportunities

The interest in system innovations is motivated by environmental and economic reasons.
The alternative systems should be attractive not only from an environmental point of view
but also from an economic point of view (in terms of generating ROI and services to end-
users). It is accepted that any system innovations will have disadvantages, which may or
may not be overcome. The solution to this problem is the simultaneous exploration of
multiple options and adaptive policies, based on iterative and interactive decision making.
New systems should not be implemented but “grown” in a gradual manner, relying on
feedback and decentralized decision-making (Larry, 2002).

Transitions here refer to important changes in functional systems. They involve multi-level
changes through which an organization fundamentally changes. The transitions are
required in the areas such as

 Economy
 Culture
 Management
 Technology

For a transition to occur different development have to come together causing a path of
development based on new practices, knowledge, social organization and different guiding
principles.

2.1 What exactly is transition management?
Transition management is a new steering concept that relies on ‘darwinististic’ processes of
variation and selection. It makes use of “bottom-up” developments and long-term goals
both at the organizational and process level (Garcia, 2003). Learning and institutional
change are key elements which means that transition management not so much concerned
with specific outcomes but rather with mechanisms for change. The basic philosophy is that
or goal-oriented modulation: the utilization of ongoing developments for business and
organizational goals. An important question therefore is: what do people really want, both
as users and developers?
Collective choices are made “along the way” on the basis of learning experiences at different
levels. Different trajectories are explored and flexibility is maintained, which is exactly what
a manager would do when faced with great uncertainty and complexity: instead of defining
end states for development he sets out in a certain direction and is careful to avoid
premature choices.

Transition Parameters For Successful Reuse Business 393

2. Transition management –An essential step towards New Business
Opportunities

The interest in system innovations is motivated by environmental and economic reasons.
The alternative systems should be attractive not only from an environmental point of view
but also from an economic point of view (in terms of generating ROI and services to end-
users). It is accepted that any system innovations will have disadvantages, which may or
may not be overcome. The solution to this problem is the simultaneous exploration of
multiple options and adaptive policies, based on iterative and interactive decision making.
New systems should not be implemented but “grown” in a gradual manner, relying on
feedback and decentralized decision-making (Larry, 2002).

Transitions here refer to important changes in functional systems. They involve multi-level
changes through which an organization fundamentally changes. The transitions are
required in the areas such as

 Economy
 Culture
 Management
 Technology

For a transition to occur different development have to come together causing a path of
development based on new practices, knowledge, social organization and different guiding
principles.

2.1 What exactly is transition management?
Transition management is a new steering concept that relies on ‘darwinististic’ processes of
variation and selection. It makes use of “bottom-up” developments and long-term goals
both at the organizational and process level (Garcia, 2003). Learning and institutional
change are key elements which means that transition management not so much concerned
with specific outcomes but rather with mechanisms for change. The basic philosophy is that
or goal-oriented modulation: the utilization of ongoing developments for business and
organizational goals. An important question therefore is: what do people really want, both
as users and developers?
Collective choices are made “along the way” on the basis of learning experiences at different
levels. Different trajectories are explored and flexibility is maintained, which is exactly what
a manager would do when faced with great uncertainty and complexity: instead of defining
end states for development he sets out in a certain direction and is careful to avoid
premature choices.

2.2 Elements of transition management
Transition management consists of following elements:

1. Development of long-term visions
2. Organizing a transition arena for a transition theme
3. Monitoring and evaluation of experiments and transition processes
4. Implementation and Monitoring of transition mechanisms
5. Learning and adjusting to support for future transitions

Key elements of the transition management cycle are: anticipation, learning and adaptation.
The starting point is the structuring of problems – to achieve a common outlook. This is
followed by the development of long-term visions and goals. Goals are being set via the
process and deliberations in transitions arenas. The management acts as a process manager,
dealing with issues of collective orientation and adaptation of policy. It also has a
responsibility for the undertaking of strategic experiments and programmes for system
innovation. Control policies are part of transition management. Transition management
aims for generating “momentum” for sustainability transitions. Not all companies will
contribute to a transition, but once a new development takes shape, others will follow suit,
including companies invested in the old system. When this happens the change process
becomes a force of its own. This is a critical phase in a transition in which also unwanted
path dependencies occur. Management has to develop assessment tools to measure the
effectiveness of this transition process. Transition management requires continuous
anticipation and adaptation (Graves, 1989).

2.3 Policy integration
The integration of various policy areas is part of transition management. Areas for
integration are: Technological policy, infrastructural policy, adoption & decision making
policy and innovation& implementation policy (across organization). This is an important
but difficult task. The use of transition agendas and transition arenas should help to achieve
this. Policy integration is probably aided by a more open approach of policy making in
which learning is institutionalized. Policy renewal is officially part of transition policy.
Interactive approach is a better coordination of different policies.
Some findings about adoption policy (Rotmans, 2001):

 Learning and professional development are important to organizations both before
and after the adoption

 The adoption decision should be communicated to every developer at all levels
 Adoption should be treated as a continuous process

2.4 What makes transition management different?
Transition management does not rely on blueprints but relies on iterative decision making
in which also goals may change. Decisions are made on the basis of experiences and new
insights. Policy choices would be more based on long-term desirability instead of on short-
term solutions. Long-term possibilities are given support but still need to prove themselves
to customer needs. This way, customer may discover what is best.

Through transition management space is being created for change. The space should not be
too narrow, lest organization will get locked into suboptimal solutions. To prevent this from

Engineering the Computer Science and IT394

happening, transition management opts for a portfolio approach and ‘evolutionary’
steering.

2.5 Preparing for Transition management
Transition management is well-accepted in software industry. The management is ready to
support it. The transition management builds upon interests and “movements” (change
processes) in development methodology. Transition management helps to establish a
partnership with business and to stimulate new business based on sustainable innovation.

Transforming a business and its core processes to compete effectively is not just a
technology issue however. A successful approach will require careful collaboration between
(Griss et al., 1993):

 People e.g. stakeholders, accountability, internal politics)
 Technology e.g. service enablement / integration, governance, business process

management/ workflow analytics)
 Processes e.g. improved business / IT alignment, delivery methodology,

consolidation/rationalization continuous process improvement initiatives).

Only through careful alignment and management of these three distinct disciplines will an
organization embark on a successful business transformation journey.

The recent history of successful market transformations consistently demonstrate that
embracing relevant technology principles, standards and industry best practice are all
differentiating actors between mere market participation and market leadership. Latest
advances in architectural principles such as loosely coupled distributed systems, separation
of logic from implementation and common information models all indicate the importance
of service orientated techniques in the design and development of flexible and hence
sustainable solutions. These new architectural approaches coupled with complementary
project delivery methodologies help provide the agility required to liberate existing assets
and better align IT with ever changing business needs in timely and repeatable fashion.

2.6 Effects of successful transition
The software industry has just started with transition management. In the short term, few
results in terms of reduced development cost, Quality improvement, time-to-market and
realization of new business opportunities are to be expected. Expectations are rather high,
whereas transitions research shows that transitions defy control and effective steering.
Policy can do little more than increase the chance for a transition to occur and shape the
features of it. This is also what transition management tries to do by way of evolutionary
steering, oriented at processes of variation and selection. Processes of adaptation, learning
and anticipation are institutionalized through transition management. Conditions for
success and application are: ‘sense of urgency’, leadership, commitment, willingness to
change political culture (based on short-term goals), active management, guidance, trust,
and willingness to invest the right resources at right time (Graves, 1989).

Transition Parameters For Successful Reuse Business 395

happening, transition management opts for a portfolio approach and ‘evolutionary’
steering.

2.5 Preparing for Transition management
Transition management is well-accepted in software industry. The management is ready to
support it. The transition management builds upon interests and “movements” (change
processes) in development methodology. Transition management helps to establish a
partnership with business and to stimulate new business based on sustainable innovation.

Transforming a business and its core processes to compete effectively is not just a
technology issue however. A successful approach will require careful collaboration between
(Griss et al., 1993):

 People e.g. stakeholders, accountability, internal politics)
 Technology e.g. service enablement / integration, governance, business process

management/ workflow analytics)
 Processes e.g. improved business / IT alignment, delivery methodology,

consolidation/rationalization continuous process improvement initiatives).

Only through careful alignment and management of these three distinct disciplines will an
organization embark on a successful business transformation journey.

The recent history of successful market transformations consistently demonstrate that
embracing relevant technology principles, standards and industry best practice are all
differentiating actors between mere market participation and market leadership. Latest
advances in architectural principles such as loosely coupled distributed systems, separation
of logic from implementation and common information models all indicate the importance
of service orientated techniques in the design and development of flexible and hence
sustainable solutions. These new architectural approaches coupled with complementary
project delivery methodologies help provide the agility required to liberate existing assets
and better align IT with ever changing business needs in timely and repeatable fashion.

2.6 Effects of successful transition
The software industry has just started with transition management. In the short term, few
results in terms of reduced development cost, Quality improvement, time-to-market and
realization of new business opportunities are to be expected. Expectations are rather high,
whereas transitions research shows that transitions defy control and effective steering.
Policy can do little more than increase the chance for a transition to occur and shape the
features of it. This is also what transition management tries to do by way of evolutionary
steering, oriented at processes of variation and selection. Processes of adaptation, learning
and anticipation are institutionalized through transition management. Conditions for
success and application are: ‘sense of urgency’, leadership, commitment, willingness to
change political culture (based on short-term goals), active management, guidance, trust,
and willingness to invest the right resources at right time (Graves, 1989).

It is hoped that the commitment to sustainability transitions helps to make such choices, but
whether this will happen is far from certain. Transition management is not an instrument
but a framework for policy-making and governance. It is believed that transition
management offers an interesting model for policy & governance, combining the
advantages of incrementalism (do-able steps which are not immediately disruptive) with
those of planning (articulation of desirable futures and use of goals).

2.7 Transition to a Reuse Business
There are a number of approaches to deal with large-scale organization and process change
that can be used by a software organization to introduce or improve its reuse practice.
Among the approaches mentioned above, by focusing on process and organizational models
and dealt with people issues, one can have a successful transition to reuse business.

The proper implementation of following steps will guarantee a successful reuse transition
process:

Step1.Assess reuse feasibility by assessing business opportunities and needs, organizational
readiness and observing the kind and variety of application systems produced, sort of
process, tools and technology used.

Step2. Prepare a transition plan to meat the long term goals (e.g. with emphasis on product
line approach)

Step3.Address people issues such as awareness about reuse, convincing reasons for reuse,
fear for reuse etc.

Step4.Allow the reuse program to grow naturally and mature through a distinct well
defined stages.

Step5. Customize and adapt the traditional software engineering approach to Component
system engineering and Application family engineering.

Step 6.Testing, appropriate tool development and deployment of the steps1-5.

3. Assess Reuse Risks and Costs

"The use of commercial products can have profound and lasting impact on the spiraling cost and
effort of building Defense systems, particularly information systems. It is important, however, to
remember that simply 'using COTS' is not the end in itself, but only the means."--David Carney

Component based software development is becoming more generalized, representing a
considerable market for the software industry. The perspective of reduced development
costs, shorter life cycles, lower cost of sustainment, and better quality acts as motivation
factors for this expansion. However, several technical issues remain unsolved before
software component’s industry reaches the maturity exhibited by other component
industries. Problems such as the component selection by their integrators, the component

Engineering the Computer Science and IT396

catalogs formalization and the uncertain quality of third-party developed components,
bring new challenges to the software engineering community. Even the reuse actually
slowing it down and making the overall design of the system unwieldy, and unstable. It can
actually increase the long-term cost of the system. Requirements, algorithms, functions,
business rules, architecture, source code, test cases, input data, and scripts can all be reused.
Architecture reuse is the primary means for achieving the cost savings potential of code
reuse.
To exploit reuse, the development team must recognize the realities of reused products
(Jacobson et.al, 1997).

 The product being reused must closely match the need that it is trying to solve.
Otherwise, the components with which it interfaces will become more complex.

 The reused product should be well documented with a well-understood interface
in the perspective of future maintenance.

 The reuse product should have been designed for a scenario similar to that for
which it is going to be used. If not, extensive testing should be conducted to verify
the correctness of the product. Changes in the operational environment may
require further overhead in testing

 The reuse product should be stable. Any change to the product must be
incorporated into the current development.

 The key to successful reuse is determining the components and functions that are
needed before forcing a decision to reuse products.

 The quality of the components and their usage has impact on the software process
itself. Introducing software components of unknown quality may have catastrophic
results

 The requirements should be made flexible in order to support the usage of
components

 The third party certification can be made compulsory to ensure that the
components confirm to well-defined standards and are adequate to fulfill the given
requirements.

Reuse is a powerful technique, because it allows functionality to be provided rapidly to the
user. A decision to reuse a software product is also a constraint on the development team.
Rather than being allowed to structure the system in the most effective way possible, a
decision to reuse software limits the options available.
Also the reuse of commercially available software has some unique disadvantages.
Commercial entities are motivated to limit a user's ability to change products. This is often
accomplished by including and then recommending the use of proprietary features. In
addition, the update cycle for a commercial package can be a significant drain on
maintenance resources. The costs of keeping personnel current in and then integrating new
product releases should be assessed as a part of overall life cycle costs.

Transition Parameters For Successful Reuse Business 397

catalogs formalization and the uncertain quality of third-party developed components,
bring new challenges to the software engineering community. Even the reuse actually
slowing it down and making the overall design of the system unwieldy, and unstable. It can
actually increase the long-term cost of the system. Requirements, algorithms, functions,
business rules, architecture, source code, test cases, input data, and scripts can all be reused.
Architecture reuse is the primary means for achieving the cost savings potential of code
reuse.
To exploit reuse, the development team must recognize the realities of reused products
(Jacobson et.al, 1997).

 The product being reused must closely match the need that it is trying to solve.
Otherwise, the components with which it interfaces will become more complex.

 The reused product should be well documented with a well-understood interface
in the perspective of future maintenance.

 The reuse product should have been designed for a scenario similar to that for
which it is going to be used. If not, extensive testing should be conducted to verify
the correctness of the product. Changes in the operational environment may
require further overhead in testing

 The reuse product should be stable. Any change to the product must be
incorporated into the current development.

 The key to successful reuse is determining the components and functions that are
needed before forcing a decision to reuse products.

 The quality of the components and their usage has impact on the software process
itself. Introducing software components of unknown quality may have catastrophic
results

 The requirements should be made flexible in order to support the usage of
components

 The third party certification can be made compulsory to ensure that the
components confirm to well-defined standards and are adequate to fulfill the given
requirements.

Reuse is a powerful technique, because it allows functionality to be provided rapidly to the
user. A decision to reuse a software product is also a constraint on the development team.
Rather than being allowed to structure the system in the most effective way possible, a
decision to reuse software limits the options available.
Also the reuse of commercially available software has some unique disadvantages.
Commercial entities are motivated to limit a user's ability to change products. This is often
accomplished by including and then recommending the use of proprietary features. In
addition, the update cycle for a commercial package can be a significant drain on
maintenance resources. The costs of keeping personnel current in and then integrating new
product releases should be assessed as a part of overall life cycle costs.

3.1 Risk Analysis
“Reuse is like a savings account. Before you collect any interest, you have to make a deposit, and the
more you put in, the greater the dividend attributed to” -Ted Biggerstaff, 1983 ITT Reuse workshop.

There were two types of approaches I could observe from the survey, for establishing a
reuse program: centralized and distributed.

Fig. 1. Prediction region for acceptable values

 Fig 1 tells about the prediction region for acceptable values– tend to give good information
about value in reuse context. Each region will coincidentally give some information about
the other regions, but neither is sufficient by itself. Concentrating on the basis of expectation
will not tell as much as information needs to know about risk. The figure gives an insight of
savings expected in terms of percentage of reuse used.

 Centralized Distributed

Ri
sk

 F
ac

to
rs

1) Cost of
maintaining a
dedicated team
(60%)

1) Difficult to coordinate asset
development responsibilities
(40%)

2) Cost of training
employees (40%)

2) Reluctant to make their own
investment for others (60%)

3) Need for strong
management
commitment (55%)

3) Need of convincing cost-
benefit model (45%)

Table 1. Risk factors identified from the survey

New professional competences in the development teams are required to deal with the
introduction of the changes for reuse in the software process. The majority of the estimation
models produced during the last decades are found not suitable for reuse products. A
discussion on the research difficulties in the software measurement area (which is, of course,
crucial to estimation) can be found in (Poulin, 1994). The shift to a new approach to software
development requires new estimation models to better capture the essence of CBD. Due to
the novelty of CBD and related estimation models, there is still a lack of past experience in
which one can support his estimation efforts. An example of a face lifted model that aims

Engineering the Computer Science and IT398

supporting cost estimation in CBSE is the COCOTS (Abts et al.2000), an evolution from
COCOMO II(Boehm et al.1995,2000).

“Reuse is something that is far easier to say than to do. Doing it requires both good design and very
good documentation. Even when we see good design, which is still infrequently, we won't see the
components reused without good documentation”. - D. L. Parnas, Software Aging, 16th
International Conference Software Engineering, 1994

There are many informal arguments that make software reuse an appealing and
economically. In the following section I will discuss some models and theories that have
been developed to assess economics of software products and the developed reuse models
based on my study. The majority of work on economics of reuse is on the reuse of source
code.

3.2 Cost Estimation

3.2.1 Traditional COCOMO
COCOMO was first published in 1981 as a model for estimating effort, cost, and schedule
for software projects (Boehm, 1981). References to this model typically call it COCOMO 81.
In 1997 COCOMO II was developed and finally published in 2001 in the book Software Cost
Estimation with COCOMO II. COCOMO II is the successor of COCOMO 81 and is better
suited for estimating modern software development projects. It provides more support for
modern software development processes and an updated project database. The need for the
new model came as software development technology moved from mainframe and
overnight batch processing to desktop development, code reusability and the use of off-the-
shelf software components.

COCOMO consists of a hierarchy of three increasingly detailed and accurate forms. The first
level, Basic COCOMO is good for quick, early, rough order of magnitude estimates of
software costs, but its accuracy is limited due to its lack of factors to account for difference in
project attributes (Cost Drivers). Intermediate COCOMO takes these Cost Drivers into
account and Detailed COCOMO additionally accounts for the influence of individual project
phases.
Basic COCOMO is a static, single-valued model that computes software development effort
(and cost) as a function of program size expressed in estimated lines of code. COCOMO
applies to three classes of software projects (Boehm et.al, 2000; Sunita Chulani, 2000):

 Organic projects - are relatively small, simple software projects in which small
teams with good application experience work to a set of less than rigid
requirements.

 Semi-detached projects - are intermediate (in size and complexity) software
projects in which teams with mixed experience levels must meet a mix of rigid and
less than rigid requirements.

 Embedded projects - are software projects that must be developed within a set of
tight hardware, software, and operational constraints.

Transition Parameters For Successful Reuse Business 399

supporting cost estimation in CBSE is the COCOTS (Abts et al.2000), an evolution from
COCOMO II(Boehm et al.1995,2000).

“Reuse is something that is far easier to say than to do. Doing it requires both good design and very
good documentation. Even when we see good design, which is still infrequently, we won't see the
components reused without good documentation”. - D. L. Parnas, Software Aging, 16th
International Conference Software Engineering, 1994

There are many informal arguments that make software reuse an appealing and
economically. In the following section I will discuss some models and theories that have
been developed to assess economics of software products and the developed reuse models
based on my study. The majority of work on economics of reuse is on the reuse of source
code.

3.2 Cost Estimation

3.2.1 Traditional COCOMO
COCOMO was first published in 1981 as a model for estimating effort, cost, and schedule
for software projects (Boehm, 1981). References to this model typically call it COCOMO 81.
In 1997 COCOMO II was developed and finally published in 2001 in the book Software Cost
Estimation with COCOMO II. COCOMO II is the successor of COCOMO 81 and is better
suited for estimating modern software development projects. It provides more support for
modern software development processes and an updated project database. The need for the
new model came as software development technology moved from mainframe and
overnight batch processing to desktop development, code reusability and the use of off-the-
shelf software components.

COCOMO consists of a hierarchy of three increasingly detailed and accurate forms. The first
level, Basic COCOMO is good for quick, early, rough order of magnitude estimates of
software costs, but its accuracy is limited due to its lack of factors to account for difference in
project attributes (Cost Drivers). Intermediate COCOMO takes these Cost Drivers into
account and Detailed COCOMO additionally accounts for the influence of individual project
phases.
Basic COCOMO is a static, single-valued model that computes software development effort
(and cost) as a function of program size expressed in estimated lines of code. COCOMO
applies to three classes of software projects (Boehm et.al, 2000; Sunita Chulani, 2000):

 Organic projects - are relatively small, simple software projects in which small
teams with good application experience work to a set of less than rigid
requirements.

 Semi-detached projects - are intermediate (in size and complexity) software
projects in which teams with mixed experience levels must meet a mix of rigid and
less than rigid requirements.

 Embedded projects - are software projects that must be developed within a set of
tight hardware, software, and operational constraints.

The basic COCOMO equations take the form
E=ab(KLOC)bb
D=cb(E)db
P=E/D

Where E is the effort applied in person-months, D is the development time in chronological
months, KLOC is the estimated number of delivered lines of code for the project (expressed
in thousands), and P is the number of people required. The coefficients ab, bb, cb and db are
given in the following table.

Software project ab bb cb db
Organic 2.4 1.05 2.5 0.38
Semi-detached 3.0 1.12 2.5 0.35
Embedded 3.6 1.20 2.5 0.32

Basic COCOMO is good for quick, early, rough order of magnitude estimates of software
costs, but it does not account for differences in hardware constraints, personnel quality and
experience, use of modern tools and techniques, and other project attributes known to have
a significant influence on software costs, which limits its accuracy (Boehm et al.2000; Sunita
Chulani, 2000).

3.2.2 Intermediate COCOMO
Intermediate COCOMO computes software development effort as function of program size
and a set of "cost drivers" that include subjective assessment of product, hardware,
personnel and project attributes. This extension considers a set of four "cost drivers", each
with a number of subsidiary attributes:

 Product attributes
o Required software reliability
o Size of application database
o Complexity of the product

 Hardware attributes
o Run-time performance constraints
o Memory constraints
o Volatility of the virtual machine environment
o Required turnabout time

 Personnel attributes
o Analyst capability
o Software engineering capability
o Applications experience
o Virtual machine experience
o Programming language experience

 Project attributes
o Use of software tools
o Application of software engineering methods
o Required development schedule

Engineering the Computer Science and IT400

Each of the 15 attributes receives a rating on a six-point scale that ranges from "very low" to
"extra high" (in importance or value). An effort multiplier from the table below applies to
the rating. The product of all effort multipliers results in an effort adjustment factor (EAF).
Typical values for EAF range from 0.9 to 1.4.

Cost Drivers

Ratings
Very
Low Low Nominal High

Very
High

Extra
High

Product attributes
Required software reliability 0.75 0.88 1.00 1.15 1.40
Size of application database 0.94 1.00 1.08 1.16
Complexity of the product 0.70 0.85 1.00 1.15 1.30 1.65
Hardware attributes
Run-time performance constraints 1.00 1.11 1.30 1.66
Memory constraints 1.00 1.06 1.21 1.56
Volatility of the virtual machine environment 0.87 1.00 1.15 1.30
Required turnabout time 0.87 1.00 1.07 1.15
Personnel attributes
Analyst capability 1.46 1.19 1.00 0.86 0.71
Applications experience 1.29 1.13 1.00 0.91 0.82
Software engineer capability 1.42 1.17 1.00 0.86 0.70
Virtual machine experience 1.21 1.10 1.00 0.90
Programming language experience 1.14 1.07 1.00 0.95
Project attributes
Use of software tools 1.24 1.10 1.00 0.91 0.82
Application of software engineering methods 1.24 1.10 1.00 0.91 0.83
Required development schedule 1.23 1.08 1.00 1.04 1.10

The Intermediate COCOMO formula now takes the form:

E=ai(KLOC)(bi).EAF

where E is the effort applied in person-months, KLOC is the estimated number of thousands
of delivered lines of code for the project, and EAF is the factor calculated above. The
coefficient ai and the exponent bi are given in the next table.

Software project ai bi
Organic 3.2 1.05
Semi-detached 3.0 1.12
Embedded 2.8 1.20

The Development time D calculation uses E in the same way as in the Basic COCOMO

Transition Parameters For Successful Reuse Business 401

Each of the 15 attributes receives a rating on a six-point scale that ranges from "very low" to
"extra high" (in importance or value). An effort multiplier from the table below applies to
the rating. The product of all effort multipliers results in an effort adjustment factor (EAF).
Typical values for EAF range from 0.9 to 1.4.

Cost Drivers

Ratings
Very
Low Low Nominal High

Very
High

Extra
High

Product attributes
Required software reliability 0.75 0.88 1.00 1.15 1.40
Size of application database 0.94 1.00 1.08 1.16
Complexity of the product 0.70 0.85 1.00 1.15 1.30 1.65
Hardware attributes
Run-time performance constraints 1.00 1.11 1.30 1.66
Memory constraints 1.00 1.06 1.21 1.56
Volatility of the virtual machine environment 0.87 1.00 1.15 1.30
Required turnabout time 0.87 1.00 1.07 1.15
Personnel attributes
Analyst capability 1.46 1.19 1.00 0.86 0.71
Applications experience 1.29 1.13 1.00 0.91 0.82
Software engineer capability 1.42 1.17 1.00 0.86 0.70
Virtual machine experience 1.21 1.10 1.00 0.90
Programming language experience 1.14 1.07 1.00 0.95
Project attributes
Use of software tools 1.24 1.10 1.00 0.91 0.82
Application of software engineering methods 1.24 1.10 1.00 0.91 0.83
Required development schedule 1.23 1.08 1.00 1.04 1.10

The Intermediate COCOMO formula now takes the form:

E=ai(KLOC)(bi).EAF

where E is the effort applied in person-months, KLOC is the estimated number of thousands
of delivered lines of code for the project, and EAF is the factor calculated above. The
coefficient ai and the exponent bi are given in the next table.

Software project ai bi
Organic 3.2 1.05
Semi-detached 3.0 1.12
Embedded 2.8 1.20

The Development time D calculation uses E in the same way as in the Basic COCOMO

3.2.3 Detailed COCOMO
Detailed COCOMO - incorporates all characteristics of the intermediate version with an
assessment of the cost driver's impact on each step (analysis, design, etc.) of the software
engineering process

3.2.4 COnstructive COst MOdel version II (COCOMO II)

 COCOMO II can be used for the following major decision situations (Boehm et al. 2000)

 Making investment or other financial decisions involving a software development
effort

 Setting project budgets and schedules as a basis for planning and control
 Deciding on or negotiating tradeoffs among software cost, schedule, functionality,

performance or quality factors
 Making software cost and schedule risk management decisions
 Deciding which parts of a software system to develop, reuse, lease, or purchase
 Making legacy software inventory decisions: what parts to modify, phase out,

outsource, etc
 Setting mixed investment strategies to improve organization's software capability,

via reuse, tools, process maturity, outsourcing, etc
 Deciding how to implement a process improvement strategy, such as that provided

in the SEI CMM

The full COCOMO II model includes three stages.
Stage 1 supports estimation of prototyping or applications composition efforts.
Stage 2 supports estimation in the Early Design stage of a project, when less is known about
the project’s cost drivers. Stage 3 supports estimation in the Post-Architecture stage of a
project.
This version of USC COCOMO II implements stage 3 formulas to estimate the effort,
schedule, and cost required to develop a software product. It also provides the breakdown
of effort and schedule into software life-cycle phases and activities from both the Waterfall
model and the Mbase Model. The Mbase model is fully described in Software Cost
Estimation with COCOMO II.

3.2.5 COCOTS
COCOTS is the acronym for the COnstructive COTS integration cost model, where COTS in
turn is short for commercial-off-the-shelf, and refers to those pre-built, commercially
available software components that are becoming ever more important in the creation of
new software systems.

The rationale for building COTS-containing systems is that they will involve less
development time by taking advantage of existing, market proven, vendor supported
products, thereby reducing overall system development costs (Abs et al., 2000). But there are

Engineering the Computer Science and IT402

two defining characteristics of COTS software, and they drive the whole COTS usage
process:
1) The COTS product source code is not available to the application developer, and
2) The future evolution of the COTS product is not under the control of the application
developer.
Because of these characteristics, there is a trade-off in using the COTS approach in that new
software development time can indeed be reduced, but generally at the cost of an increase in
software component integration work. The long term cost implications of adopting the
COTS approach are even more profound, because considering COTS components for a new
system means adopting a new way of doing business till the retirement of that system. This
is because COTS software is not static; it continually evolves in response to the market, and
the system developer must adopt methodologies that cost-effectively manage the use of
those evolving components.

3.2.5.1 Relation to COCOMO II
COCOMO II creates effort and schedule estimates for software systems built using a variety
of techniques or approaches. The first and primary approach modeled by COCOMO is the
use of system components that are built from scratch, that is, new code. But COCOMO II
also allows to model the case in which system components are built out of pre-existing
source code that is modified or adapted to current purpose, i.e., reuse code.
What COCOMO II currently does not model is that case in which there is no access to a pre-
existing component’s source code. We have to take the component as is, working only with
its executable file, and at most are able to build a software shell around the component to
adapt its functionality to our needs.
This is where COCOTS comes in. COCOTS are being designed specifically to model the
unique conditions and practices highlighted in the preceding section that obtain when we
have to incorporate COTS components into the design of our larger system.

3.2.5.2 COCOTS Model Overview
COCOTS at the moment are composed of four related sub models, each addressing
individually what we have identified as the four primary sources of COTS software
integration costs (Grady, 1997).
Initial integration costs are due to the effort needed to perform (1) candidate COTS
component assessment, (2) COTS component tailoring, (3) the development and testing of
any integration or "glue" code (sometimes called “glue ware” or “binding” code) needed to
plug a COTS component into a larger system, and (4) increased system level programming
and testing due to volatility in incorporated COTS components.
The following figure illustrates how the modeling of these effort sources in COCOTS is
related to effort modeled by COCOMO II.

Transition Parameters For Successful Reuse Business 403

two defining characteristics of COTS software, and they drive the whole COTS usage
process:
1) The COTS product source code is not available to the application developer, and
2) The future evolution of the COTS product is not under the control of the application
developer.
Because of these characteristics, there is a trade-off in using the COTS approach in that new
software development time can indeed be reduced, but generally at the cost of an increase in
software component integration work. The long term cost implications of adopting the
COTS approach are even more profound, because considering COTS components for a new
system means adopting a new way of doing business till the retirement of that system. This
is because COTS software is not static; it continually evolves in response to the market, and
the system developer must adopt methodologies that cost-effectively manage the use of
those evolving components.

3.2.5.1 Relation to COCOMO II
COCOMO II creates effort and schedule estimates for software systems built using a variety
of techniques or approaches. The first and primary approach modeled by COCOMO is the
use of system components that are built from scratch, that is, new code. But COCOMO II
also allows to model the case in which system components are built out of pre-existing
source code that is modified or adapted to current purpose, i.e., reuse code.
What COCOMO II currently does not model is that case in which there is no access to a pre-
existing component’s source code. We have to take the component as is, working only with
its executable file, and at most are able to build a software shell around the component to
adapt its functionality to our needs.
This is where COCOTS comes in. COCOTS are being designed specifically to model the
unique conditions and practices highlighted in the preceding section that obtain when we
have to incorporate COTS components into the design of our larger system.

3.2.5.2 COCOTS Model Overview
COCOTS at the moment are composed of four related sub models, each addressing
individually what we have identified as the four primary sources of COTS software
integration costs (Grady, 1997).
Initial integration costs are due to the effort needed to perform (1) candidate COTS
component assessment, (2) COTS component tailoring, (3) the development and testing of
any integration or "glue" code (sometimes called “glue ware” or “binding” code) needed to
plug a COTS component into a larger system, and (4) increased system level programming
and testing due to volatility in incorporated COTS components.
The following figure illustrates how the modeling of these effort sources in COCOTS is
related to effort modeled by COCOMO II.

Fig. 2. Sources of Effort (Abts.et.al, 2000b)

The figure represents the total effort to build a software system out of a mix of new code and
COTS components as estimated by a combination of COCOMO II and COCOTS. The central
block in the diagram indicates the COCOMO II estimate, that is, the effort associated with
any newly developed software in the system. The smaller, exterior blocks indicate COCOTS
estimates, that effort associated with the COTS components in the system. The relative sizes
of the various blocks in this figure is a function of the number of COTS components relative
to the amount of new code in the system, and of the nature of the COTS component
integration efforts themselves. The more complex the tailoring and/or glue code-writing
efforts, the larger these blocks will be relative to the assessment block.

4. Software Metrics

Software development is a complex undertaking. Successful management requires good
management skills and good management information. Software metrics are an integral part
of the state-of the-practice in software engineering. A sound software metrics program can
contribute significantly to providing great management information. Successful metrics
programs must provide sound management information to better understand, track, control
and predict software projects, processes and products while ensuring low- cost, simplicity,
accuracy, and appropriateness.

According to Goodman, software metrics as, "The continuous application of measurement-
based techniques to the software development process and its products to supply
meaningful and timely management information, together with the use of those techniques
to improve that process and its products" (Goodman,1993).

Engineering the Computer Science and IT404

Fig. 3. What are Software Metrics?

Fig. 3 illustrates that metrics can provide the information needed by engineers for technical
decisions as well as information required by management.
A software metrics program has many purposes such as cost and schedule estimation,
identifying and controlling of risks, evaluation of bids, resource allocation, requirements
management, predicting schedules, reducing defects, assessing progress, and improving
processes.

4.1 The Keys to Setting Up a Successful Software Metrics Program
The keys to setting up a successful software metrics program are (Chidamber &Kemerer,
1994):

1. Keep the metrics simple keeping in mind that the goal of a metrics program is
management not measurement.

2. Understand the different types of metrics indicators.
E.g: a. Metrics designed to provide an accurate assessment of complicated
development path.
b. Metrics designed to provide an early identification of processes that have broken
down.
c. Metrics designed to provide an advanced warning of trouble ahead. All types
are important, but they require different management attention.
d. Metrics designed to provide an accurate picture of where the project is with
regard to cost and schedule.

3. Keep the metrics measurement cycle short.
4. Use a balanced set of metrics. Unbalanced metrics programs can fail because they

drive an organization into undesirable behavior.
5. Keep the metrics collection cost down. Normally, software metrics collection

program costs should not exceed 5 percent of the development cost. Automated
tools can be implemented to collect many metrics.

6. Focus on a small set of important metrics. Some metrics programs suffer from a
tendency to collect more and more information over time. Additional metrics do
not always provide sufficient additional information to justify their expense.

Transition Parameters For Successful Reuse Business 405

Fig. 3. What are Software Metrics?

Fig. 3 illustrates that metrics can provide the information needed by engineers for technical
decisions as well as information required by management.
A software metrics program has many purposes such as cost and schedule estimation,
identifying and controlling of risks, evaluation of bids, resource allocation, requirements
management, predicting schedules, reducing defects, assessing progress, and improving
processes.

4.1 The Keys to Setting Up a Successful Software Metrics Program
The keys to setting up a successful software metrics program are (Chidamber &Kemerer,
1994):

1. Keep the metrics simple keeping in mind that the goal of a metrics program is
management not measurement.

2. Understand the different types of metrics indicators.
E.g: a. Metrics designed to provide an accurate assessment of complicated
development path.
b. Metrics designed to provide an early identification of processes that have broken
down.
c. Metrics designed to provide an advanced warning of trouble ahead. All types
are important, but they require different management attention.
d. Metrics designed to provide an accurate picture of where the project is with
regard to cost and schedule.

3. Keep the metrics measurement cycle short.
4. Use a balanced set of metrics. Unbalanced metrics programs can fail because they

drive an organization into undesirable behavior.
5. Keep the metrics collection cost down. Normally, software metrics collection

program costs should not exceed 5 percent of the development cost. Automated
tools can be implemented to collect many metrics.

6. Focus on a small set of important metrics. Some metrics programs suffer from a
tendency to collect more and more information over time. Additional metrics do
not always provide sufficient additional information to justify their expense.

Keep in mind that metrics will not replace management, and are most effectively used to
provide data about potential problem areas to focus management attention (Poulin &
Caruso, 1993).

4.2 Deciding and Managing the Metrics
There are literally thousands of possible software metrics to collect and possible things to
measure about software development. There are many books and training programs
available about software metrics. Later in this document, I am trying to provide a "minimum
set" of top-level metrics suitable for reuse program,
For each metric, one must consider (Henderson-Sellers, 1996):

1. What are you trying to manage with this metric? Each metric must relate to a
specific management area of interest in a direct way

2. What does this metric measure? Exactly what does this metric count?
3. If your organization optimized this metric alone, what other important aspects of

your software development phases would be affected?
4. How hard/expensive is it to collect this information? This is where you actually get

to identify whether collection of this metric is worth the effort.
5. Does the collection of this metric interact with (or interfere with) other business

processes?
6. How accurate will the information be after you collect it?
7. Can this management interest area be measured by other metrics? What

alternatives to this metric exist?

Metrics are not useful if they can not be easily reviewed, analyzed for trends, compared
to each other, and displayed in a variety of manners. Periodic review of existing metrics
against the points mentioned above is recommended.
Be sure to take advantage of free metrics tools available where they are appropriate
(example sources of tools include: Software Technology Support Center (STSC), the
Software Engineering Institute (SEI), the Software Productivity Consortium (SPC), and
the Software Program Managers Network (SPMN)).With this guidance in mind, let's
turn to selecting the proper metrics to measure reuse cost and effort.

4.3 Measuring Software Reuse Cost
Economic considerations are at the center of any discussion of software reuse. Economic
models and software metrics are needed that quantify the costs and benefits of reuse Models
for software reuse economics try to help us answer the question, “when is it worthwhile to
incorporate reusable components into a development and when is custom development
without reuse preferable?” (Heinemann &Councill, 2001).Further, different technical
approaches to reuse have different investment and return on investment profiles (Poulin &
Caruso, 1993; Frakes & Terry, 1994).Generally metrics can be categorized into two namely
product metrics, which determine the characteristics of components and process metrics,
which measure time, cost etc.Only recently the researchers started to tackle this problem
(Frakes & Terry, 1996; Barnes & Bollinger, 1991; Mili et.al, 1995). But even such studies
couldn’t help to convince the management to understand the advantage of reuse. Most

Engineering the Computer Science and IT406

existing software engineering economic models need to be customized to each specific reuse
business. Several authors have modified the cost models that are today used to estimate
time and effort and for the development both of components and of applications using
components (Malan & Wentzel, 1993; Poulin, 1994; Boehm & Papaccio, 1988).Because high
levels of reuse can reduce the overall cost and time to deliver applications, the extra funding
and time can be directed to several alternative projects.
In the following section, the implications of various approaches for software reuse in the
organizations are discussed and proposed few economic models for cost analysis.

4.4 Software Reuse Cost Estimation Models
We can categorize the type of reuse in the context of cost estimation as follows (Barnes &
Bollinger,1991):

i) Component Reuse without Modification
ii) Component Reuse with modification
In the case of component reuse without modification, the average cost of developing

using reusable components can be formulated as follows:

 Cost search+ (1-p)*Development no-reuse (1)

where Cost search is the cost of performing a search operation, Development no-reuse is the cost
of developing without reuse (i.e., the cost of developing the component from scratch) and p
is the probability that the component is found in the component library. It is observed that
the reuse option would be preferable only if:

 Cost search+(1-p)*Development no-reuse < Development no-reuse (2)

In the case of component reuse with modification, the average cost of developing using
reusable components can be formulated as follows:

Cost search+ Cost adapt+(1-p)*Development no-reuse (3)

where Cost search is the cost of performing a search operation (the cost depends on the
whether the search is a manual search or search using a search tool), Cost adapt is the cost
required to adapt the component, Development no-reuse and p means the same as in the case
of equation (1). It is observed that the reuse option would be preferable only if:

Cost search+ Cost adapt+(1-p)*Development no-reuse < Development no-reuse (4)

In both the cases, the cost saving due to reuse can be formulated using a simple equation:

Cost saved=Cost no-reuse – cost reuse (5)

In addition to the above costs, we should also consider some overhead costs associated with
reuse include (Jasmine & Vasantha, 2008a):

 Domain analysis (Balda & Gustafson,1990;Pressman,2001)
 Increased documentation to facilitate reuse

Transition Parameters For Successful Reuse Business 407

existing software engineering economic models need to be customized to each specific reuse
business. Several authors have modified the cost models that are today used to estimate
time and effort and for the development both of components and of applications using
components (Malan & Wentzel, 1993; Poulin, 1994; Boehm & Papaccio, 1988).Because high
levels of reuse can reduce the overall cost and time to deliver applications, the extra funding
and time can be directed to several alternative projects.
In the following section, the implications of various approaches for software reuse in the
organizations are discussed and proposed few economic models for cost analysis.

4.4 Software Reuse Cost Estimation Models
We can categorize the type of reuse in the context of cost estimation as follows (Barnes &
Bollinger,1991):

i) Component Reuse without Modification
ii) Component Reuse with modification
In the case of component reuse without modification, the average cost of developing

using reusable components can be formulated as follows:

 Cost search+ (1-p)*Development no-reuse (1)

where Cost search is the cost of performing a search operation, Development no-reuse is the cost
of developing without reuse (i.e., the cost of developing the component from scratch) and p
is the probability that the component is found in the component library. It is observed that
the reuse option would be preferable only if:

 Cost search+(1-p)*Development no-reuse < Development no-reuse (2)

In the case of component reuse with modification, the average cost of developing using
reusable components can be formulated as follows:

Cost search+ Cost adapt+(1-p)*Development no-reuse (3)

where Cost search is the cost of performing a search operation (the cost depends on the
whether the search is a manual search or search using a search tool), Cost adapt is the cost
required to adapt the component, Development no-reuse and p means the same as in the case
of equation (1). It is observed that the reuse option would be preferable only if:

Cost search+ Cost adapt+(1-p)*Development no-reuse < Development no-reuse (4)

In both the cases, the cost saving due to reuse can be formulated using a simple equation:

Cost saved=Cost no-reuse – cost reuse (5)

In addition to the above costs, we should also consider some overhead costs associated with
reuse include (Jasmine & Vasantha, 2008a):

 Domain analysis (Balda & Gustafson,1990;Pressman,2001)
 Increased documentation to facilitate reuse

 Maintenance and enhancement of reuse artifacts (documents and components)
 Royalties and licenses for externally acquired components
 Creation (or acquisition) and operation of a reuse repository (If the decision is to

build a reusable component, then the cost of initial development and also the
expected usage frequency of the component also should be considered
(Mili.et.al,1995)

 Training of personnel in design for reuses and designs with reuse.

To maximize reuse profits, by analyzing process, organizational and technical aspects with
reduced asset development cost and management cost, we have to consider the following
points

i) When and Where Capital investment is to be made

Two approaches were observed namely, proactive and reactive. 80% of identified
population supported proactive approach and 20% supported reactive approach. If the
domain is stable, where the product features can be predicted, organizations can go for
upfront investment to develop reusable assets (proactive approach). If the domain is
unstable, reusable assets can be developed as when required (reactive approach). This
approach may result in reengineering and retrofitting existing products with reusable assets,
if there is no common architectural basis.

ii) Whether to go for a dedicated team for development/distribute/maintain assets or not
and associated costs involved.

Again the Cost no-reuse and cost reuse depends on the % size of parts (components) reused
and % of parts (components) not reused.

Fig. 4. Cumulative costs of software systems without reuse vs. with reuse

Fig 4 illustrates that for a reuse oriented software development; there will be an initial cost
increase. Then gradually cost will decrease due to reusing the same component again and
again across similar products.

Engineering the Computer Science and IT408

Fig. 5. Percentage of reduced cost of software products due to reuse

Fig 5 illustrates the percentage of reduced cost in the surveyed software companies. The %
of cost reduction due to reuse is observed as three ranges such as between 0% and 25%, 26%
and 50% & 51% and 75%. Also none of the companies are completely saved their
development cost due to reuse.

4.5 Measuring software reuse effort

4.5.1 Suggested estimation Model
A common approach to estimate effort is to make it a function of project size and equation
of effort is considered as follows:

Effort=a*size b (6)

where a and b are constants (Pressman, 2001).A similar study on smaller projects showed
that the data fits a straight line quite well, and the equation is of the form:

Effort=a* size + b (7)

where a and b are constants that are obtained by analysis of data of past projects. Where a is
termed the effort adjustment factor and b the scale factor.
Taking into consideration of reusable components these two equations can be modified as
follows (Jasmine & Vasantha, 2008b):

 Effort = a1*(size of Part reuse) b1 + a2*(size of Partno-reuse) b2 (8)

Effort = (a1*(size of Part reuse) +b1) + (a2*(size of Part no- reuse) +b2) (9)

where a1, b1 a2, b2 are constants, part reuse is part developed from reusable components and
partno-reuse is part developed without reusable components.

Transition Parameters For Successful Reuse Business 409

Fig. 5. Percentage of reduced cost of software products due to reuse

Fig 5 illustrates the percentage of reduced cost in the surveyed software companies. The %
of cost reduction due to reuse is observed as three ranges such as between 0% and 25%, 26%
and 50% & 51% and 75%. Also none of the companies are completely saved their
development cost due to reuse.

4.5 Measuring software reuse effort

4.5.1 Suggested estimation Model
A common approach to estimate effort is to make it a function of project size and equation
of effort is considered as follows:

Effort=a*size b (6)

where a and b are constants (Pressman, 2001).A similar study on smaller projects showed
that the data fits a straight line quite well, and the equation is of the form:

Effort=a* size + b (7)

where a and b are constants that are obtained by analysis of data of past projects. Where a is
termed the effort adjustment factor and b the scale factor.
Taking into consideration of reusable components these two equations can be modified as
follows (Jasmine & Vasantha, 2008b):

 Effort = a1*(size of Part reuse) b1 + a2*(size of Partno-reuse) b2 (8)

Effort = (a1*(size of Part reuse) +b1) + (a2*(size of Part no- reuse) +b2) (9)

where a1, b1 a2, b2 are constants, part reuse is part developed from reusable components and
partno-reuse is part developed without reusable components.

4.5.2 Incremental development and effort estimation
The effort estimation model used here relates the development effort (in project per-son-
months, PM) to software size (in thousands of delivered source lines of code or in number of
function points) as by replacing effort by y and size by x the equation (5) becomes

 == (10)

In incremental development the target system S is delivered in n stages (Mili.et.al, 1995). The
development is seen as a sequence of component integration C1, C2… Cn where each
component is a functionally independent system delivered to a customer and the
functionality increases with each delivery with one or more component integrations. C1 is
considered to be the start of a new system .At the end of the development Cn is equivalent
to the target system, S.
The size of the target system S is represented by x. In a one-off (non-incremental)
development this effort is estimated with equation (10).
A nominal size of increment i (i.e. the additional functionality, or code, needed to move
from Ci-1 to Ci) is represented by ni and the totality of the increments make up the target
system so that

 = n= n (11)

The effective size, xi, of each increment for effort estimation purposes is expressed as

 = n + o n ¡= n + o n ¡ (12)

where the parameter O reflects the overhead associated with the previous increment. For
example if O has a value of 0.25, it corresponds to 25% overhead.
The development effort in enhancing system from stage Ci-1 to Ci involves developing an
increment of effective size xi and the effort is thus estimated by using expression (10):

 == (13)

giving

 (14)

Engineering the Computer Science and IT410

Replacing xi by ni+oini-1,
The final equation for yi is as follows

 (n + o n ¡)(n + o n ¡) (Jasmine & Vasantha, 2008b) (15)

In a similar manner equation (6) also can be modified.
In incremental development (except for agile development) significant one-time tasks need
to be undertaken up front: product design for incremental systems must be well thought out
and open-ended so that each additional increment can be incorporated into the architecture
defined initially for the whole product. The architecture of the solution needs to allow for
breakdown into increments thereby enabling staged development. This requires an upfront
effort (encompassing core capability and overall architecture included in the first release),
which is over and above the effort needed to develop each increment (Laraman&Basili,
2003).The initial effort can be of considerable magnitude, especially if domain architecting
and reuse considerations are taken into account.

Models for software reuse economics helps the organizations to decide When is it
worthwhile to incorporate reusable components into a development and when is to perform
custom development without reuse. It is observed from the study that existing software
engineering economic models need to be adjusted to include reuse and customized to each
specific reuse business. An extensive work relating more elaborate software structure reuse
metrics and economical factors, with a wide variety of representative set of industrial
organizations is still necessary to standardize the reuse cost metrics field. Future research
can be performed in these directions.

5. Systematic reuse and economic feasibility

Generally, the knowledge about the problem domain is realized through a set of
components that are reusable within a formerly defined framework. A practical problem in
defining the problem domain is that the domain knowledge usually isn’t immediately
available. An essential difficulty herewith is the impossibility to predict all possible
variations and evolutions of the software (and the problem domain) beforehand.

Systematic reuse should not only recognize the need for a reusable asset to evolve both
during its initial design and when it is being reused, it should actually advocate the
development of a methodology for managing change in the process of engineering reusable
software. The development of reusable assets is inherently an evolutionary process. A reuser
can only gain insights in the qualities of reusable assets by actually reusing them. A
provider can only improve the qualities of assets if the experience of reuse is fed back to
him. Successful assets can have a long life span and thus need to evolve and adapt to new
reusers and their requirements. The inability to do so turns a reusable asset into legacy. Such
iterative development is also important because it allows the construction of reusable assets
in a bottom-up fashion. This is crucial for reuse to become economically feasible: it allows
finding a delicate balance between the longer term investments needed for constructing
reusable assets and the need to meet shorter term (customer) deadlines. To be able to

Transition Parameters For Successful Reuse Business 411

Replacing xi by ni+oini-1,
The final equation for yi is as follows

 (n + o n ¡)(n + o n ¡) (Jasmine & Vasantha, 2008b) (15)

In a similar manner equation (6) also can be modified.
In incremental development (except for agile development) significant one-time tasks need
to be undertaken up front: product design for incremental systems must be well thought out
and open-ended so that each additional increment can be incorporated into the architecture
defined initially for the whole product. The architecture of the solution needs to allow for
breakdown into increments thereby enabling staged development. This requires an upfront
effort (encompassing core capability and overall architecture included in the first release),
which is over and above the effort needed to develop each increment (Laraman&Basili,
2003).The initial effort can be of considerable magnitude, especially if domain architecting
and reuse considerations are taken into account.

Models for software reuse economics helps the organizations to decide When is it
worthwhile to incorporate reusable components into a development and when is to perform
custom development without reuse. It is observed from the study that existing software
engineering economic models need to be adjusted to include reuse and customized to each
specific reuse business. An extensive work relating more elaborate software structure reuse
metrics and economical factors, with a wide variety of representative set of industrial
organizations is still necessary to standardize the reuse cost metrics field. Future research
can be performed in these directions.

5. Systematic reuse and economic feasibility

Generally, the knowledge about the problem domain is realized through a set of
components that are reusable within a formerly defined framework. A practical problem in
defining the problem domain is that the domain knowledge usually isn’t immediately
available. An essential difficulty herewith is the impossibility to predict all possible
variations and evolutions of the software (and the problem domain) beforehand.

Systematic reuse should not only recognize the need for a reusable asset to evolve both
during its initial design and when it is being reused, it should actually advocate the
development of a methodology for managing change in the process of engineering reusable
software. The development of reusable assets is inherently an evolutionary process. A reuser
can only gain insights in the qualities of reusable assets by actually reusing them. A
provider can only improve the qualities of assets if the experience of reuse is fed back to
him. Successful assets can have a long life span and thus need to evolve and adapt to new
reusers and their requirements. The inability to do so turns a reusable asset into legacy. Such
iterative development is also important because it allows the construction of reusable assets
in a bottom-up fashion. This is crucial for reuse to become economically feasible: it allows
finding a delicate balance between the longer term investments needed for constructing
reusable assets and the need to meet shorter term (customer) deadlines. To be able to

leverage on the investment made in building an asset, reusers must be able to benefit from
future improvements of the assets they reuse: proper evolution of reused assets should not
invalidate previous reuse. In a similar vein, reuse should go beyond the act of copying out
code fragments and adapting them to current requirements without regard for the evolution
of the reused fragments. This implies the management of some kind of consistency in the
evolution of reusable software, to prohibit different versions of a reusable asset from
propagating through different applications. While systematic reuse should present an
opportunity to reduce maintenance effort, a proliferation of versions actually increases it, as
older versions of an asset behave differently than newer versions. The absence of change
management mechanisms is recognized as an important inhibitor to successful reuse.

To reconcile the bottom-up approach of iterative development with reuse with the top-
down approach of systematic reuse (development for reuse), a methodology that combines
the best of both worlds by introducing systematic reuse in the object-oriented software
engineering process can be adopted. My conjecture is that incrementally building reusable
assets requires a strong co-operation between providers of reusable assets and asset reusers.

5.1 Product-Line Architectures and Reusable Assets
Product family/line engineering is all about reusing components and structures as much as
possible. This method creates an underlying architecture of an organizations product
platform, one that is based on commonality and similarity. The various product variants can
be derived from the basic product family, which creates the opportunity to reuse and
differentiate on products in the family. It focuses on the process of engineering new
products in such a way that it is possible to reuse product components and apply variability
with decreased costs and time.
A product line involves core asset development and product development using the core
assets, both under the aegis of technical and organizational management. Core asset
development and product development from the core assets can occur in either order: new
products are built from core assets, or core assets are extracted from existing products.
Often, products and core assets are built in concert with each other. The following figure
illustrates these activities.

The Three Essential Activities for Software Product Lines are (Bosch, 1998b)
1. Core Asset Development
2. Product development
3. Management

All three are linked together and they are all essential, inextricably linked, and highly
iterative, and can occur in any order .Core assets are used to develop products, but that
revisions of existing core assets or even new core assets might, and most often do, evolve
out of product development.

5.1.2 What are core assets?
In some contexts, already existing products are mined for generic assets–perhaps a
requirements specification, an architecture, or software components–which are then

Engineering the Computer Science and IT412

migrated into the product line's core asset base. In other cases, the core assets may be
developed or procured for later use in the production of products.
There is a strong feedback loop between the core assets and the products. Core assets are
refreshed as new products are developed. The use of core assets is tracked, and the results
are fed back to the core asset development activity. In addition, the value of the core assets is
realized through the products that are developed from them. As a result, the core assets are
made more generic by considering potential new products on the horizon. There is a
constant need for strong, visionary management to invest resources in the development and
sustainment of the core assets. Management must also precipitate the cultural change to
view new products in the context of the available core assets. Either new products must
align with the existing core assets, or the core assets must be updated to reflect the new
products that are being marketed. Iteration is inherent in product line activities–that is, in
turning out core assets and products and in coordinating the two.

5.1.3 Problems related to Reusable assets
Based on the interviews and other documentation collected from the various organizations
as part of the study, I have identified a number of problems related to reusable assets that I
believe to have relevance in a wider context than just these organizations. The problems are
categorized into three categories, related to multiple versions of assets, dependencies
between assets and the use of assets in new contexts.

5.1.3.1 Multiple versions of assets
Product-line architectures have associated reusable assets that implement the functionality
of architectural component. These assets can be very large and contain up to a hundred
KLOC or more. Consequently, these assets represent considerable investments, multiple
man-years in certain cases. Therefore, it was surprising to identify that in some cases, the
interviewed companies maintained multiple versions (implementations) of assets in parallel.
One can identify at least four situations where multiple versions are introduced (Dikel et.al,
1997; Bass et.al, 1997) which are mentioned below.

 Conflicting quality requirements: The reusable assets that are part of the product
line are generally optimized for particular quality attributes, e.g., performance or
code size. Different products in the product-line, even though they require the
same functionality, may have conflicting quality requirements. These requirements
may have so high priority that no single component can fulfill both. The reusability
of the affected asset is then restricted to only one or a few of the products while
other products require another implementation of the same functionality.

 Variability implemented through versions: Certain types of variability are
difficult to implement through configuration since the effect of a variation spreads
out throughout the reusable asset e.g., operating system, for an asset. Although it
might be possible to implement all variability through, often it is decided to
maintain two different versions.

 High-end versus low-end products: The reusable asset should contain all
functionality required by the products in the product-line, including the high-end
products. The problem is that low-end products, generally requiring a restricted
subset of the functionality, pay for the unused functionality in terms of code size

Transition Parameters For Successful Reuse Business 413

migrated into the product line's core asset base. In other cases, the core assets may be
developed or procured for later use in the production of products.
There is a strong feedback loop between the core assets and the products. Core assets are
refreshed as new products are developed. The use of core assets is tracked, and the results
are fed back to the core asset development activity. In addition, the value of the core assets is
realized through the products that are developed from them. As a result, the core assets are
made more generic by considering potential new products on the horizon. There is a
constant need for strong, visionary management to invest resources in the development and
sustainment of the core assets. Management must also precipitate the cultural change to
view new products in the context of the available core assets. Either new products must
align with the existing core assets, or the core assets must be updated to reflect the new
products that are being marketed. Iteration is inherent in product line activities–that is, in
turning out core assets and products and in coordinating the two.

5.1.3 Problems related to Reusable assets
Based on the interviews and other documentation collected from the various organizations
as part of the study, I have identified a number of problems related to reusable assets that I
believe to have relevance in a wider context than just these organizations. The problems are
categorized into three categories, related to multiple versions of assets, dependencies
between assets and the use of assets in new contexts.

5.1.3.1 Multiple versions of assets
Product-line architectures have associated reusable assets that implement the functionality
of architectural component. These assets can be very large and contain up to a hundred
KLOC or more. Consequently, these assets represent considerable investments, multiple
man-years in certain cases. Therefore, it was surprising to identify that in some cases, the
interviewed companies maintained multiple versions (implementations) of assets in parallel.
One can identify at least four situations where multiple versions are introduced (Dikel et.al,
1997; Bass et.al, 1997) which are mentioned below.

 Conflicting quality requirements: The reusable assets that are part of the product
line are generally optimized for particular quality attributes, e.g., performance or
code size. Different products in the product-line, even though they require the
same functionality, may have conflicting quality requirements. These requirements
may have so high priority that no single component can fulfill both. The reusability
of the affected asset is then restricted to only one or a few of the products while
other products require another implementation of the same functionality.

 Variability implemented through versions: Certain types of variability are
difficult to implement through configuration since the effect of a variation spreads
out throughout the reusable asset e.g., operating system, for an asset. Although it
might be possible to implement all variability through, often it is decided to
maintain two different versions.

 High-end versus low-end products: The reusable asset should contain all
functionality required by the products in the product-line, including the high-end
products. The problem is that low-end products, generally requiring a restricted
subset of the functionality, pay for the unused functionality in terms of code size

and complex interfaces. Whenever the hardware cost play an important role in the
product price, the software engineers may be forced to create a low-end, scaled-
down version of the asset to minimize the overhead for low-end Products.

 Asset evolution: When the business units are responsible for asset evolution, assets
are sometimes extended with very product-specific code or code only tested for
one of the products in the product-line (Jacobson et.al,2000). The problems caused
by this create a tendency within the affected business units to create their own copy
of the asset and maintain it for their own product only. This minimizes the
dependency on the shared product-line architecture and solves the problems in the
short term, but in the long term it generally does not pay off. There will be several
instances of cases where business units had to rework considerable parts of their
code to incorporate a new version of the evolved shared asset that contained
functionality that needed to be incorporated in their product also.

5.1.3.2 Dependencies between assets
Since the reusable assets are all part of a product-line architecture, they tend to have
dependencies between them. Although dependencies between assets are necessary, assets
often have dependencies that could have been avoided by another modularization of the
system or a more careful asset design. From the examples from the surveyed companies, I
have learned that the initial design of assets generally defines a small set of required and
explicitly defined dependencies. It is often during evolution of assets that unwanted
dependencies are created. Addition of new functionality may require extension of more than
one asset and in the process often dependencies are created between the involved assets to
implement the functionality. These new dependencies could often have been avoided by
another decomposition of the architecture and have a tendency to be implicit, in that their
documentation is often minimal and the software engineer encounters the dependency late
in the development process. Dependencies in general, but especially implicit dependencies,
reduce the reusability of assets in different contexts, but also complicate the evolution of
assets. Based on my research at various software companies, I have identified the following
situations where new, often implicit, dependencies are introduced:

 Component decomposition With the development of the product-line architecture
generally also the size of the reusable assets increases. With the increasing size of
asset components, there is a point where a component needs to be split into two
components. These two components, initially, have numerous relations to each
other, but even after some redesign often several dependencies remain because the
initial design did not modularize the behavior captured by the two components.

 Extensions cover multiple assets: During implementation of the extension, it is
very natural to add dependencies between the affected assets since one is working
on functionality that is perceived as one piece, even though it is divided over
multiple assets. By separating the authorization access from the two assets and
representing as a single asset, we can decrease the dependencies.

5.1.3.3 Assets in new contexts
Since assets represent considerable investments, it is mandatory to use assets in as many
products and domains as possible to save money. However, the new context differs in one
or more aspects from the old context, causing a need for the asset to be changed in order to

Engineering the Computer Science and IT414

fit. Two main issues in the use of assets in new context can be identified (Bass et.al, 1997;
Bosch, 1998b):
• Mixed behavior: An asset is developed for a particular domain, product category,
operating context and set of driving quality requirements. Consequently, it often proves to
be hard to apply the asset in different domains, products or operating contexts. The design
of assets often hardwires design decisions concerning these aspects unless the type of
variability is known and required at design time.
E.g., Assets used for fire-alarm system and intruder-alarm systems due to the similarities in
the domains
• Design for required variability: A reusable asset often requires new variability
dimensions. So assets should be designed so that the introduction of new variability
requires minimal effort.
E.g, fire-alarm and intruder alarm system share, to a large extent, the same operating
context and quality requirements. Since the fire-alarm framework is designed for its domain
and the intruder alarm domain has different requirements and concepts, one is forced to
introduce variability for application domain functionality.

5.2. Cause Analysis for the Identified problems
The problems discussed in the previous section present an overview over the issues
surrounding the use of reusable assets in product-line architecture.

The following are the identified primary underlying causes for these problems. These causes
are discussed in the following section (Bosch, 1998b).

5.2.1 Early intertwining of functionality
The early intertwining of functionality is a primary cause to several of the problems
discussed in the previous section. Multiple versions of assets are required because the
different categories of functionality cannot be separated in the implementation and
implemented through variability. The use of layers in asset design separating operating
context dependent from context independent functionality avoids the mixing. Also, some
design patterns (Gamma et al., 1994; Buschmann et.al, 1996) support this.

5.2.2 Organization
Having explicit groups for domain and application engineering requires a relatively large
software development department consisting of at least fifty to a hundred engineers. Several
of the problems discussed earlier can be related to the lack of independent domain
engineering. Business units focus on their own quality attributes and design for achieving
those during asset extension. Because of that, multiple versions of assets may be created
where a domain engineering unit may have found solutions allowing for a single version. In
addition, asset extension without sufficient focus on the product-line as a whole may
introduce more dependencies than strictly necessary, complicating the use of assets as well
as the reuse of assets in new contexts.
Solutions exist to minimize the negative effects of organizational structures. Asset redesigns
are performed when a consensus is present that an asset needs to be reorganized. During an

Transition Parameters For Successful Reuse Business 415

fit. Two main issues in the use of assets in new context can be identified (Bass et.al, 1997;
Bosch, 1998b):
• Mixed behavior: An asset is developed for a particular domain, product category,
operating context and set of driving quality requirements. Consequently, it often proves to
be hard to apply the asset in different domains, products or operating contexts. The design
of assets often hardwires design decisions concerning these aspects unless the type of
variability is known and required at design time.
E.g., Assets used for fire-alarm system and intruder-alarm systems due to the similarities in
the domains
• Design for required variability: A reusable asset often requires new variability
dimensions. So assets should be designed so that the introduction of new variability
requires minimal effort.
E.g, fire-alarm and intruder alarm system share, to a large extent, the same operating
context and quality requirements. Since the fire-alarm framework is designed for its domain
and the intruder alarm domain has different requirements and concepts, one is forced to
introduce variability for application domain functionality.

5.2. Cause Analysis for the Identified problems
The problems discussed in the previous section present an overview over the issues
surrounding the use of reusable assets in product-line architecture.

The following are the identified primary underlying causes for these problems. These causes
are discussed in the following section (Bosch, 1998b).

5.2.1 Early intertwining of functionality
The early intertwining of functionality is a primary cause to several of the problems
discussed in the previous section. Multiple versions of assets are required because the
different categories of functionality cannot be separated in the implementation and
implemented through variability. The use of layers in asset design separating operating
context dependent from context independent functionality avoids the mixing. Also, some
design patterns (Gamma et al., 1994; Buschmann et.al, 1996) support this.

5.2.2 Organization
Having explicit groups for domain and application engineering requires a relatively large
software development department consisting of at least fifty to a hundred engineers. Several
of the problems discussed earlier can be related to the lack of independent domain
engineering. Business units focus on their own quality attributes and design for achieving
those during asset extension. Because of that, multiple versions of assets may be created
where a domain engineering unit may have found solutions allowing for a single version. In
addition, asset extension without sufficient focus on the product-line as a whole may
introduce more dependencies than strictly necessary, complicating the use of assets as well
as the reuse of assets in new contexts.
Solutions exist to minimize the negative effects of organizational structures. Asset redesigns
are performed when a consensus is present that an asset needs to be reorganized. During an

asset redesign, the software architects from the business units using the asset gather to
redesign the asset in order to improve its structure.

5.2.3 Time To Markert
A third important cause for the problems related to reusable assets at the interviewed
companies is the time-to-market (TTM) pressure. The problem most companies are dealing
with is that products appearing late on the market will lead to diminished market share or,
in the worst case, to no market penetration at all. Sacrificing some time-to-market for one
product may lead to considerable improvements for subsequent products, but this is
generally not appreciated. To address the problems resulting from TTM pressure, it is
important for software development organizations to identify the development of product-
line architecture with associated assets is a strategic issue and decisions should be taken at
the appropriate level. The consequences for the time-to-market of products under
development should be balanced against the future returns.

5.2.4 Economic models
Reusable assets may represent investments up to several man years of implementation
effort. For most companies, such an asset represents a considerable amount of capital, but
both engineers and management are not always aware of that. For instance, an increasing
number of dependencies between assets is a sign of accelerated aging of software and, in
effect, decreases the value of the assets. Economic models are necessary to visualize the
effects of quick fixes causing increased dependencies, in order to establish the economic
losses of these dependencies versus the time-to-market requirements. The lack of suitable
economic models for these influences several of the identified problems.

There is a need for economic models in two situations. First, models for calculating the
economic value of asset, based on the investment (man hours) but also on the value of the
asset for future product development and/or for an external market. In addition, models
visualizing the effects of various types of changes and extensions on the asset values are also
required.

5.3 Some Issues and considerations for product-line approach
In the context of product line approach, the following issues to be considered (Griss et. al,
1993; Basili et.al, 1994).

 Business

- Number of new starts subscribing to a software product line may be
insufficient to offset the costs of building/maintaining product line

- Incentive must be provided to the contractor community to engage in
product line asset development

- Contractor liability must be addressed and resolved
 Technical

- Need for software engineering practices and processes that apply
technology to create and evolve product line assets and products

Engineering the Computer Science and IT416

- Managing the evolution of product line architectures
 Organizational

- Importance of infrastructure and cross organizational cooperation
- Need for strong visionary management to invest resources into the

development/containment of product line architectures

6. Reuse Capability maturity Model (RCMM)

The RCMM was developed in the early 1990’s at the Software Productivity Consortium
(SPC) as part of a systematic approach to reuse adoption. It is an effective guide primarily to
help organizations identify opportunities for improving a reuse-based process. It also
provides criteria by which an organization can target a level of reuse capability that matches
its particular needs and capabilities (SPC-CMC, 1993).However, the interaction between
these two purposes and with the CMM has not been fully understood. Now, our study with
various software organizations established that the critical success factors defined by the
RCMM can be entirely partitioned according to these two purposes.

Capability Maturity Model is a reference model of mature practices in a specified discipline,
used to assess a group’s capability to perform that discipline (Craig& Allgood, 2001)
• CMMs differ by
–Discipline (software, systems, acquisition, etc.)
–Structure (staged versus continuous)
–How Maturity is Defined (process improvement path)
–How Capability is Defined (institutionalization)
As per Carnegle Mellon Software Engineering institute’s study, CMMI transition from
traditional approach to reuse oriented CMMI is a technology transition. Because CMMI is a
process technology (Garcia, 2003).

CMMI will require

- Development of new routines(procedures)
- Modification in the norms and beliefs of the organization members

6.1 Need of Technology Transition Practices (TTP) with CMMI transition
TTP is business unit within the Technology Transition Services Directorate focused on
enabling organizations to build their own capability for managed, accelerated and
affordable software technology transition.TTP works with all SEI software
technologies.TTP’s current focus is on working primarily with technology developers and
deployers. The role of TTP is to work with CMMI team to monitor /refine transition
strategy (CMU/SEI, 1993; Garcia, 2003).

6.2 Key elements in successful technology transition

1. Understanding the goals of different roles involved in the transition process
2. Understanding the characteristics of the technology

Transition Parameters For Successful Reuse Business 417

- Managing the evolution of product line architectures
 Organizational

- Importance of infrastructure and cross organizational cooperation
- Need for strong visionary management to invest resources into the

development/containment of product line architectures

6. Reuse Capability maturity Model (RCMM)

The RCMM was developed in the early 1990’s at the Software Productivity Consortium
(SPC) as part of a systematic approach to reuse adoption. It is an effective guide primarily to
help organizations identify opportunities for improving a reuse-based process. It also
provides criteria by which an organization can target a level of reuse capability that matches
its particular needs and capabilities (SPC-CMC, 1993).However, the interaction between
these two purposes and with the CMM has not been fully understood. Now, our study with
various software organizations established that the critical success factors defined by the
RCMM can be entirely partitioned according to these two purposes.

Capability Maturity Model is a reference model of mature practices in a specified discipline,
used to assess a group’s capability to perform that discipline (Craig& Allgood, 2001)
• CMMs differ by
–Discipline (software, systems, acquisition, etc.)
–Structure (staged versus continuous)
–How Maturity is Defined (process improvement path)
–How Capability is Defined (institutionalization)
As per Carnegle Mellon Software Engineering institute’s study, CMMI transition from
traditional approach to reuse oriented CMMI is a technology transition. Because CMMI is a
process technology (Garcia, 2003).

CMMI will require

- Development of new routines(procedures)
- Modification in the norms and beliefs of the organization members

6.1 Need of Technology Transition Practices (TTP) with CMMI transition
TTP is business unit within the Technology Transition Services Directorate focused on
enabling organizations to build their own capability for managed, accelerated and
affordable software technology transition.TTP works with all SEI software
technologies.TTP’s current focus is on working primarily with technology developers and
deployers. The role of TTP is to work with CMMI team to monitor /refine transition
strategy (CMU/SEI, 1993; Garcia, 2003).

6.2 Key elements in successful technology transition

1. Understanding the goals of different roles involved in the transition process
2. Understanding the characteristics of the technology

3. Understanding what is needed to make the technology work.
4. Identifying and mitigating the identified risks

6.3 Different roles in Technology transition

1. Technology developers :Those who create new technologies
E.g. SEI initiatives, Commercial product motivation teams
2. Technology acquirers Those who determine which technologies will be used to

support their own system development efforts
E.g. Individual acquisition program offices and corporate business units
3. Technology deployers Those who determine which technologies will be used to

support their own system development efforts
E.g. SEI transition partners, military organizations like STSC
4. Technology adopters: The organization or group that will actually be using a new

technology
E.g. War fighter units in military, organizations adopting a new maturity model

Fig. 6. Adaption and Planning for Transition Adopting Organization

6.4 Motivation for Reuse CMM
Motivation for developing the Reuse Maturity Model comes from observing the enormous
impact the Software Engineering Institute's software Capability Maturity Model has had.
The SEI has focused attention on process issues in a most remarkable way by examining
characteristic engineering practices and providing a means to classify an organization into
one of five maturity levels (CMU/SEI, 1993; Garcia, 2003). Moreover, the SEI has established
the principle in people's minds that the quality of a software product is dictated by the
quality of the processes used to develop that product. Furthermore, the SEI has convinced
executive managers that process improvement must come a step at a time, by laying a
foundation for process improvement on which other improvement activities can build.
Through my Reuse Maturity Model, I hope that achieving reuse requires a comprehensive
approach.

From the survey of software companies, a numerous obstacles are identified that must be
overcome in order to achieve high levels of reuse, are listed below:

Engineering the Computer Science and IT418

Cultural: Incentives and management backing must be put in place and (``Not Invented
Here'') syndrome must be eliminated.

Institutional: A corporate-wide forum is needed to identify product development cycle
where reuse concerns can always be raised and resolved.

Financial: The costs and benefits must be understood for a product life cycle based on a
"Design for Reuse" philosophy. Reusable work-products must be viewed as capital assets.

Technical: Proper mechanisms are needed to ensure that guidelines, techniques, and
standards for making things reusable are developed and followed.

Legal: Negotiations must be undertaken to determine how to retain rights to components
developed under customer contract and recover costs in a reuse context. Mechanisms will be
needed for payment and collection of royalties for use and reuse in the commercial arena.

Out of the hundred industrial organizations considered, I could see many Level 1 Reuse
organizations, only a handful of companies at the intermediate levels, and only hypothesize
what a Level 5 Reuse company would look like, I expect some significant revisions are
needed to the model. An additional step which augments the reuse maturity questionnaire
and by organizing subsets of the questions to address each level of reuse maturity
separately is required to objectively measure the Progress toward reuse process
improvement.

6.5 How to achieve effective reuse
To provide organizations with detailed guidance on how to achieve effective reuse, the
Reuse-driven Software Processes (RSP) methodology was also developed at SPC in the early
1990’s. All RSP processes consist of two distinct lifecycle activities of domain engineering
and application engineering. The conceptual basis of any RSP process is the formalization of
commonalities and variabilities that characterize a set of similar products to represent a
product family and an associated process for deriving instance products to meet diverse and
changing customer needs.

Other authors have proposed different models to structure the breadth of reuse involvement
provided by an organization. Among them one was proposed by (Koltun & Hudson, 1991),
that proposed by the Software productivity Consortium and that used in the UE project
REBOOT (Reuse Based on Object oriented Techniques)

Transition Parameters For Successful Reuse Business 419

Cultural: Incentives and management backing must be put in place and (``Not Invented
Here'') syndrome must be eliminated.

Institutional: A corporate-wide forum is needed to identify product development cycle
where reuse concerns can always be raised and resolved.

Financial: The costs and benefits must be understood for a product life cycle based on a
"Design for Reuse" philosophy. Reusable work-products must be viewed as capital assets.

Technical: Proper mechanisms are needed to ensure that guidelines, techniques, and
standards for making things reusable are developed and followed.

Legal: Negotiations must be undertaken to determine how to retain rights to components
developed under customer contract and recover costs in a reuse context. Mechanisms will be
needed for payment and collection of royalties for use and reuse in the commercial arena.

Out of the hundred industrial organizations considered, I could see many Level 1 Reuse
organizations, only a handful of companies at the intermediate levels, and only hypothesize
what a Level 5 Reuse company would look like, I expect some significant revisions are
needed to the model. An additional step which augments the reuse maturity questionnaire
and by organizing subsets of the questions to address each level of reuse maturity
separately is required to objectively measure the Progress toward reuse process
improvement.

6.5 How to achieve effective reuse
To provide organizations with detailed guidance on how to achieve effective reuse, the
Reuse-driven Software Processes (RSP) methodology was also developed at SPC in the early
1990’s. All RSP processes consist of two distinct lifecycle activities of domain engineering
and application engineering. The conceptual basis of any RSP process is the formalization of
commonalities and variabilities that characterize a set of similar products to represent a
product family and an associated process for deriving instance products to meet diverse and
changing customer needs.

Other authors have proposed different models to structure the breadth of reuse involvement
provided by an organization. Among them one was proposed by (Koltun & Hudson, 1991),
that proposed by the Software productivity Consortium and that used in the UE project
REBOOT (Reuse Based on Object oriented Techniques)

The model proposed by Koltun and Hudson, five maturity levels are defined for reuse:

1- Initial Chaotic
2- Monitored
3- Co-coordinated
4- Planned
5- Ingrained

The criteria that permit the evaluation of the level of each organization in the model are:
Motivation, Planning for reuse, Breadth of reuse involvement, Responsibility for making
reuse happen, process by which reuse is leveraged, reuse inventory, classification activity,
Technology support, metrics and legal considerations.
The model suggested by Llorens Morillo et. al, is based on the monitoring of three different
factors

 Repository structure
 Software development architecture
 Administrative management

Each factor encompasses a certain part of the reuse environment, covering the following
areas of control.

Repository structure deals with information representation of the available information in a
manner to reuse in the future, classification of existing components and suitable recovery
techniques to obtain wherever necessary, and management of authorizing, rejecting and
modification of existing components and automated announcement of incorporation or
modification of components (Topaloglu et. al, 1996)

Software Development architecture includes developing the architecture according to its
orientation towards reuse, type of reuse systematically achieved by the organization and
component testing.

Under administrative management, three aspects are covered (Baumert & Mark, 1992)
Reuse support towards human resources

 Incentives and planning towards reuse
 Reuse level of previous projects ,applied to the strengthening of the level of

improvement

The complete infrastructure graph recommended by (Prieto-diaz et. al, 1993) is shown in
following figure.

Engineering the Computer Science and IT420

Fig. 7. Reuse Infrastructure

According to (Grady,1997), a reuse-driven process is a framework for performing domain-
specific engineering which helps to optimize the software practices to build products of a
particular type, resulting in improved productivity and product quality .This focusing and
standardization of effort is the key to systematic reuse, leading ultimately to a
manufacturing discipline.

As with any process, the CMM and RCM process improvement factors can motivate
improvements in a reuse-driven process. In this, some of the corresponding RCM factors
ought to be addressed in attaining CMM levels 2 and 3. The 17 process definition factors in
the RCM concern differences in the types of reuse based process that an organization may
adopt (Grady, 1997). The RCM, in its implementation model, defines four types of reuse-
based process: opportunistic, integrated, leveraged, and anticipating. These types, ordered
by increasing cost-risk and benefit, provided a categorization for the diversity of approaches
already envisioned by the RSP methodology as a family of processes. These process
definition factors do not fit into the proper scope of the CMM because they involve a choice
among equally valid alternative process conceptions; no one approach is best for everyone.

Transition Parameters For Successful Reuse Business 421

Fig. 7. Reuse Infrastructure

According to (Grady,1997), a reuse-driven process is a framework for performing domain-
specific engineering which helps to optimize the software practices to build products of a
particular type, resulting in improved productivity and product quality .This focusing and
standardization of effort is the key to systematic reuse, leading ultimately to a
manufacturing discipline.

As with any process, the CMM and RCM process improvement factors can motivate
improvements in a reuse-driven process. In this, some of the corresponding RCM factors
ought to be addressed in attaining CMM levels 2 and 3. The 17 process definition factors in
the RCM concern differences in the types of reuse based process that an organization may
adopt (Grady, 1997). The RCM, in its implementation model, defines four types of reuse-
based process: opportunistic, integrated, leveraged, and anticipating. These types, ordered
by increasing cost-risk and benefit, provided a categorization for the diversity of approaches
already envisioned by the RSP methodology as a family of processes. These process
definition factors do not fit into the proper scope of the CMM because they involve a choice
among equally valid alternative process conceptions; no one approach is best for everyone.

Fig. 8. Traditional CMM Levels

6.6 Proposed CMM levels by the author for reuse
Although process maturity is extremely important in delivering high quality software, there
is no standardized maturity model adopted for reuse based software development process.
Some organizations which are primarily involved in reuse based software development are
following some versions of reuse maturity models. After an extensive literature review
(Almeida et al. ,2004; Koltun & Hudson,1991;Frakes and Fox ,1995; Rine, 1997a; Rine &
Nada ,2000a) and from my study on reuse projects, I have identified some factors related to
software reuse (Brito et al., 2006;Lucr´edio et al. ,2007), that were considered as a basis for
this maturity model specification, in order to guide the organizations in the reuse evaluation
and/or adoption.

RCMM is a maturity model with focus on reuse and describes which are basic in order to
ensure a well planned and controlled reuse oriented software development. In RCMM, there
are 5 levels inspired by SEI’s Capability Maturity Model. Each level represents a stage in the
evolution to a mature reuse process. A set of maturity goals for each level and the activities,
task and responsibilities, needed to support are shown in the figure below.

Engineering the Computer Science and IT422

Fig. 9. Proposed CMM levels by the author for reuse

The RCMM model suggested here can be used as s a basis for estimating the level of
software reuse practice within an organization. As future work, Maturity Model aims at
identifying the strengths of an organization with respect to software reuse and the
opportunities for improvements can be adopted. Correct implementation of software reuse
and the benefits for an organization adopting reuse in their processes can be evaluated only
based on quantitative data. Therefore appropriate Reuse Business and Engineering metrics
are recommended to be used within the maturity model to measure the achievement of the
respective objectives, the efficiency of the applied practices and the quality of the results
obtained. To evaluate the suggested model, it has to be put in the industrial environment
and there is a need to get more feedbacks from experts to evaluate the current reuse practice
stage and plan the next activities to implement the reuse program.

7. Summary

Good management can make a difference for success in the case of reuse based software
development. Proper monitoring and control of the progress towards the business goals and
the performance compliance needs an effective management program. However the nature
of the reuse business changes the character and extent of the issues. By suitably applying
some modifications to the traditional management techniques by keeping in mind the reuse
business goals and proper planning will lead to success in reuse business.

By gathering issues associated with people, process and product measurements and by
estimating and validating using estimation formulas and economic models ensures that
proper usage of resources will follow the right process and right product.

Transition Parameters For Successful Reuse Business 423

Fig. 9. Proposed CMM levels by the author for reuse

The RCMM model suggested here can be used as s a basis for estimating the level of
software reuse practice within an organization. As future work, Maturity Model aims at
identifying the strengths of an organization with respect to software reuse and the
opportunities for improvements can be adopted. Correct implementation of software reuse
and the benefits for an organization adopting reuse in their processes can be evaluated only
based on quantitative data. Therefore appropriate Reuse Business and Engineering metrics
are recommended to be used within the maturity model to measure the achievement of the
respective objectives, the efficiency of the applied practices and the quality of the results
obtained. To evaluate the suggested model, it has to be put in the industrial environment
and there is a need to get more feedbacks from experts to evaluate the current reuse practice
stage and plan the next activities to implement the reuse program.

7. Summary

Good management can make a difference for success in the case of reuse based software
development. Proper monitoring and control of the progress towards the business goals and
the performance compliance needs an effective management program. However the nature
of the reuse business changes the character and extent of the issues. By suitably applying
some modifications to the traditional management techniques by keeping in mind the reuse
business goals and proper planning will lead to success in reuse business.

By gathering issues associated with people, process and product measurements and by
estimating and validating using estimation formulas and economic models ensures that
proper usage of resources will follow the right process and right product.

Typically, significant cultural change is needed and will not happen overnight. Just-in-time
education and ongoing senior management leadership are needed to make such cultural
changes.

8. References

Abts, C., Boehm, B. & Bailey Clark, B., (2000a). COCOTS: a COTS software integration cost
model, Proceedings ESCOM-SCOPE 2000 Conference, April.

Abts, C.; Boehm, B & Bailey Clark, B. (2000b). Empirical Observations on COTS Software
Integration Effort Based on the Initial COCOTS Calibration Database, ICSE 2000
COTS Workshop - mip.sdu.dk

Almeida, E. S., Alvaro, A., Lucr´edio, D., Garcia, V. C., & Meira, S. R. L. (2004). Rise project:
Towards a robust framework for software reuse. IEEE International Conference on
Information Reuse and Integration (IRI), pp. 48–53, Las Vegas, USA.IEEE/CMS.

Balda, D.M. & Gustafson, D.A. (1990). Cost-estimation models for the reuse and prototype
software development, ACM SIGSOFT, pp. 42-50, July.

Basili, V.R.; Briand, L. C. & Thomas, W. M. (1994). Domain Analysis for the Reuse of
Software Development Experiences, Proceedings of the 19th Annual Software
Engineering Workshop, NASA/Goddard Space Flight Center, November.

Balda, D. and Gustafson, D.(1990). Cost estimation Models for the Reuse and Prototype
Software Development Life-cycles.ACM SIGSOFT Software Engineering Notes Vol.
15, No. 3, Pages 42-50, July.

Bass, L.; Clements & Cohen. S. et al. (1997). Product Line Practice Workshop Report,
Technical Report CMU/SEI-97-TR-003, Software Engineering Institute, June.

Baumert, John; Mc Whinney &Mark.(1992).Software Measures and the Capability Maturity
Model., Software Engineering Institute,CMU/SEI-92-TR-25, Pittsburgh, PA USA,
September.

Bosch, J. & Molin, P. (1997). Software Architecture Design: Evaluation and Transformation,
Research Report 14/97, University of Karlskrona/Ronneby, August.

Bosch, J. (1998a). Object Acquaintance Selection and Binding, Theory and Practice of Object
Systems, February.

Bosch, J. (1998b). Product-Line Architectures in Industry: A Case Study, Proceedings of the
21st International Conference on Software Engineering, November.

Bosch, J. (1999). Evolution and Composition of Reusable Assets in Product-Line
Architectures: A Case Study. www:http://www.ide.hk-r.se/~bosch

Boehm, B.M & Papaccio, P.N.(1998).Understanding and controlling software costs, IEEE
transactions on software engineering, 14(10), 1462-77

Boehm, B., Clark, B.et al.(1995) Cost Models for Future Software Lifecycle Processes:
COCOMO 2.0, Annals of Software Engineering.

Boehm, B.W (1981). Software Engineering Economics, Englewood Cliffs, NJ Prentice Hall.
Boehm, B. & Abts, C.et al. (2000).Software Cost Estimation with COCOMO II, Prentice Hall, NJ,

June.
Barnes, B.H. & Bollinger, T.B. (1991), Making reuse cost-effective, IEEE software, Vol. 8,No.1,

pp. 13-24, January.
Banker, R. D. & Kauffman, R. J. et.al(1993).Evaluation of Software Reuse, IEEE Transactions

on Software Engineering, Vol. 19, No. 4, pp. 379-389, April.

Engineering the Computer Science and IT424

Brito, K. S., Alvaro, A., Lucr´edio, D., Almeida, E. S., and Meira, S. R. L. (2006). Software
reuse: A brief overview of the brazilian industry’s case. 5th ACM-IEEE International
Symposium on Empirical Software Engineering (ISESE), Short Paper, Rio de Janeiro,
Brazil. ACM Press.

Buschmann, F; Jäkel,C & Meunier,R.et al.(1996).Pattern-Oriented Software Architecture- A
System of Patterns, John Wiley & Sons.

Chidamber, S. R. & Kemerer, C. F.(1994). A Metrics Suite for Object Oriented Design, IEEE
Transactions on Software Engineering, vol. 20, pp. 476-493.

Dikel, D.; Kane, D. & Ornburn, S. et al (1997). Applying Software Product-Line
Architecture,’IEEE Computer, pp. 49-55, August.

Frakes, W. & Terry, C. (1994).Reuse Level Metrics, Proceedings of the 3rd International
Conference on Software Reuse: Advances in Software Reusability, IEEE.

Davis, T. (1993). The reuse capability model: A basis for improving an organization’s reuse
capability. Proceedings of 2nd ACM/IEEE International Workshop on Software
Reusability, pp. 126–133. IEEE Computer Society Press / ACM Press.

Frakes, W. B. and Fox, C. J. (1995). Sixteen questions about software reuse. Communications of
the ACM, 38(6):75–87. ACM Press. New York, NY, USA.

Frakes, W. & Terry, C. (1996).Software Reuse: Metrics and Models, ACM Computing Surveys,
Vol. 28, No. 2, June.

Favaro, J. A. (1996).Comparison of Approaches to Reuse Investment Analysis. Proceedings of
the Fourth International Conference on Software Reuse, IEEE Computer Society Press,
pp.136-145, Los Alamitos, CA.

Geels. (2005). Technological Transitions and System Innovations: A co-evolutionary and socio-
technical analysis, Edward Elgar, Cheltenham.

Guo, J. & Luqui.(2000).A Survey of Software Reuse Repositories, 7th IEEE International
Conference and Workshop on the Engineering of Computer Based Systems, April.

Grady, Campbell.(1997) Tailoring Reuse-Driven Processes In A Process Improvement
Context, ERW-97 Position Paper, October.

Graves, S. B.(1989).The Time-Cost Tradeoff in Research and Development: A Review,
Engineering Costs and Production Economics, 16, pp. 1-9, Elsevier Science Publishers.

Griss, M. L., Favaro, & P. Walton.(1993). Managerial and Organizational Issues - Starting
and Running a Software Reuse Program, Software, Shaefer, March.

Harris, K.(1992).Using an Economic Model to Tune Reuse Strategies", Proceedings of the 5th
Annual Workshop on Software Reuse.

Henry, E. & Faller,B. (1995).Large-Scale Industrial Reuse to Reduce Cost end Cycle Time,
IEEE Software, Vol. 12, No. 5, September.

Hafedh Mili; Fatma Mili & Ali Mili. (1995).Reusing Software: issues and research Directions,
Proc. IEEE trans. software Engineering, Vol .21, No.6, June.

Henninger, S.(1997).An Evolutionary Approach to Constructing Effective Software Reuse
Repositories, ACM Transactions on Software Engineering and Methodology, Vol. 6, No.
2, pp. 111-140, April.

Henderson-Sellers, B.(1996). Object-Oriented Metrics -Measures of Complexity. Upper Saddle
River, NJ, EUA: Prentice Hall PTR.

Heinemann, G. T. & Council, W. T.(2001).Component-Based Software Engineering - Putting the
Pieces Together. Boston, MA: Addis on-Wesley.

Transition Parameters For Successful Reuse Business 425

Brito, K. S., Alvaro, A., Lucr´edio, D., Almeida, E. S., and Meira, S. R. L. (2006). Software
reuse: A brief overview of the brazilian industry’s case. 5th ACM-IEEE International
Symposium on Empirical Software Engineering (ISESE), Short Paper, Rio de Janeiro,
Brazil. ACM Press.

Buschmann, F; Jäkel,C & Meunier,R.et al.(1996).Pattern-Oriented Software Architecture- A
System of Patterns, John Wiley & Sons.

Chidamber, S. R. & Kemerer, C. F.(1994). A Metrics Suite for Object Oriented Design, IEEE
Transactions on Software Engineering, vol. 20, pp. 476-493.

Dikel, D.; Kane, D. & Ornburn, S. et al (1997). Applying Software Product-Line
Architecture,’IEEE Computer, pp. 49-55, August.

Frakes, W. & Terry, C. (1994).Reuse Level Metrics, Proceedings of the 3rd International
Conference on Software Reuse: Advances in Software Reusability, IEEE.

Davis, T. (1993). The reuse capability model: A basis for improving an organization’s reuse
capability. Proceedings of 2nd ACM/IEEE International Workshop on Software
Reusability, pp. 126–133. IEEE Computer Society Press / ACM Press.

Frakes, W. B. and Fox, C. J. (1995). Sixteen questions about software reuse. Communications of
the ACM, 38(6):75–87. ACM Press. New York, NY, USA.

Frakes, W. & Terry, C. (1996).Software Reuse: Metrics and Models, ACM Computing Surveys,
Vol. 28, No. 2, June.

Favaro, J. A. (1996).Comparison of Approaches to Reuse Investment Analysis. Proceedings of
the Fourth International Conference on Software Reuse, IEEE Computer Society Press,
pp.136-145, Los Alamitos, CA.

Geels. (2005). Technological Transitions and System Innovations: A co-evolutionary and socio-
technical analysis, Edward Elgar, Cheltenham.

Guo, J. & Luqui.(2000).A Survey of Software Reuse Repositories, 7th IEEE International
Conference and Workshop on the Engineering of Computer Based Systems, April.

Grady, Campbell.(1997) Tailoring Reuse-Driven Processes In A Process Improvement
Context, ERW-97 Position Paper, October.

Graves, S. B.(1989).The Time-Cost Tradeoff in Research and Development: A Review,
Engineering Costs and Production Economics, 16, pp. 1-9, Elsevier Science Publishers.

Griss, M. L., Favaro, & P. Walton.(1993). Managerial and Organizational Issues - Starting
and Running a Software Reuse Program, Software, Shaefer, March.

Harris, K.(1992).Using an Economic Model to Tune Reuse Strategies", Proceedings of the 5th
Annual Workshop on Software Reuse.

Henry, E. & Faller,B. (1995).Large-Scale Industrial Reuse to Reduce Cost end Cycle Time,
IEEE Software, Vol. 12, No. 5, September.

Hafedh Mili; Fatma Mili & Ali Mili. (1995).Reusing Software: issues and research Directions,
Proc. IEEE trans. software Engineering, Vol .21, No.6, June.

Henninger, S.(1997).An Evolutionary Approach to Constructing Effective Software Reuse
Repositories, ACM Transactions on Software Engineering and Methodology, Vol. 6, No.
2, pp. 111-140, April.

Henderson-Sellers, B.(1996). Object-Oriented Metrics -Measures of Complexity. Upper Saddle
River, NJ, EUA: Prentice Hall PTR.

Heinemann, G. T. & Council, W. T.(2001).Component-Based Software Engineering - Putting the
Pieces Together. Boston, MA: Addis on-Wesley.

Van Jacobson; Martin Griss & Patrik Jonsson. (2000).Software Reuse- Architecture, Process
and Organization for Business Success, ACM Press.

 Jacobson, I.; Griss, M. & Jönsson, P. (1997). Software Reuse - Architecture, Process and
Organization forBusiness Success, Addison-Wesley.

Jasmine, K.S., & Vasantha, R.(2008a). Cost Estimation Model For Reuse Based Software
products, Proc. IAENG International MultiConference of Engineers and Computer
Scientists 2008 (IMECS 2008), Hong Kong, pp.951-954, March.

Jasmine, K.S., & Vasantha, R., (2008b). Effort Estimation in Reuse-Based Software
Development Approach, Proc.National Conference on Wireless network security –Issues
& Challenges (WNSIC-08), Department of CSE, R.V.College of Engineering,
Bangalore, pp.63-67, March.

Johnson & Foote (1988).Designing Reusable Classes, Journal of Object-Oriented
Programming,Vol. 1 (2), pp. 22-25.

Koltun, P. & Hudson, A., (1991). A reuse maturity model. 4th Annual Workshop on Software
Reuse, Hemdon, Virginia: Center for Innovative Technology.

Laraman, C. & Basili, V.R., (2003). Iterative and Incremental Development: A Brief History.
IEEE Computer, 2003. 36(6): p. 47-56.

Larry McCarthy.(2002). Motorola CMMI Working Group,CMMISM Transition in a
Commercial Environment, 2nd CMMISM Technology Conference and User Group,
Hyatt Regency Denver Technical Center, November, Denver, Colorado

Lim, W. (1994). Effects of Reuse on Quality, Productivity, and Economics, IEEE Software,
Vol. 11, No. 5, September.

Llorens Morillo; A.Amescua Seco & Martinez Orga, V.,Carls III University of Madrid, Spain,
http://www.ie.inf.uc3m.es/grupo/Investigacion/LineasInvestigacion/Congresos/RMM97_D
ocum_Final.doc.

Loingtier, Irwin, J. (1997).Aspect-Oriented Programming, Proceedings of ECOOP’97, pp. 220-
242, LNCS 1241.

Lucr´edio, D., Brito, K. S., Alvaro, A., Garcia, V. C., Almeida, E. S., Fortes, R. P. M., and
Meira, S. R. L. (2007). Software reuse: The brazilian industry scenario. Journal of
Systems and Software, Elsevier.

Malan, R. &Wentzel, K. (1993).Economics of software reuse revisited, Proc. 3rd Irvine
Software Symposium, University of California, Irvine, 30 April, pp.109-21.

Macala, R.R.; Stuckey, L. D. & Gross, D.C. (1996). Managing Domain-Specific Product-Line
Development,IEEE Software, pp. 57-67.

Mascena, Almeida & Meira.(2005).A Comparative Study on Software Reuse Metrics and
Economic Models from a Traceability Perspective, IEEE.

Paul Goodman. (1993).Practical Implementation of Software Metrics, McGraw Hill, London.
Poulin, J.S., & Caruso, J. (1993). A Reuse Metrics and Return on Investment Model,

Proceedings of the 2nd Workshop on Software Reuse: Advances in Software Reusability,
IEEE.

Poulin, J.S., (1994).Measuring Software Reusability, Proceedings of the 3rd International
Conference on Software Reuse: Advances in Software Reusability, IEEE.

Poulin, J.S., (2006). The business case for software reuse: Reuse metrics, economic models,
organizational issues, and case studies. Tutorial notes.

Prieto-D´az, R. (1993). Status report: Software reusability. IEEE Software, 10(3):61–66, IEEE
Computer Society Press. Los Alamitos, CA, USA.

Engineering the Computer Science and IT426

Prieto-D´az, R. & Frakes W.b.,eds (1993).Advances in software reuse: Selected papers from the
second International Workshop on software reusability, Los Alamitos, California, March,
IEEE Computer Society Press.

Pressman, R. (2001).Software Engineering-A practitioner’s Approach, Fifth edition,
McGraw-Hill.

Rotmans, Kemp & van Asselt. (2001) More Evolution than Revolution. Transition
Management in Public Policy, Foresight 3(1): 15-31

Rine, D. C. (1997a). Success factors for software reuse those are applicable across domains
and businesses. ACM Symposium on Applied Computing, pages 182–186, San Jose,
California, USA. ACM Press.

Rine, D. C. and Nada, N. (2000a). An empirical study of a software reuse reference model.
Information and Software Technology, 42(1):47–65.

Rine, D. C. and Nada, N. (2000b). Three empirical studies of software reuse reference model.
Software: Practice and Experience, 30(6):685–722.

Rine, D. C. & Sonnemann, R. M. (1998). Investments in reusable software. a study of
software reuse investment success factors. The Journal of Systems and Software, 41:17–
32.

Rushby Craig& Bruce Allgood (2001).CMMI: A Comprehensive Overview.CMMI User
Group, Computer Resources Support Improvement Program, Hill AFB, UT, November.

Sunita Chulani (2000).COCOMOII. Wiley Software Engineering Encyclopedia, Fall.
Svahnberg, M. & Bosch, J. (1999).Evolution in Software Product Lines: Two Cases., Journal of

Software Maintenance - Research and Practice, 11(6), pp. 391-422.
Svahnberg, M. &Bosch, J. (1999) .Characterizing Evolution in Product-Line Architectures.,

Proceedings of the IASTED 3rd International Conference on Software Engineering and
Applications

Szyperski. C. (1997).Component Software - Beyond Object-Oriented Programming, Addison-
Wesley.

Suz Garcia. (2003),On the TRIAL to CMMI® : A Framework for Effective Transition
Management Practices, SEI Technology Transition Practices, Carnegie Mellon
University, Pittsburgh, PA 15213-3890.

WWW.sei.cmu.edu/publications/documents/02.reports/02tr007.html
SEI/CMU. (2003). INDIA 2003 presentation on TTP website www.sei.cmu.edu/ttp
SPC-CMC. (1993). Software Productivity Consortium, Reuse-driven Software Processes

Guidebook, SPC-92019-CMC, version 2.0.
SPC-CMC. (1993).Software Productivity Consortium, Reuse Adoption Guidebook, SPC-92051-

CMC, Version 2.0.
 CMU/SEI. (1993). Software Engineering Institute, Capability Maturity Model for Software,

CMU/SEI-93-TR-024, version 1.1.
Topaloglu,Y.;Dikenelli,O & Sengonca,H. (1996),Afour Dimensional reuse Maturity Model,

Symposium on Computer and Information Sciences. ISCIS-XI, Antalya, Turkey.
November.

http://en.wikipedia.org/wiki/COCOMO
http://sunset.usc.edu/COCOMO II/Cocomo.html
http://sunset.usc.edu/COCOTS/cocots.html.

Interactivity of 3D social Internet as a marketing tool 427

Interactivity of 3D social Internet as a marketing tool

Urszula Świerczyńska-Kaczor

X

Interactivity of 3D social Internet
as a marketing tool

Urszula Świerczyńska-Kaczor
Jan Kochanowski University, Kielce

Poland

1. Introduction

Until recently the 3D Internet interface has been characterized as an element within the
traditional web-site used predominantly by companies selling clothing or cars. However
business is waking up to the idea of new marketing possibilities created by the
3Dimensional Internet. Virtual worlds such as Second Life, There, HiPiHi have set a high
standard by offering significantly more than 3D changing rooms to view your most recent
purchase or imaging the car in your driveway. They have actively transformed the
traditional Internet interface from 2D ‘flat’ web-sites into new worlds with their own
societies, economies, competitions and markets of real and purely virtual products. Virtual
worlds are defined “as immersive, three-dimensional, multi-media, multi-person simulation
environments, where each participant adopts an alter ego and interacts with other
participants in real time. World activity persists even if a player is off-line” (Wagner 2008, p.
263). Communications within the virtual world is a background for the creation of new
social ties and a new virtual community. Virtual worlds have been subject to different
scientific research (e.g. as an educational tool, new market, social phenomenon,
environment for teamwork), still very little is known about how 3D virtual environment
affects the users’ interaction with companies and influences customers’ attitude towards
brands. Are the rules for interacting the same in virtual worlds as on the traditional web-
sites? On the traditional web-site the interactivity is increased by hyperlinks and clickable
buttons, graphics, animation, channels for on-line communication, easy navigation,
personalization, design and color, speed, search tools, relevance of topic and so on (Sohn et
al. 2007). In the 3D Internet ‘clickable buttons’ are transformed into ‘clickable and movable
3D objects’ and ‘graphics’ are turned into 3D virtual objects which can be explored ‘inside
and outside’. Moreover the users presence on a traditional web-site is limited to a nickname
or photo. Inside the 3D virtual world the user experiences virtual space as a 3D avatar and
this environment allows the user to be immersed in cyberspace: touching objects, moving
them, making changes or even building them. The virtual word is a new marketing
platform. Companies trying to embrace virtual worlds in their marketing research and
promotion or sales strategy face many new challenges. They have little experience (and
often knowledge) as to how to develop communication with potential customers and thus
do not fully realize the potential offered by the interactivity in the virtual world. The aim of

21

Engineering the Computer Science and IT428

this chapter is to examine the nature of 3D Internet interactivity and to discuss chosen
aspects of virtual worlds’ marketing. The material includes both theoretical and empirical
issues. The survey presented and consequent discussion focuses on an analysis of one of the
biggest virtual worlds for adult users - Second Life and the analysis refers to companies
which both operate in the real market and implement Second Life as their marketing tool.
The following section presents a proposed model of interaction between company and
virtual world’s users. The third section describes the methodology used in the survey. This
is followed by two sections focusing on analysis of obtained data and their interpretation in
the context of the limitations of the survey and future research. The sixth and final
summarizes the findings.

2. The nature of 3D marketing Internet interactivity

2.1. The model of building interaction between avatar and company within the virtual
world
In order to obtain marketing objectives (see Fig. 1) companies can use both passive and
active means of interaction. Passive interaction requires only observation within virtual
worlds e.g. avatars hang out in the virtual company’s land and they simply watch graphical
objects. This situation is similar to brand exposure on television, with the exception that in
virtual worlds the potential customer is immersed in the environment. Active forms of
interaction demand that the user be ‘a co-creator’ and becoming a ‘prosumer’ of interaction
(prosumer is involved in the process of production). ‘Active-creation’ interactions refer to
building objects within the virtual world e.g. a company organizes a contest based on the
user’s building skills. ‘Active – without creation’ interactions demand a higher level of
engagement in interaction from the user to that of ‘passive interaction’, but it does not
demand building skills. For example an avatar can wear a garment (T-shirt, shoes) with the
company logo or use an object with company’s logo (drive a car of a particular brand etc.). If
the user estimates company interactivity as valuable (in fig. 1 the variable ‘perceived value
of interactivity’), the chances that avatars will continue to build a relationship with the
company increase. The value of interaction is a similar construct to the value of a service
encounter. According to Heinonen (2008), a service encounter has a value for customers
both in process and outcomes elements. In the virtual world the process is linked with the
avatar’s effort in interacting with the company and the resulting outcomes lay in areas such
as entertainment, making social connections or educational value.

Interactivity of 3D social Internet as a marketing tool 429

this chapter is to examine the nature of 3D Internet interactivity and to discuss chosen
aspects of virtual worlds’ marketing. The material includes both theoretical and empirical
issues. The survey presented and consequent discussion focuses on an analysis of one of the
biggest virtual worlds for adult users - Second Life and the analysis refers to companies
which both operate in the real market and implement Second Life as their marketing tool.
The following section presents a proposed model of interaction between company and
virtual world’s users. The third section describes the methodology used in the survey. This
is followed by two sections focusing on analysis of obtained data and their interpretation in
the context of the limitations of the survey and future research. The sixth and final
summarizes the findings.

2. The nature of 3D marketing Internet interactivity

2.1. The model of building interaction between avatar and company within the virtual
world
In order to obtain marketing objectives (see Fig. 1) companies can use both passive and
active means of interaction. Passive interaction requires only observation within virtual
worlds e.g. avatars hang out in the virtual company’s land and they simply watch graphical
objects. This situation is similar to brand exposure on television, with the exception that in
virtual worlds the potential customer is immersed in the environment. Active forms of
interaction demand that the user be ‘a co-creator’ and becoming a ‘prosumer’ of interaction
(prosumer is involved in the process of production). ‘Active-creation’ interactions refer to
building objects within the virtual world e.g. a company organizes a contest based on the
user’s building skills. ‘Active – without creation’ interactions demand a higher level of
engagement in interaction from the user to that of ‘passive interaction’, but it does not
demand building skills. For example an avatar can wear a garment (T-shirt, shoes) with the
company logo or use an object with company’s logo (drive a car of a particular brand etc.). If
the user estimates company interactivity as valuable (in fig. 1 the variable ‘perceived value
of interactivity’), the chances that avatars will continue to build a relationship with the
company increase. The value of interaction is a similar construct to the value of a service
encounter. According to Heinonen (2008), a service encounter has a value for customers
both in process and outcomes elements. In the virtual world the process is linked with the
avatar’s effort in interacting with the company and the resulting outcomes lay in areas such
as entertainment, making social connections or educational value.

Fig. 1. The model of interaction between company and users within Second Life

Positive contacts lead to a better perception of the company’s brand and actively enhance
potential purchasing decisions in markets. The term ‘markets’ is used as opposed to ‘a
market’, is because the presence of a real brand within the virtual world can affect the image
of the company in three markets: (1) in the virtual world’s market, (2) ‘real market’
(Castronova (2002) uses the term Earth market) and (3) on-line market offered by traditional
web-sites. Active forms of interaction, such as the taking part in discussions by avatars,
creates ‘Word of Mouth’ about a particular brand (WOM) and the reputation of a brand
spreads among users. Apart from this controllable WOM (from the company’s point of
view), many strong and well-known brands (such as Addidas, Sony, Mercedes) are created
by an individual user within the virtual world and this way the uncontrollable World Of
Mouth for the brand is being formed (unWOM). Both controllable and uncontrollable WOM
affect brand image and a consumer’s behaviour, that is a user’s brand recommendation and
purchase. Other factors such as knowledge about the brand from the real market or a
customer’s budget also play a role in the process of building a brand image (in the fig. 1 –
‘factors determining the avatar’s attitude and behaviour’). Although the process of building
digital WOM within a 2D web-site has been the subject of many studies (e.g. Brown et al.
2007), many aspects about building and spreading WOM within a 3D Internet are still
unknown. Within literature also little research exists as to how a company’s activity within
virtual worlds influences the marketing performance of the brand, specifically selling or
brand value (e.g. Arakji & Lang (2008) presented an interesting model of Avatar Business
Value, Barnes & Mattsson (2008) analyzed the virtual brand value). The way of describing
the nature of the virtual world as presented above (as in the fig.1) refer to a deterministic
way of seeing the correlation between indicated factors. This way of presenting
interrelations between variables is helpful especially in designing a survey which could
show the indicated correlations, but it is necessary to point out that there is also a different

Engineering the Computer Science and IT430

approach focused on a nondeterministic way of perceiving the usage of advanced
technology (as in Adaptive Structuration Theory – DeSanctis&Poole, 1994 or in the
interesting model of Metaverse Research founded by Davis et al. 2009).

2.2. The characteristics of interactivity within virtual world
Referring to the ‘media richness’ theory, the ‘richness’ of the Second Life environment,
within the virtual world is based on a combination of graphics, sound and communication
tools, which can create a different experience in comparison to traditional web-sites. For
example, if an avatar is falling down into the water the immersive 3D space allows the user
to ‘experience’ the fear of this accident, more positively an avatar can feel the joy of dancing
(maybe this is a reason why Second Life is useful for autistic people – Biever 2007). Some
companies activity within the virtual world can be viewed as a form of product placement.
There are some variables characterizing product placement in traditional media such as
modality, congruity with the plot, type of program or placement prominence (Cowley &
Barron 2008). Some of these variables can be used in analysis of interactivity in the 3D
Internet. For example, interaction can be assessed as congruent with the type of brand (e.g.
offering virtual cars is congruent for a car manufacturer or dealer). Placement prominence
can refer to the centrality of the product’s presentation in the virtual land (e.g. vending
machine with cars is a central point of Nissan virtual land). Finally, duration of the
interaction refers to the avatar’s exposure to particular stimuli to the extent that organizing a
concert is a form of time limited interaction, but offering a virtual car is not. A traditional
web-sites interactivity is often limited to the contact user-website, while within the virtual
world, the community is the basis for the avatar’s virtual existence. Hence, the next aspect of
interactivity involves cooperation between the avatars themselves and cooperation between
a company and a group of avatars (e.g. a group of brand users).

2.3. The factors influencing avatar’s response to company’s interaction
Before the avatars decide to interact with a company, they ask themselves: ‘Am I able to take
part in this interaction?’, ‘How much effort should I put in in order to take part in this
interaction?” and ‘Is the outcome of this interaction worth it?’ On the other hand companies
look to a spectrum of factors affecting the avatar’s willingness to respond to a company’s
invitation. One of these factors is a user’s knowledge about Second Life e.g. a user must
know how to use an avatar’s ‘inventory’ in order to wear a company’s T-shirt or keep the
model of its virtual car. Another factor is the user’s level of acceptance of marketing activity
inside a virtual world. Some users, perceiving the virtual world as fantasy, reject the
companies’ presence and this means that the consumers can reject interaction with
company. Research conducted on traditional web-sites (Sohn et al., 2007), identifies the
factor of ‘expected interactivity’. This factor can play a significant role in an evaluation of
virtual interaction. Avatars visiting the land of a well-known car manufacture expect some
interaction connected with driving a virtual car, while visiting the land of an IT company
avatars expect free courses about building and scripting in Second Life. Therefore, an
avatar’s assessment can be higher when a company’s interactivity exceeds expectations.
These three elements: expected interactivity, avatar’s knowledge and users’ acceptance of
virtual world are only examples of factors which may influence the analyzed process of
interaction.

Interactivity of 3D social Internet as a marketing tool 431

approach focused on a nondeterministic way of perceiving the usage of advanced
technology (as in Adaptive Structuration Theory – DeSanctis&Poole, 1994 or in the
interesting model of Metaverse Research founded by Davis et al. 2009).

2.2. The characteristics of interactivity within virtual world
Referring to the ‘media richness’ theory, the ‘richness’ of the Second Life environment,
within the virtual world is based on a combination of graphics, sound and communication
tools, which can create a different experience in comparison to traditional web-sites. For
example, if an avatar is falling down into the water the immersive 3D space allows the user
to ‘experience’ the fear of this accident, more positively an avatar can feel the joy of dancing
(maybe this is a reason why Second Life is useful for autistic people – Biever 2007). Some
companies activity within the virtual world can be viewed as a form of product placement.
There are some variables characterizing product placement in traditional media such as
modality, congruity with the plot, type of program or placement prominence (Cowley &
Barron 2008). Some of these variables can be used in analysis of interactivity in the 3D
Internet. For example, interaction can be assessed as congruent with the type of brand (e.g.
offering virtual cars is congruent for a car manufacturer or dealer). Placement prominence
can refer to the centrality of the product’s presentation in the virtual land (e.g. vending
machine with cars is a central point of Nissan virtual land). Finally, duration of the
interaction refers to the avatar’s exposure to particular stimuli to the extent that organizing a
concert is a form of time limited interaction, but offering a virtual car is not. A traditional
web-sites interactivity is often limited to the contact user-website, while within the virtual
world, the community is the basis for the avatar’s virtual existence. Hence, the next aspect of
interactivity involves cooperation between the avatars themselves and cooperation between
a company and a group of avatars (e.g. a group of brand users).

2.3. The factors influencing avatar’s response to company’s interaction
Before the avatars decide to interact with a company, they ask themselves: ‘Am I able to take
part in this interaction?’, ‘How much effort should I put in in order to take part in this
interaction?” and ‘Is the outcome of this interaction worth it?’ On the other hand companies
look to a spectrum of factors affecting the avatar’s willingness to respond to a company’s
invitation. One of these factors is a user’s knowledge about Second Life e.g. a user must
know how to use an avatar’s ‘inventory’ in order to wear a company’s T-shirt or keep the
model of its virtual car. Another factor is the user’s level of acceptance of marketing activity
inside a virtual world. Some users, perceiving the virtual world as fantasy, reject the
companies’ presence and this means that the consumers can reject interaction with
company. Research conducted on traditional web-sites (Sohn et al., 2007), identifies the
factor of ‘expected interactivity’. This factor can play a significant role in an evaluation of
virtual interaction. Avatars visiting the land of a well-known car manufacture expect some
interaction connected with driving a virtual car, while visiting the land of an IT company
avatars expect free courses about building and scripting in Second Life. Therefore, an
avatar’s assessment can be higher when a company’s interactivity exceeds expectations.
These three elements: expected interactivity, avatar’s knowledge and users’ acceptance of
virtual world are only examples of factors which may influence the analyzed process of
interaction.

3. The research questions and method

The aim of this empirical study was to examine chosen aspects of a virtual world’s
interactivity. In this study the following specific questions were formulated: (1) What forms
of interactivity are preferred by avatars? (2) Is there any difference in avatars’ preferences
between active and passive forms of interaction? (3) Can company’s interactivity influence
brand image within the virtual world in such a dimension as trustworthiness? (4) How do
interactions influence the customer’s behaviour in three areas: buying a product in the real
market, recommendation of a brand to another user and repeated contact with a company in
the future? The two first specified questions are connected with the avatar’s preference of
interactions embedded in the proposed model (fig.1) as variables: ‘passive interaction’,
‘active without creation’, ‘active – creation’ and ‘perceived value of interactivity’. The next
following two questions refer to the outcomes in the proposed model: brand image in the
virtual world and the link indicated between interactivity and the avatar’s behaviour within
the virtual world, on-line and the real market. The survey was conducted within the virtual
world of Second Life. The procedure was based on the following steps: (1) on the basis of
observations of companies’ activities within the virtual world the possible forms of
interactions between company and avatar were identified, (2) respondents - avatars visited
the lands of two chosen companies and then avatars were redirected to Jan Kochanowski
University’s web-site in order to complete a questionnaire, (3) in the first part of the
questionnaire avatars evaluated different forms of interactions without referring to any
specific company, (4) In the second part of questionnaire avatars assessed the visited
companies’ interactions and assessed their attitude to companies’ brands. Brand attitude can
be assessed in many dimensions, but research about e-branding, indicated brand
trustworthiness as one of the crucial elements of brand perception within the e-market. For
instance Kossecki (2004) analyzed trust among other factors enhancing e-purchase, Kim,
Cho, and Rao examined the role of trust and perceived benefit in e-commerce (Joia & de
Oliveira 2008). Steward (2003) pointed out that the novelty of a distribution channel may
weaken customer’s trust. Presumably in the virtual world, customers are less willing to trust
a company than at a traditional web-site. Subsequently customer’s brand attitude is
connected with behaviour such as ‘brand recommendation, ‘intention to buy product’ and
‘willingness to repeat contact with a brand’. Reichheld (2004) found that ‘on Earth economy’
the question about product’s recommendation is a very good indicator for customers’
loyalty and the company’s growth. Similarly in the virtual world two, examined in the
survey, variables - ‘recommendation of company to other avatars’ and ‘willingness to repeat
contact with company’ can be good indicators for the customer’s loyalty and brand
relevancy to customer. ‘Intention to buy a product in real life’ can be a strong indicator of
the avatar’s brand perception and consequently the indicator of company’s marketing
effectives within virtual world. The survey was conducted in February 2009 and 51 Polish
avatars responded to the questionnaire. 94% of respondents (48) have been living in Second
Life for at least 6 months (the date of birth of avatar is visible in the avatar’s profile), thus
presumably most respondents are experienced in virtual interactivity. In this survey avatars
visited lands of two companies: (1) well-known car manufacturer Nissan and (2) Polish
language school Lingualand. These firms have existed in Second Life for at least a few
months, have strong links with the real market and represent different business sectors
(auto manufacturer and educational service).

Engineering the Computer Science and IT432

4. Preferred forms of interactivity

In the first part of questionnaire avatars answered two questions: (a) ‘If the company
proposes interaction ‘X’, how willingly do you respond?’, (b) ‘If the company proposes
interaction ‘X’, does this interaction encourage you to repeat contact with company?’ All
questions were scaled from 1 to 5 points (1 being the lowest mark, ‘I do not like’; 5 – highest
mark, ‘I do like’). This research showed that the avatars’ responses significantly vary
compared to different interactions. Three active form of interactions: ‘taking part in events
organized by a company’, ‘conversation with salesmen within the virtual world’ and ‘taking
part in a contest which does not demand building skills, but money prize is offered’ -
strongly influence an avatar’s willingness to participate in interaction (see Table 1). Three
passive form of interactions: ‘The visual display of the company’s land’, ‘interest in the
company’s product presentation’ and ‘playing nice music’ also have a significant positive
effect on avatars’ participation in interaction. The statistical analysis shows that there is no
significant differences between the distribution of interaction which received the highest
grades (all six interactions both passive and active). Therefore all six forms of interaction are
similar in the avatar’s perception (p>0.05 Wilcoxon test). On the other hand the avatars do
not appreciate the following forms of interactions: (1) within the active interactions: ‘offering
a free product trail’, ‘giving feedback to the company e.g. writing notes on a board or filling
a questionnaire’ and (2) within the passive interactions: ‘video or slide presentations and
‘receiving a company’s landmark’ (landmark is a virtual address within Second Life).
‘Receiving the landmark’ is an interaction evaluated significantly lower (p<0.05) in
comparing it to both active interactions and the other passive form (video and slides). The
active form of ‘offering a free product trial’ was assessed significantly higher than slides and
video presentations and receiving landmarks (p<0.05). This study also showed a huge gap
between an avatar’s willingness to interact with a company for the first time (in the table nr
1 variable ‘mean 1’) and then repeating the interactions (variable ‘mean 2’ – the variables
tested using Wilcoxon test: p – presented in the table, the distributions of variables are not
normal). This result proved a well-known marketing principle – it is much easier to attract
customer’s (in this case avatar’s) attention than to create a long-lasting relationship between
customer (avatar) and company.

Form of interaction Expected response from

an avatar
Mean

(1)
Mean

(2) p (1/2)

Active interaction
Organizing events within SL
such as concert, meetings,
presentation, debates

Taking part in the event
organized by company,
positive recommendation
to other users

4,37 3,94 0,00

Avatar can talk with sales people
who are able to answer
customer’s question.

Avatar’s interest in
company’s products.
Giving feedback about
company’s product

4,25 3,86 0,01

Contest with a money prize (the
contest does not require building
skills)

Taking part in the contest 4,12 3,94 0,15

Interactivity of 3D social Internet as a marketing tool 433

4. Preferred forms of interactivity

In the first part of questionnaire avatars answered two questions: (a) ‘If the company
proposes interaction ‘X’, how willingly do you respond?’, (b) ‘If the company proposes
interaction ‘X’, does this interaction encourage you to repeat contact with company?’ All
questions were scaled from 1 to 5 points (1 being the lowest mark, ‘I do not like’; 5 – highest
mark, ‘I do like’). This research showed that the avatars’ responses significantly vary
compared to different interactions. Three active form of interactions: ‘taking part in events
organized by a company’, ‘conversation with salesmen within the virtual world’ and ‘taking
part in a contest which does not demand building skills, but money prize is offered’ -
strongly influence an avatar’s willingness to participate in interaction (see Table 1). Three
passive form of interactions: ‘The visual display of the company’s land’, ‘interest in the
company’s product presentation’ and ‘playing nice music’ also have a significant positive
effect on avatars’ participation in interaction. The statistical analysis shows that there is no
significant differences between the distribution of interaction which received the highest
grades (all six interactions both passive and active). Therefore all six forms of interaction are
similar in the avatar’s perception (p>0.05 Wilcoxon test). On the other hand the avatars do
not appreciate the following forms of interactions: (1) within the active interactions: ‘offering
a free product trail’, ‘giving feedback to the company e.g. writing notes on a board or filling
a questionnaire’ and (2) within the passive interactions: ‘video or slide presentations and
‘receiving a company’s landmark’ (landmark is a virtual address within Second Life).
‘Receiving the landmark’ is an interaction evaluated significantly lower (p<0.05) in
comparing it to both active interactions and the other passive form (video and slides). The
active form of ‘offering a free product trial’ was assessed significantly higher than slides and
video presentations and receiving landmarks (p<0.05). This study also showed a huge gap
between an avatar’s willingness to interact with a company for the first time (in the table nr
1 variable ‘mean 1’) and then repeating the interactions (variable ‘mean 2’ – the variables
tested using Wilcoxon test: p – presented in the table, the distributions of variables are not
normal). This result proved a well-known marketing principle – it is much easier to attract
customer’s (in this case avatar’s) attention than to create a long-lasting relationship between
customer (avatar) and company.

Form of interaction Expected response from

an avatar
Mean

(1)
Mean

(2) p (1/2)

Active interaction
Organizing events within SL
such as concert, meetings,
presentation, debates

Taking part in the event
organized by company,
positive recommendation
to other users

4,37 3,94 0,00

Avatar can talk with sales people
who are able to answer
customer’s question.

Avatar’s interest in
company’s products.
Giving feedback about
company’s product

4,25 3,86 0,01

Contest with a money prize (the
contest does not require building
skills)

Taking part in the contest 4,12 3,94 0,15

The possibility of placing an
order for real products within
Second Life (in the same way as
at a traditional web site)

Ordering real company’s
products within SL

3,75 3,53 0,13

Offering virtual objects within
the virtual world (not necessary
connected with real company’s
product)

Acceptance and usage of
an object e.g. driving
virtual car or wearing
virtual garments with
company logo

3,53 3,10 0,00

Organizing contests requiring
building skills

Taking part in contest 3,20 3,00 0,16

Giving feedback to company e.g.
writing notes on a board or
completing questionnaire

Engaging avatar in giving
feedback to company

3,20 2,76 0,00

Offering a free product’s trail
(the virtual product is connected
with real company’s product)

Virtual consumption of
product

3,18 3,12 0,81

Passive interaction
Interesting presentation of a
product on a company’s virtual
land

Visiting a company’s land 4,24 3,69 0,00

Visual display of a company’s
land

Visiting a company’s land 4,10 3,71 0,01

Playing nice music on a
particular land

Visiting a company’s land 4,10 3,55 0,00

Receiving detailed information
about an object

Visiting a company’s
land. Arousing avatar’s
interest in a company and
its products.

3,90 3,55 0,01

Receiving information about a
company within virtual world,
but outside its land (eg.
billboard on merchants’ land,
ads within search engine)

Visiting a company’s land 3,47 3,12 0,01

Communications between a
company and the users who
participate in the company’s
group

Avatar’s response
depends on the proposed
interactions within the
message e.g. visiting a
new products’ exhibition

3,10 2,75 0,00

Video or slide presentations on a
company’s land

Watching the presentation 2,90 2,59 0,01

Receiving the landmark Repeated visits to a
company’s land

2,65 2,49 0,20

Table 1. The assessment of different forms of interactions

Engineering the Computer Science and IT434

5 The case of Nissan and Lingualand

5.1. The assessment of companies’ interactivity
Respondents evaluated marketing forms of interactions offered by two companies: Nissan
and Lingualand. Nissan set up its virtual business on an virtual island. Its interactivity gives
visitors a large spectrum of active and passive interaction: (1) the company offers a free
virtual car - avatars can get it when they input a ‘secret code’ into a special vending
machine, (2) the avatars can drive the virtual car on a specially designed racing track , (3)
users get more information about Nissan if they click on a hyperlink connected to the virtual
island and are redirected to a traditional web-site. Lingualand is a brick-and-mortar Polish
school, set up in the Polish city of Krakow and they conduct their business in the real world.
The school has also set up its virtual replica within the Polish part of Second Life – Second
Poland. Survey respondents evaluated both companies one for active interaction (variable:
‘offering free product trail’) and for passive interactions (variables: ‘visual company’s
features’, ‘the features of surrounding area’, ‘product presentation’, ‘sufficiency of
information about products’, ‘reliability of information about product’ and ‘information
about company at websites outside SL’). The analysis of interactions showed that there was
a statistically significant difference between the assessment of Lingualand and Nissan,
except one variable: ‘information at the web-site outside SL’ (see Table 2, in the analysis - the
distribution of variables were not normal, differences tested using Wilcoxon test). The
virtual school Lingualand was better evaluated than Nissan , although some interactions do
not have the same meanings for both companies: (1) Lingualand does not offer material
products, therefore ‘product presentation’ can not been estimated, (2) Nissan built its
presence in a separate virtual land, whereas the Lingualand office is only one element of the
whole land – virtual Krakow, hence, the ‘perception of the surrounding area’ was included
in Lingualand’s analysis. The meaning of the variable ‘offering free product trial’ is also
different for Nissan and for Lingualnad. For Lingualand the avatars can attend a virtual
language lesson (e.g. English and Italian), thus the virtual experience is a real educational
service. In the Nissan land virtual consumption does not mean driving real car, but only
playing with a virtual one. The results showed that there was no differences in assessment
of information about a company at an outside website (avatars can find the link to ‘outside’
web-site within Second Life).

 The interaction (code for interation) Nissan (N) Lingualand (L) p Wilcoxon

Mean/Median/SD

Pa
ss

iv
e

in
te

ra
ct

io
ns

 A company’s visual features (F1) 3,41/4/1,22 3,82/4/1,18 0,05
The features of the surrounding area (F2) - 4,06/4/0,95 -
Presentation of the product (F3) 3,94/4/1,03 - -
The spectrum of information about products –
is the information sufficient? (F4)

3,31/3/0,91 3,92/4/0,84 0,00

Reliability of information about the products
(F5)

3,51/4/0,88 3,98/4/0,99 0,01

Information about a company at the traditional
websites (F7)

3,53/4/0,90 3,69/4/0,99 0,33

Active interaction - Offering free trial product
(F6)

3,73/4/1,11 4,39/5/0,98 0,01

Table 2. Comparison between companies’ interaction within Second Life

Interactivity of 3D social Internet as a marketing tool 435

5 The case of Nissan and Lingualand

5.1. The assessment of companies’ interactivity
Respondents evaluated marketing forms of interactions offered by two companies: Nissan
and Lingualand. Nissan set up its virtual business on an virtual island. Its interactivity gives
visitors a large spectrum of active and passive interaction: (1) the company offers a free
virtual car - avatars can get it when they input a ‘secret code’ into a special vending
machine, (2) the avatars can drive the virtual car on a specially designed racing track , (3)
users get more information about Nissan if they click on a hyperlink connected to the virtual
island and are redirected to a traditional web-site. Lingualand is a brick-and-mortar Polish
school, set up in the Polish city of Krakow and they conduct their business in the real world.
The school has also set up its virtual replica within the Polish part of Second Life – Second
Poland. Survey respondents evaluated both companies one for active interaction (variable:
‘offering free product trail’) and for passive interactions (variables: ‘visual company’s
features’, ‘the features of surrounding area’, ‘product presentation’, ‘sufficiency of
information about products’, ‘reliability of information about product’ and ‘information
about company at websites outside SL’). The analysis of interactions showed that there was
a statistically significant difference between the assessment of Lingualand and Nissan,
except one variable: ‘information at the web-site outside SL’ (see Table 2, in the analysis - the
distribution of variables were not normal, differences tested using Wilcoxon test). The
virtual school Lingualand was better evaluated than Nissan , although some interactions do
not have the same meanings for both companies: (1) Lingualand does not offer material
products, therefore ‘product presentation’ can not been estimated, (2) Nissan built its
presence in a separate virtual land, whereas the Lingualand office is only one element of the
whole land – virtual Krakow, hence, the ‘perception of the surrounding area’ was included
in Lingualand’s analysis. The meaning of the variable ‘offering free product trial’ is also
different for Nissan and for Lingualnad. For Lingualand the avatars can attend a virtual
language lesson (e.g. English and Italian), thus the virtual experience is a real educational
service. In the Nissan land virtual consumption does not mean driving real car, but only
playing with a virtual one. The results showed that there was no differences in assessment
of information about a company at an outside website (avatars can find the link to ‘outside’
web-site within Second Life).

 The interaction (code for interation) Nissan (N) Lingualand (L) p Wilcoxon

Mean/Median/SD

Pa
ss

iv
e

in
te

ra
ct

io
ns

 A company’s visual features (F1) 3,41/4/1,22 3,82/4/1,18 0,05
The features of the surrounding area (F2) - 4,06/4/0,95 -
Presentation of the product (F3) 3,94/4/1,03 - -
The spectrum of information about products –
is the information sufficient? (F4)

3,31/3/0,91 3,92/4/0,84 0,00

Reliability of information about the products
(F5)

3,51/4/0,88 3,98/4/0,99 0,01

Information about a company at the traditional
websites (F7)

3,53/4/0,90 3,69/4/0,99 0,33

Active interaction - Offering free trial product
(F6)

3,73/4/1,11 4,39/5/0,98 0,01

Table 2. Comparison between companies’ interaction within Second Life

On the basis of data obtained from the first part of this survey and the assessment of
companies, Nissan and Lingualand, interactivity can be evaluated within two dimensions:
weak and strong points of a company and the importance of interactivity. Figure 2
graphically represents which virtual companies’ activity should be maintained at the
highest level because of its importance (the code of variables as in table 2, Lingualand
marked ‘L’ and red, Nissan ‘N’ and green, the interaction ‘information about company
outside SL’ was not evaluated in aspect of importance, the cross point is the mean of
assessment of companies interactions and the mean of importance of all interactions).

F2(L)

F6(L)

F1(N)

F3(N)

F4(N) F5(N)

 F6(N)

F1(L)

F4(L) F5(L)

3,00

3,20

3,40

3,60

3,80

4,00

4,20

4,40

3,00 3,20 3,40 3,60 3,80 4,00 4,20 4,40 4,60

IMPORTANT

UNIMPORTANT

STRONG POINTWEAK POINT

Fig. 2. Comparison between strong and weak companies’ points and the importance of
interactions

5.2. Analysis of brand trustworthiness and customer’s behaviour
The avatars answered the questions about Nissan and Lingualand image and their attitude
to the brands. The analysis shows that there are statistically no significant differences
between distributions of such variables as: ‘trust in the company’, ‘recommendation of a
company to other avatars’ and ‘willingness to re-visit the virtual company’. For Nissan it
would be difficult for respondents to assess how virtual activities would affect their
willingness to buy products, therefore users were asked for the assessment of the link
between virtual activity and general brand image. In Lingualands school the situation is
different. After attending virtual lessons, the users can asses whether the image of the school
(if it were real in their neighborhood) is appealing enough to sign up for real classes. Only in
this area are respondents’ answers significantly different statistically (Table 3, Figure 3). The
survey shows that although there are significant differences between perception of
interaction between Nissan and Lingualand, the avatars’ bonds to the brands in most
dimensions are similar.

Engineering the Computer Science and IT436

The interaction Nissan (N) Lingualand (L) p. Wilcoxon
N/L

Mean/Median/SD
Trust in the company (R1) 3,86/4/0,98 3,82/4/0,97 0,75

Virtual presentations positive effect on
Nissan image /Intention to sign up for
real language lessons (R2)

3,75/4/0,89 3,27/3/1,27 0,02

Recommendation of company to other
avatars (R3)

3,75/4/1,02 3,84/4/0,90 0,57

Willingness to re-visit the virtual
company(R4)

3,55/4/1,21 3,80/4/1,00 0,21

Table 3. The differences between the perception of brand image and consumer’s attitude
towards brands

2,9

3

3,1

3,2

3,3

3,4

3,5

3,6

3,7

3,8

R1

R2

R3

R4

Nissan

Lingualand

Fig. 3. Four dimensions of consumer’s brand attitude and behaviour

Among the tools of the virtual Lingualand marketing, avatars appreciate the possibility of
attending free English lessons – this active form of interaction is estimated significantly
higher than others (see Table 2). However, the analysis shows that ‘the intention to sign up
to real lessons’ was assessed significantly statistically lower than the three other aspects of
brand: ’trust’, ’recommendation visiting’ and ‘willingness to re-visit the company’. Analysis
within the interactions offered by Nissan shows that avatars especially appreciate the

Interactivity of 3D social Internet as a marketing tool 437

The interaction Nissan (N) Lingualand (L) p. Wilcoxon
N/L

Mean/Median/SD
Trust in the company (R1) 3,86/4/0,98 3,82/4/0,97 0,75

Virtual presentations positive effect on
Nissan image /Intention to sign up for
real language lessons (R2)

3,75/4/0,89 3,27/3/1,27 0,02

Recommendation of company to other
avatars (R3)

3,75/4/1,02 3,84/4/0,90 0,57

Willingness to re-visit the virtual
company(R4)

3,55/4/1,21 3,80/4/1,00 0,21

Table 3. The differences between the perception of brand image and consumer’s attitude
towards brands

2,9

3

3,1

3,2

3,3

3,4

3,5

3,6

3,7

3,8

R1

R2

R3

R4

Nissan

Lingualand

Fig. 3. Four dimensions of consumer’s brand attitude and behaviour

Among the tools of the virtual Lingualand marketing, avatars appreciate the possibility of
attending free English lessons – this active form of interaction is estimated significantly
higher than others (see Table 2). However, the analysis shows that ‘the intention to sign up
to real lessons’ was assessed significantly statistically lower than the three other aspects of
brand: ’trust’, ’recommendation visiting’ and ‘willingness to re-visit the company’. Analysis
within the interactions offered by Nissan shows that avatars especially appreciate the

uncommon form of product presentations – vending machine for distributing the virtual
car. In the analysis of Nissan brand outcomes, there are no differences between the four
analyzed variables - ‘trust’, ‘virtual presentation has a positive effect on Nissan image’,
‘recommendation of company to other avatars’ and ‘willingness to re-visit the company’
(p>0.5 Wilcoxon test). In the next step of analysis the correlation between interaction and
customer’s response was assessed (Table 4, Table 5, Figure 4). Results for Nissan show that a
strong correlation exists between (a) the visual company’s virtual features and creating a
positive image in customer’s mind and (b) between offering a virtual car and
recommendation to other avatars to visit Nissan land and between (c) presentation of cars
and recommendation visit. In Lingualand most examined variables are highly correlated
and the results are: (1) Six examined factors (reliability and sufficiency of information, the
offer of free language classes, the features of the surrounding area, information about the
school outside SL) very strongly correlate with the recommendation of school services to
other avatars. (2) Four examined factors (reliability and sufficiency of information, offering
free language classes and features of surrounding area) strongly correlate with
recommending other avatars visit school and also with the intention of re-visiting the school
themselves. (3) All indicated interactions strongly correlate with trust.

 F1(N) F6(N) (F3(N)) (F4(N)) (F5(N)) (F7(N))
Trust in company 0,22 0,35 0,34 0,06 0,42 0,20
The effect of virtual
presentations on
Nissan image 0,59 0,21 0,37 0,16 0,38 0,47
Recommendation of
visiting Nissan land to
other avatars 0,47 0,51 0,51 0,44 0,44 0,44
Willingness to re-visit
Nissan land 0,47 0,47 0,44 0,37 0,38 0,23

Table 4. Correlation between Nissan interactivity and avatars’ attitudes (Gamma correlation
– codes for variables as in table 2)

 (F1(L)) (F2(L)) (F6(L)) (F4(L)) (F5(L)) (F7(L))
Trust in company 0,49 0,60 0,64 0,77 0,80 0,54
Intention to sign up
for real courses in real
life 0,36 0,47 0,30 0,50 0,50 0,51
Recommendation of
visiting school to
other avatars 0,56 0,85 0,85 0,90 0,84 0,65
Intention to re-visit
the school 0,56 0,79 0,70 0,76 0,81 0,70

Table 5. Correlation between Lingualand interactivity and avatars’ attitudes (Gamma
correlation – codes for variables as in table 2)

Engineering the Computer Science and IT438

-1 - 0,9 -0,8 -0,7 -0,6 -0,5 -0,4 -0,3 -0,2 -0,1 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8

t

p

r

w

F1(L)

F2(L)

F4(L)

F5(L)

F7(L)

F6(L)

F1(N)

F3(N)

F4(N)

F5(N)

F7(N)

F6(N)

Willingess to re-visit comany's
land

Recommendation
of visiting land

Possitive image/
intention to buy

Trust to company

ST
R

O
N

G
 C

O
R

R
EL

A
TI

O
N

ST
R

O
N

G
 C

O
R

R
EL

A
TI

O
N

Lingualand

Nissan

Fig. 5. The correlation between variables

The results show that despite the statically significant differences between assessment of
companies’ interactions, the avatar’s brand attitude is similar to both companies. What are
the possible explanations for this? The following section indicates some factors which can
play a role in this survey. Factors are presented according to the scheme: (1) the factor
influencing the link between interaction and brand attitude, (2) reference to this study
results, (3) marketing implications, (4) study limitation and future research in a discussed
field.

5.3. Indicating factors which may moderate the avatar’s attitude to the brand

5.3.1. Brand familiarity
(1) The factor: The ‘brand familiarity’ creates the background of perception of interactivity
(‘brand familiarity is understood as ‘as the number of brand-related direct or indirect
experiences that have been accrued by the consumer’ - Park & Stoel, 2005). This factor refers
to the dichotomy of well known brands vs. unknown brand and also global vs. local brand.
(2) Reference to the results of this study – Correlation analysis shows that avatars’ attitude
to well-known manufacturer Nissan is not based on proposed interaction. On the contrary,
Lingualand, which is known from virtual world (few avatars have a chance to the know
company in the real world), built its image through its marketing interactivity within the
virtual environment. For this company, analysis shows very strong correlation between
proposed interaction and brand attitude (3) Marketing implications – The meaning of
interactivity in the virtual world’s is different for well-known brands than for unknown
brands. Avatar’s recommendations of well-known brand or willingness to repeat contact
may depend less on proposed interactions. For lesser known brands, their interactivity

Interactivity of 3D social Internet as a marketing tool 439

-1 - 0,9 -0,8 -0,7 -0,6 -0,5 -0,4 -0,3 -0,2 -0,1 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8

t

p

r

w

F1(L)

F2(L)

F4(L)

F5(L)

F7(L)

F6(L)

F1(N)

F3(N)

F4(N)

F5(N)

F7(N)

F6(N)

Willingess to re-visit comany's
land

Recommendation
of visiting land

Possitive image/
intention to buy

Trust to company

ST
R

O
N

G
 C

O
R

R
EL

A
TI

O
N

ST
R

O
N

G
 C

O
R

R
EL

A
TI

O
N

Lingualand
Nissan

Fig. 5. The correlation between variables

The results show that despite the statically significant differences between assessment of
companies’ interactions, the avatar’s brand attitude is similar to both companies. What are
the possible explanations for this? The following section indicates some factors which can
play a role in this survey. Factors are presented according to the scheme: (1) the factor
influencing the link between interaction and brand attitude, (2) reference to this study
results, (3) marketing implications, (4) study limitation and future research in a discussed
field.

5.3. Indicating factors which may moderate the avatar’s attitude to the brand

5.3.1. Brand familiarity
(1) The factor: The ‘brand familiarity’ creates the background of perception of interactivity
(‘brand familiarity is understood as ‘as the number of brand-related direct or indirect
experiences that have been accrued by the consumer’ - Park & Stoel, 2005). This factor refers
to the dichotomy of well known brands vs. unknown brand and also global vs. local brand.
(2) Reference to the results of this study – Correlation analysis shows that avatars’ attitude
to well-known manufacturer Nissan is not based on proposed interaction. On the contrary,
Lingualand, which is known from virtual world (few avatars have a chance to the know
company in the real world), built its image through its marketing interactivity within the
virtual environment. For this company, analysis shows very strong correlation between
proposed interaction and brand attitude (3) Marketing implications – The meaning of
interactivity in the virtual world’s is different for well-known brands than for unknown
brands. Avatar’s recommendations of well-known brand or willingness to repeat contact
may depend less on proposed interactions. For lesser known brands, their interactivity

should create user’s awareness of brand. (4) Study limitation and future research - Future
study should examine the influence of previous brand image on brand attitude within the
virtual world. Further study should use a larger sample including different business sectors,
and also examine differences between brick-and-mortar companies and purely virtual ones.

5.3.2. Avatar’s motive
(1) The factor: Avatars form highly diversified communities, hence the perception of
interactivity and its outcome – brand attitude - are different for various segments of avatars.
(2) Reference to this study - Looking at the ‘average’ image of a company and an ‘average’
consumer’s attitude and not distinguishing the data obtained from different segments led to
unclear results. In this study the additional question - ‘If a company from the real world
organizes language courses in Second Life, how willingly will you take part?’ can be used as
a criteria of segmentation (This question was included in an additional part of the
questionnaire, not referring to Lingualand or any other particular company, a scale from 1 to
5 points was used). Implementing this question into analysis it is possible to distinguish two
different segments: the group of users who answered 5 (called ‘educationally-orientated’)
and the group of users who answered 1 (‘non-educationally-orientated’). The analysis
showed that the intention to sign up for real courses offered by Lingualand is significantly
higher in the group of ‘educationally-orientated’ avatars than ‘non-educationally orientated’
users (U Mann-Whitney test, p<0.05). Moreover, the differences between both segments are
significant in the assessment of other Lingualand dimensions: brand trustworthiness,
making recommendations to other avatars, willingness to re-visit the land (there are no
differences between users choosing 4 and 5). (3) Marketing implications - This finding
confirms that the ‘average’ customer does not exist in the market of the virtual world.
Proposed interactions should take into account the specific needs of a particular segment of
users. (4) Study limitation and future research –The findings of this survey are limited by a
small chosen sample. Hence it was not a cross-cultural study and potential cultural
differences among segments can be overlooked. Future research should examine different
factors which can be used as segmentation criteria such as user’s attitude to interaction or a
user’s self-expression (e.g. Arakji & Lang. (2008) argued that the avatars’ needs depend on
the image which user wants to create within virtual world - adopting human avatars or non-
human).

5.3.3. Facilitating factors
(1) The factor: Facilitating factors. Brand perception is not a simple sum of the proposed
interactions and one particular interaction can change overall perception. (2) Reference to
this study - No elements on Nissan land were particularly negatively assessed, therefore a
positive element, such as with the vending machine, can strongly influence the perception of
the brand. (3) Marketing implications – Maybe it is enough to create one engaging form of
interactions that is worth seeing. It may turn out that ‘overloaded’ interactivity is assessed
lower than the more simplified and easily noticeable interaction. (4) Study limitation and
future research – Future research should be focused on indicating different facilitating
factors including those not connected with graphics.

Engineering the Computer Science and IT440

5.3.4. Avatar’s interactivity expectation
(1) The factor: Avatar’s interactivity expectations, (2) Reference to the study results - Avatars
visiting the land of a well-known car manufacture expect interactivity connected with a
virtual car. But while avatars visit a school their expectations may not be so clear – they
would expect free lessons or slide or video presentations or some other forms of interaction.
Hence, the element of ‘being surprised’ can play a role in the higher assessment of
interactivity of Lingualand, but it does not lead to a higher assessment of the brand in
outcomes such as trustworthiness or recommendation (3) Marketing implications –
‘interactivity expectations’ depend on the product category. Maybe the best working
interaction should trigger the avatar’s curiosity and surprise them. 4) Study limitation and
future research –Future research should examine the avatar’s interactivity expectation
toward a particular brand in order to find a ‘reference point’ in perception and then from
that perspective examine the proposed interactivity.

5.3.5. Cooperation
(1) The factor: Avatar’s willingness to cooperate with others. Interactivity can be differently
perceived when a group, not a single user, is involved. (2) Reference to this study –
Lingualand interactivity which was based on cooperation was highly assessed. Also in the
first part of the survey avatars positively evaluated interactions such as organizing concert,
debates or contest, which require social contact. (3) Marketing implications – Companies can
build their own virtual communities within the virtual world and this way create their own
‘fan-clubs’. 4) Study limitation and future research - . Future research should focus on the
role of cooperation between avatars in the process of building marketing interactivity.

5.3.6 Emotions
(1) The factor: Emotions play a significant role in building an avatar’s attitude toward a
brand and perception of interactivity, (2) Reference to the study results - In this survey the
avatar’s response to interaction was defined in behavioral aspects, omitting many emotional
aspects. It is possible that primary interactivity influences the users’ emotions and then the
users’ behaviour. This study did not show this process. (3) Marketing implications – The
avatars can be ‘moved’ from ‘liking’ the brand to ‘buying’ or ‘recommending brand’ thanks
to a company’s interactivity. (4) Study limitation and future research - Future studies should
also examine the aspects of emotions and not only focus on the beliefs and behavior.

5.3.7 Avatar’s attitude to ‘real world’
(1) The factor: Avatar’s attitude to the virtual world can influence the perception of a
company’s interactivity, (2) Reference to the study results - The presented survey shows that
avatars are unwilling to transfer consumption of a product from the virtual world into real
world - in this analysis to sign up for real language courses. (3) Marketing implications –
The users are so immersed in cyberspace that if it is possible to use the product virtually
they do not think about an actual purchase. Offering a product where customers are, (in the
virtual world) not where the company is, is a change in the direction of thinking from
traditional forms of commerce. Study limitation and future research - Future research
should give more a holistic picture of integration ‘earth’ marketing and marketing within
into virtual world.

Interactivity of 3D social Internet as a marketing tool 441

5.3.4. Avatar’s interactivity expectation
(1) The factor: Avatar’s interactivity expectations, (2) Reference to the study results - Avatars
visiting the land of a well-known car manufacture expect interactivity connected with a
virtual car. But while avatars visit a school their expectations may not be so clear – they
would expect free lessons or slide or video presentations or some other forms of interaction.
Hence, the element of ‘being surprised’ can play a role in the higher assessment of
interactivity of Lingualand, but it does not lead to a higher assessment of the brand in
outcomes such as trustworthiness or recommendation (3) Marketing implications –
‘interactivity expectations’ depend on the product category. Maybe the best working
interaction should trigger the avatar’s curiosity and surprise them. 4) Study limitation and
future research –Future research should examine the avatar’s interactivity expectation
toward a particular brand in order to find a ‘reference point’ in perception and then from
that perspective examine the proposed interactivity.

5.3.5. Cooperation
(1) The factor: Avatar’s willingness to cooperate with others. Interactivity can be differently
perceived when a group, not a single user, is involved. (2) Reference to this study –
Lingualand interactivity which was based on cooperation was highly assessed. Also in the
first part of the survey avatars positively evaluated interactions such as organizing concert,
debates or contest, which require social contact. (3) Marketing implications – Companies can
build their own virtual communities within the virtual world and this way create their own
‘fan-clubs’. 4) Study limitation and future research - . Future research should focus on the
role of cooperation between avatars in the process of building marketing interactivity.

5.3.6 Emotions
(1) The factor: Emotions play a significant role in building an avatar’s attitude toward a
brand and perception of interactivity, (2) Reference to the study results - In this survey the
avatar’s response to interaction was defined in behavioral aspects, omitting many emotional
aspects. It is possible that primary interactivity influences the users’ emotions and then the
users’ behaviour. This study did not show this process. (3) Marketing implications – The
avatars can be ‘moved’ from ‘liking’ the brand to ‘buying’ or ‘recommending brand’ thanks
to a company’s interactivity. (4) Study limitation and future research - Future studies should
also examine the aspects of emotions and not only focus on the beliefs and behavior.

5.3.7 Avatar’s attitude to ‘real world’
(1) The factor: Avatar’s attitude to the virtual world can influence the perception of a
company’s interactivity, (2) Reference to the study results - The presented survey shows that
avatars are unwilling to transfer consumption of a product from the virtual world into real
world - in this analysis to sign up for real language courses. (3) Marketing implications –
The users are so immersed in cyberspace that if it is possible to use the product virtually
they do not think about an actual purchase. Offering a product where customers are, (in the
virtual world) not where the company is, is a change in the direction of thinking from
traditional forms of commerce. Study limitation and future research - Future research
should give more a holistic picture of integration ‘earth’ marketing and marketing within
into virtual world.

6. Conclusion

The results of the survey conducted among Polish users of Second Life partly explained the
proposed model of interactions presented in section 2.1. The first part of the survey
identified the spectrum of possible interaction (indicated in the model in section 2.1. as
passive, active without creation and active- creation), and investigated which interactions
can be assessed as particularly interesting for avatars (variable ‘perceived value of
interactivity’). The result emphasizes the importance of ‘bringing the brand to life’.
Engaging activities such as debates, concerts or contests with a prize are users’ preferred
forms of interaction. At the same time, the survey showed that avatars also appreciate
unusual and creative forms of passive interactions such as interesting graphics for product
presentation or embedding sound in the land. Surprisingly when users were asked to assess
the a product free trail, they assessed this interaction poorly. The data also highlights that
companies could face huge difficulties in keeping avatar’s responses during subsequent
contacts at the same level as in the first. The study shows that there is no clear evidence that
marketing interactivity can directly enhance the probability of buying real products, avatar’s
recommendations of brand to other users and perceived trustworthiness of the brand. The
interpretation and discussion on the findings of the second part of this survey pinpoint
many factors which should be taken into consideration when building a company’s
interactivity within the virtual world. These factors may influence the avatar’s response to
marketing interactivity determining whether the avatar takes part in the interaction or they
may influence the outcome – that is – the avatar’s willingness to recommend the brand, trust
toward the brand or the avatar’s willingness to renew contact with the company (as the
proposed model in fig. 1). These factors (table 6) can be used as a list of dimensions for
marketing interactions which should be considered and described before the company
builds its presence in virtual 3D society.

Factor/Factors Description
Characteristics of interactivity Interactivity congruence with the brand,

interactivity duration and interactivity prominence.
Active forms or passive forms of interactions

Characteristics of ties between
avatar and brand

The characteristics of the ties between avatar and
brand – their strength and emotional intensity. The
avatar’s response can depend on the familiarity of
the brand.

Relationship between avatars The perception of a company’s interactivity changes
when user-user relationship is building. The friend-
avatar can influence the user to take part in
interaction. The opinions leaders (virtual world
influentials) can also play important role.

Avatar’s motives The user’s response to interaction varies depending
on the motives for existing within the virtual worlds
e.g. ‘relationship-orientated’ avatars could be more
willing to take part in social events as compared to
‘educational-orientated’ or ‘building-orientated’
avatars

Engineering the Computer Science and IT442

Avatar’s profile Factors influencing an avatar’s attitude to
interaction and promoted brands connected with
the avatar’s profile: demographical, economical and
behavioral variables (e.g. How many hours does an
avatar spend within a virtual world? How do
computer skills limit the ability to take part in the
interactions?). It can be also important how strongly
attached the user is to the virtual world – this means
how willingly the user chooses virtual world
activities as a substitute for real world activities.

Avatar’s engagement in the
process of co-creation

The virtual world allows users to create their own
objects. If the company encourages users to be co-
creators of interaction, this can influence the brand
attitude and perception of interactivity

Table 6. Factors which may influence the process of company-avatar interaction

7. References

Arakji, R. Y. & Lang, K. R. (2008), Avatar Business Value Analysis: A Method For The
Evaluation Of Business Value Creation In Virtual Commerce, Journal of Electronic
Commerce Research. Long Beach: 2008. Vol. 9, Iss. 3, p. 207-218

Barnes, S. & Mattsson, J. (2008), Brand Value In Virtual Worlds: An Axiological Approach,
Journal of Electronic Commerce Research, Long Beach: 2008. Vol. 9, Iss. 3, p.195-206

Biever, C. (2007), Let’s meet tomorrow in second life, New Scientist 6/30/2007, Vol. 194
Issue 1610, p. 26-27

Brown, J., Broderick, A. J. & Lee, N. (2007), Word of mouth communication within online
communities: Conceptualizing the online social network, Journal of Interactive
Marketing; Summer2007, Vol. 21 Issue 3, p2-20

Castronova, E. (2002), On Virtual Economies, CESifo Working Paper No. 752,
http://ssrn.com/abstract_id=338500

Cowley, E. & Barron, Ch. (2008), When product placement goes wrong: The effects of
Program Liking and Placement Prominence, Journal of Advertising, Spring 2008;
37, 1; ABI/INFORM Global, pg. 89

Davis A., Murphy J., Owens D., Khazanchi D. (2009), Zigurs I, Avatars, People, and Virtual
Worlds: Foundations for Research in Metaverses, Journal of the Association for
Information System, Volume 10, Issue 2, February 2009, pp. 90-117

DeSanctis G., Poole M. S. (1994), Capturing the Complexity in Advanced Technology Use:
Adaptive Structuration Theory, Organization Science, Vol. 5, No. 2, May 1994, pp.
121-147

Heinonen K. (2008), The Role of Digital Service Encounters on Customers’ Perceptions of
Companies’, Journal of Electronic Commerce in Organizations, Volume 6, Issue 2,
2008 IGI Global

Joia, L.A.& de Oliveira L. C. B. (2008), Development and Testing of an E-commerce Web Site
Evaluation Model, Journal of Electronic Commerce in Organizations, Volume 6,
Issue 3, edited by Mehdi Khosrow-Pour, 2008, IGI Global

Interactivity of 3D social Internet as a marketing tool 443

Avatar’s profile Factors influencing an avatar’s attitude to
interaction and promoted brands connected with
the avatar’s profile: demographical, economical and
behavioral variables (e.g. How many hours does an
avatar spend within a virtual world? How do
computer skills limit the ability to take part in the
interactions?). It can be also important how strongly
attached the user is to the virtual world – this means
how willingly the user chooses virtual world
activities as a substitute for real world activities.

Avatar’s engagement in the
process of co-creation

The virtual world allows users to create their own
objects. If the company encourages users to be co-
creators of interaction, this can influence the brand
attitude and perception of interactivity

Table 6. Factors which may influence the process of company-avatar interaction

7. References

Arakji, R. Y. & Lang, K. R. (2008), Avatar Business Value Analysis: A Method For The
Evaluation Of Business Value Creation In Virtual Commerce, Journal of Electronic
Commerce Research. Long Beach: 2008. Vol. 9, Iss. 3, p. 207-218

Barnes, S. & Mattsson, J. (2008), Brand Value In Virtual Worlds: An Axiological Approach,
Journal of Electronic Commerce Research, Long Beach: 2008. Vol. 9, Iss. 3, p.195-206

Biever, C. (2007), Let’s meet tomorrow in second life, New Scientist 6/30/2007, Vol. 194
Issue 1610, p. 26-27

Brown, J., Broderick, A. J. & Lee, N. (2007), Word of mouth communication within online
communities: Conceptualizing the online social network, Journal of Interactive
Marketing; Summer2007, Vol. 21 Issue 3, p2-20

Castronova, E. (2002), On Virtual Economies, CESifo Working Paper No. 752,
http://ssrn.com/abstract_id=338500

Cowley, E. & Barron, Ch. (2008), When product placement goes wrong: The effects of
Program Liking and Placement Prominence, Journal of Advertising, Spring 2008;
37, 1; ABI/INFORM Global, pg. 89

Davis A., Murphy J., Owens D., Khazanchi D. (2009), Zigurs I, Avatars, People, and Virtual
Worlds: Foundations for Research in Metaverses, Journal of the Association for
Information System, Volume 10, Issue 2, February 2009, pp. 90-117

DeSanctis G., Poole M. S. (1994), Capturing the Complexity in Advanced Technology Use:
Adaptive Structuration Theory, Organization Science, Vol. 5, No. 2, May 1994, pp.
121-147

Heinonen K. (2008), The Role of Digital Service Encounters on Customers’ Perceptions of
Companies’, Journal of Electronic Commerce in Organizations, Volume 6, Issue 2,
2008 IGI Global

Joia, L.A.& de Oliveira L. C. B. (2008), Development and Testing of an E-commerce Web Site
Evaluation Model, Journal of Electronic Commerce in Organizations, Volume 6,
Issue 3, edited by Mehdi Khosrow-Pour, 2008, IGI Global

Kossecki, P., (2004), Building Trust in eCommerce - Quantitative Analysis, Available at
SSRN: http://ssrn.com/abstract=633843

Park, J.& Stoel (2005), L., Effect of brand familiarity, experience and information on online
apparel purchase, International Journal of Retail & Distribution Management.
Bradford:2005. Vol. 33, Iss. 2/3, p. 148- 160

Reichheld, F. (2004), Najważniejszy jest wskaźnik wzrostu, Harvard Business Review
Polska, May 2004, p. 43-53

Sohn D., Ci C. & Lee B-K (2007), The Moderating Effects of Expectation on the Patterns of
the Interactivity-Attitude Relationship, Journal of Advertising, Fall 2007; 36,3;
ABI/INFORM Global, p. 109

Stewart, Katherine (2003), Trust Transfer on the World Wide Web, Organization Science;
Jan/Feb2003, Vol. 14 Issue 1, p 5-17,

Wagner, Ch. 2008, Learning Experience with Virtual Worlds, Journal of Information Systems
Education 2008, vol. 19, No. 3, p. 263-266

Engineering the Computer Science and IT444

Performance evaluation of protocols of multiagent information retrieval systems 445

Performance evaluation of protocols of multiagent information retrieval
systems

Zofia Kruczkiewicz

X

Performance evaluation of protocols of
multiagent information retrieval systems

Zofia Kruczkiewicz

Wrocław University of Technology, Wybrzeże Wyspiańskiego 27
Poland

1. Introduction

It is aimed at the limitation of the network traffic which is generated during the realization
of protocol in distributed environment of multiagent systems. This paper presents the way
of the decrease of the number and the way of the diminution of the size of messages sent
between agents as the manner of the limitation of the network traffic. Multiagent system can
be employed agents in searching information in distributed databases.
In literature, performance evaluation of the following multi-agent systems: ZEUS (Camacho
et al., 2002), JADE (Camacho et al., 2002), Skeleton Agent (Camacho et al., 2002), Aglets IBM
(Dikaiakos et al., 2001), (Yamamoto & Nakamura, 1999), Concordia (Dikaiakos et al., 2001),
Voyager (Dikaiakos et al., 2001) is presented. When new MAS with performance
requirements is designed then, according to software performance engineering (Smith,
1990), (Smith & Lloyd, 2002), (Wooldridge & Rao, 1999), (Babczyński et al., 2004),
(Babczyński et al., 2005) performance requirements have to be considered at each phase of
life cycle.
The paper presents the method of design communication protocols (FIPA00025, 2000),
(FIPA00037, 2000), (Specification of JADE) which based on the limitation of the network
traffic in multiagent systems as the use of dynamic protocols instead of static protocols
embedded in system.
The method consists in assumption that agent communications and semantics based on
Agent Communication Language (ACL), Interaction Protocols etc. (Odell et al., 2001),
(Specification of FIPA), (Specyfication of JADE), (Pautret, 2005-2006). At a basic level, it is
checked syntactic and semantic consistency of received and sent messages (for example, it is
not possible to send an agree message with a content representing an action instead of a
proposition). The behaviour of an agent is based on analyzing incoming messages and on
drawing the conclusion from this analyze. Therefore, the agent semantics consists in setting
up its initial beliefs, the rules for handling its beliefs, the domain-specific actions it is
expected to handle, and in customizing its cooperative abilities. This way of designing
agents of multiagent information retrieval systems will simplify adapting their protocols to
the actual meaning of the exchanged messages. These protocols are named the dynamic
protocols. This semantic adjustment of agent protocols during exchanging messages will
improve the performance of retrieval tasks.

22

Engineering the Computer Science and IT446

Each agent is built of components, which analyze the received or sent messages. If it is the
incoming message, the agent chooses the action and communication act with regard to
possibility of minimal loss of performance. It means that an agent sends messages to these
agents who understand the content of messages and they are able to realize instructions of
messages.
The method of the agent components consists in processing six lists of semantic and
interpretation expressions:
 the lists of semantic expressions are FIPA-SL (FIPA00008, 2000), (FIPA00070, 2000)

expressions that represent the sense of the message according to the FIPA-ACL semantics
(FIPA00037, 2000)

 the belief knowledge, uncertainty knowledge and intention knowledge are lists of
expressions that store the beliefs, uncertainties and intentions of the agent. A belief,
uncertainty or intention can be a simple predicate, or a more complex formula;

 the lists of semantic actions store the description of the model components of
communicative act. The reasons for which the act is selected are referred to as the
rational effect (RE) and the conditions that have to be satisfied for the act to be planned
are related to as the feasibility preconditions (FPs) (FIPA00037, 2000). They are
qualifications for the act. Each action is associated to a semantic behaviour that performs
the action;

 the lists of interpretation components perform semantic adjustment of the agent protocol.
Alike just the interpretation algorithm in (Pautret, 2005-2006), the presented interpretation
algorithm of the content of semantic components is based on messages and on internal
events the form of which are SL expressions. It is a loop, which applies all possible
interpretation components to all existing semantic expressions and evaluates the
performance of select dynamic protocols and stops when one of the following conditions
holds:
 the semantic expressions list becomes empty,
 no interpretation components can be further applied to any semantic expression,
 the one of the semantic expressions is a false formula (e.g., in the case of inconsistency).
The chapter also presents the performance experiments enabling the comparison the
dynamic protocols.
The paper is organized as follows. In Section 2, the project of multiagent information
retrieval system adapting their protocols to the actual meaning of the exchanged messages is
presented. In Section 3, performance metrics of protocols are defined and the methods of
formation of the dynamic protocols are presented from performance point of view. The
results of simulation experiments are described. Then there are conclusions.

2. System design

This section presents the project of retrieval multiagent system taking benefit from the
semantic dimension of the FIPA-ACL language (FIPA00037, 2000), that applies in systems
for presentation of interaction between agents. Language of agent includes communication
acts so called a message and the grammar (FIPA00008, 2000). The project is done in MaSE
technology (Deloach et al., 2001).

2.1 Concepts
It takes advantage of MaSE technology for identification of agents. During analysis, in
AgentTool environment of MaSE technology (Deloach et al., 2001), model of goals is built
(fig.1). Goals diagram expresses the mission fulfilled by the system. Then the use cases
model is created, which presents interactions between roles using the sequence diagram
(fig.2, fig.3). In next step of modeling multiagent system, the roles diagram is created,
expressed the roles of system, executable tasks of each role and protocols of interactions
between tasks (fig.4). The plan of each task is modeled by using the statecharts diagram.
The first step of formation of the design model is built the agent template diagram (fig.5).
This diagram is created by the arbitrary choice of agents relate with individual roles they
become tasks of agents - task role. Next, it is possible to generate the design model on base
of the analysis model and the agent diagram, automatically. Diagram of agent architecture is
built of components (fig.6) which represent agent tasks as classes on the design level. The
conversation sends a message to another agent or receives a message from another agent
(fig.7). The statecharts diagram of the task on analysis level is transformed to the statecharts
diagram of the relative component on the design level (fig.8-14). The trigger as the
communication act of the statecharts diagram of the task is transformed to the action as the
conversation of the relative transition of the component statecharts diagram.

The goals diagram of the retrieval multiagent system

Fig. 1. The goals diagram

The goals diagram belongs to the analysis model. The Main goal of the retrieval multiagent
system is adapting their protocols to the actual meaning of the exchanged messages because
it is the way of the limitation of the network traffic which is generated during the realization
of protocol in distributed environment of multiagent systems. The Main goal consists of a
few goals of the first level. One of them is an Interface_messages which consists of a goal of
the interface of the Receiving messages and a goal of the interface of Sending messages. The
second goal of the first level is to define the retrieval tasks which include the goal of the
choice of the negotiation way. The third goal of the first level is the Semantic analysis of
communication acts at the point of view of agent properties. It consists of the three
following goals. The Message semantic analysis goal aims at taking better benefit from
semantic dimension of the FIPA-ACL language. The Agent semantic analysis goal takes into
account the belief knowledge, uncertainty knowledge and intention knowledge in choice of
the actions and the communication acts. The third Knowledge complement goal refers to
gathering the knowledge of an agent properties and facts of actions and communicative

Performance evaluation of protocols of multiagent information retrieval systems 447

Each agent is built of components, which analyze the received or sent messages. If it is the
incoming message, the agent chooses the action and communication act with regard to
possibility of minimal loss of performance. It means that an agent sends messages to these
agents who understand the content of messages and they are able to realize instructions of
messages.
The method of the agent components consists in processing six lists of semantic and
interpretation expressions:
 the lists of semantic expressions are FIPA-SL (FIPA00008, 2000), (FIPA00070, 2000)

expressions that represent the sense of the message according to the FIPA-ACL semantics
(FIPA00037, 2000)

 the belief knowledge, uncertainty knowledge and intention knowledge are lists of
expressions that store the beliefs, uncertainties and intentions of the agent. A belief,
uncertainty or intention can be a simple predicate, or a more complex formula;

 the lists of semantic actions store the description of the model components of
communicative act. The reasons for which the act is selected are referred to as the
rational effect (RE) and the conditions that have to be satisfied for the act to be planned
are related to as the feasibility preconditions (FPs) (FIPA00037, 2000). They are
qualifications for the act. Each action is associated to a semantic behaviour that performs
the action;

 the lists of interpretation components perform semantic adjustment of the agent protocol.
Alike just the interpretation algorithm in (Pautret, 2005-2006), the presented interpretation
algorithm of the content of semantic components is based on messages and on internal
events the form of which are SL expressions. It is a loop, which applies all possible
interpretation components to all existing semantic expressions and evaluates the
performance of select dynamic protocols and stops when one of the following conditions
holds:
 the semantic expressions list becomes empty,
 no interpretation components can be further applied to any semantic expression,
 the one of the semantic expressions is a false formula (e.g., in the case of inconsistency).
The chapter also presents the performance experiments enabling the comparison the
dynamic protocols.
The paper is organized as follows. In Section 2, the project of multiagent information
retrieval system adapting their protocols to the actual meaning of the exchanged messages is
presented. In Section 3, performance metrics of protocols are defined and the methods of
formation of the dynamic protocols are presented from performance point of view. The
results of simulation experiments are described. Then there are conclusions.

2. System design

This section presents the project of retrieval multiagent system taking benefit from the
semantic dimension of the FIPA-ACL language (FIPA00037, 2000), that applies in systems
for presentation of interaction between agents. Language of agent includes communication
acts so called a message and the grammar (FIPA00008, 2000). The project is done in MaSE
technology (Deloach et al., 2001).

2.1 Concepts
It takes advantage of MaSE technology for identification of agents. During analysis, in
AgentTool environment of MaSE technology (Deloach et al., 2001), model of goals is built
(fig.1). Goals diagram expresses the mission fulfilled by the system. Then the use cases
model is created, which presents interactions between roles using the sequence diagram
(fig.2, fig.3). In next step of modeling multiagent system, the roles diagram is created,
expressed the roles of system, executable tasks of each role and protocols of interactions
between tasks (fig.4). The plan of each task is modeled by using the statecharts diagram.
The first step of formation of the design model is built the agent template diagram (fig.5).
This diagram is created by the arbitrary choice of agents relate with individual roles they
become tasks of agents - task role. Next, it is possible to generate the design model on base
of the analysis model and the agent diagram, automatically. Diagram of agent architecture is
built of components (fig.6) which represent agent tasks as classes on the design level. The
conversation sends a message to another agent or receives a message from another agent
(fig.7). The statecharts diagram of the task on analysis level is transformed to the statecharts
diagram of the relative component on the design level (fig.8-14). The trigger as the
communication act of the statecharts diagram of the task is transformed to the action as the
conversation of the relative transition of the component statecharts diagram.

The goals diagram of the retrieval multiagent system

Fig. 1. The goals diagram

The goals diagram belongs to the analysis model. The Main goal of the retrieval multiagent
system is adapting their protocols to the actual meaning of the exchanged messages because
it is the way of the limitation of the network traffic which is generated during the realization
of protocol in distributed environment of multiagent systems. The Main goal consists of a
few goals of the first level. One of them is an Interface_messages which consists of a goal of
the interface of the Receiving messages and a goal of the interface of Sending messages. The
second goal of the first level is to define the retrieval tasks which include the goal of the
choice of the negotiation way. The third goal of the first level is the Semantic analysis of
communication acts at the point of view of agent properties. It consists of the three
following goals. The Message semantic analysis goal aims at taking better benefit from
semantic dimension of the FIPA-ACL language. The Agent semantic analysis goal takes into
account the belief knowledge, uncertainty knowledge and intention knowledge in choice of
the actions and the communication acts. The third Knowledge complement goal refers to
gathering the knowledge of an agent properties and facts of actions and communicative

Engineering the Computer Science and IT448

acts. The fourth Action realization goal executes the communicative acts or internal event.
This goal consists of two goals. The first Activity realization goal refers to the realization of
activity of the task. The second Message choice goal deals with the choice of an appropriate
message which would be sent to another agent. This is a choice at a point of view of the
result of the agent action and the retrieval tasks.

The use cases and sequence diagrams of the retrieval multiagent system

The use cases and its sequence diagrams belong to the analysis model, too. The each use
case presents the scenario of the multiagent system. The sequence diagram represents these
interactions of system in a more formal way. The agents of the system fulfil the different
roles. Each role accomplishes a few tasks.

Fig. 2. Sequence diagram of sent process of the send use case

The sequence diagram of the send use case (fig.2) represents the scenario of fulfilling the process
of sending communication acts, which is represented by the interactions between the roles of
system over the protocols (fig.4). The A_agent_semantics role sends msg_action_know_out message
by use the Knowledge_complement task of this role. There are two reasons of sending this message.
The first one is the preparing the response of message received from another agent. The second
reason refers to the initiation of the new action of agent.
The received message represents the knowledge of the agent need of activity of system for
searching information. The content of the sent message includes these facts of the agent.
This message is received by the Action_choice task of the Ch_action role. The Action_choice
task choices the proper action which has to be done by the Action_done task of the D_action
role. The Action_choice task choices the action by use the belief, uncertainty and intention
knowledge of the agent. Each agent has itself knowledge.
Then the Action_choice task sends the msg_action_done_in message to the Action_done task of
the D_action role. The received message gives information for executing the action or no
principles for doing anything. Then the Action_done task of the D_action role sends the
msg_action_done_out message to the Message_choice task of the Ch_message role. This task
choices the appropriate message for the result of the Action_done task of the D_action role.
The Message_choice task sends the msg_result_action_know_in message to the
Knowledge_complement task of the A_agent_semantics role and receives the
msg_result_action_know_out message with information supporting the choice of the proper
message. At last the Message_choice task sends the chosen msg_sent message to the
Message_sending task of the M_S_interface role.
The process of sending and receiving the msg_in result message to another agent is
presented by the sequence diagram of the receive use case (fig.3) and role diagram (fig.4).

The Message_sending task of the M_S_interface role of the ag1 agent sends the msg_in message
to the Message_receiving task of the M_R_interface role of the ag2 agent. The next interactions
occur between tasks of roles of the ag2 agent. The message as the communication act of FIPA
ACL language (FIPA00037, 2000) is transformed to FIPA-SL expression (FIPA00008, 2000).
The expression represents the semantics of the message.
Then the msg_sl message is sent to the Message_sem_analysis task of the A_message_semantics
role. The reasons for which the act is selected are referred to as the rational effect (RE). The
conditions that have to be satisfied for the act to be planned are related to as the feasibility
preconditions (FPs). They are qualifications for the act (FIPA00037, 2000). Each action is
associated to a semantic behaviour that performs the action. The msg_know_in message and
the msg_know_out messages are sent between the Message_sem_analysis task of the
A_message_semantics role and the Knowledge_complement task of the A_agent_semantics role.

Fig. 3. Sequence diagram of receive process of the receive use case

The role diagram of the retrieval multiagent system

The role diagram is the next diagram of the analysis model. The role diagram expresses the
roles of the system, executable tasks of each role and protocols of interactions between tasks
(fig.4). Each agent of the system fulfils a few roles or the one role at least. These roles are
defined at the sequence diagrams. Each role accomplishes different tasks.
The tasks exchange the messages over the protocols. For example, the Message_sem_analysis
task sends the msg_know_in message to the Knowledge_complement task and receives the
msg_know_out message from this task over message_know protocol. They are presented at the
following diagrams: the sequence diagram of receive use case (fig.3), two statecharts
diagrams – the Knowledge_complement task (fig.11) and the Message_sem_analysis task (fig.10),
and the role diagram (fig.4).

Fig. 4. Role diagram of the retrieval multiagent system

Performance evaluation of protocols of multiagent information retrieval systems 449

acts. The fourth Action realization goal executes the communicative acts or internal event.
This goal consists of two goals. The first Activity realization goal refers to the realization of
activity of the task. The second Message choice goal deals with the choice of an appropriate
message which would be sent to another agent. This is a choice at a point of view of the
result of the agent action and the retrieval tasks.

The use cases and sequence diagrams of the retrieval multiagent system

The use cases and its sequence diagrams belong to the analysis model, too. The each use
case presents the scenario of the multiagent system. The sequence diagram represents these
interactions of system in a more formal way. The agents of the system fulfil the different
roles. Each role accomplishes a few tasks.

Fig. 2. Sequence diagram of sent process of the send use case

The sequence diagram of the send use case (fig.2) represents the scenario of fulfilling the process
of sending communication acts, which is represented by the interactions between the roles of
system over the protocols (fig.4). The A_agent_semantics role sends msg_action_know_out message
by use the Knowledge_complement task of this role. There are two reasons of sending this message.
The first one is the preparing the response of message received from another agent. The second
reason refers to the initiation of the new action of agent.
The received message represents the knowledge of the agent need of activity of system for
searching information. The content of the sent message includes these facts of the agent.
This message is received by the Action_choice task of the Ch_action role. The Action_choice
task choices the proper action which has to be done by the Action_done task of the D_action
role. The Action_choice task choices the action by use the belief, uncertainty and intention
knowledge of the agent. Each agent has itself knowledge.
Then the Action_choice task sends the msg_action_done_in message to the Action_done task of
the D_action role. The received message gives information for executing the action or no
principles for doing anything. Then the Action_done task of the D_action role sends the
msg_action_done_out message to the Message_choice task of the Ch_message role. This task
choices the appropriate message for the result of the Action_done task of the D_action role.
The Message_choice task sends the msg_result_action_know_in message to the
Knowledge_complement task of the A_agent_semantics role and receives the
msg_result_action_know_out message with information supporting the choice of the proper
message. At last the Message_choice task sends the chosen msg_sent message to the
Message_sending task of the M_S_interface role.
The process of sending and receiving the msg_in result message to another agent is
presented by the sequence diagram of the receive use case (fig.3) and role diagram (fig.4).

The Message_sending task of the M_S_interface role of the ag1 agent sends the msg_in message
to the Message_receiving task of the M_R_interface role of the ag2 agent. The next interactions
occur between tasks of roles of the ag2 agent. The message as the communication act of FIPA
ACL language (FIPA00037, 2000) is transformed to FIPA-SL expression (FIPA00008, 2000).
The expression represents the semantics of the message.
Then the msg_sl message is sent to the Message_sem_analysis task of the A_message_semantics
role. The reasons for which the act is selected are referred to as the rational effect (RE). The
conditions that have to be satisfied for the act to be planned are related to as the feasibility
preconditions (FPs). They are qualifications for the act (FIPA00037, 2000). Each action is
associated to a semantic behaviour that performs the action. The msg_know_in message and
the msg_know_out messages are sent between the Message_sem_analysis task of the
A_message_semantics role and the Knowledge_complement task of the A_agent_semantics role.

Fig. 3. Sequence diagram of receive process of the receive use case

The role diagram of the retrieval multiagent system

The role diagram is the next diagram of the analysis model. The role diagram expresses the
roles of the system, executable tasks of each role and protocols of interactions between tasks
(fig.4). Each agent of the system fulfils a few roles or the one role at least. These roles are
defined at the sequence diagrams. Each role accomplishes different tasks.
The tasks exchange the messages over the protocols. For example, the Message_sem_analysis
task sends the msg_know_in message to the Knowledge_complement task and receives the
msg_know_out message from this task over message_know protocol. They are presented at the
following diagrams: the sequence diagram of receive use case (fig.3), two statecharts
diagrams – the Knowledge_complement task (fig.11) and the Message_sem_analysis task (fig.10),
and the role diagram (fig.4).

Fig. 4. Role diagram of the retrieval multiagent system

Engineering the Computer Science and IT450

2.2. Design
On the figure 5 there is the Agent Template Diagram. It represents the roles fulfilled by each
agent. The agent is the universal program, which realizes the same tasks by use itself belief,
uncertainty and intention knowledge gathered during the life cycle. Therefore the each
agent has the following features: flexibility in adaptation to environment changes,
possibility of increasing the number of functions, mobile data and programs, etc. The
send_receive1 and send_receive2 conversations are used to exchange the messages. The order
of these messages realizes the dynamical protocols. The behaviour of the agents will
simplify adapting their protocols to the actual meaning of the exchanged messages.

Fig. 5. Agent template diagram

The fig.6 shows the architecture diagram for each agent, which includes components
transformed from the task of roles fulfilled by the each agent.

Fig. 6. Architecture diagram for each agent

On the figure 7, it is presented statecharts diagrams of the send_receive1 and send_receive2
conversations. Each conversation consists of two statecharts diagrams (Deloach et al., 2001),
(Specification of UML): send_receive1 or send_receive2 Initiator (the left statechars diagram of
fig.7) and send_receive1 or send_receive2 Responder (the right statechars diagram of fig.7).

Fig. 7. Statecharts diagrams of send_receive1 or send_receive2 Initiator conversation (the left
statecharts diagram) and Responder conversation (the right statecharts diagram).

The statecharts diagram of the Message_receiving component (fig.8) represents the actions
executing during the receiving process.

Fig. 8. Statecharts diagram of Message_receiving component

The statecharts diagram of the Message_sending component represents the actions executing
during the sending process. The send_receive1 and send_receive2 conversations are used as the
action of the transition of the statecharts diagram of the Message_receiving (fig.8) and
Message_sending components (fig.9).
When the agent receives the msg_in message (fig.8), the send_receive1 Responder conversation
is created. When the agent wants to send the message (fig.9), the send_receive2 conversation
Initiator is created.

Fig. 9. Statecharts diagram of the Message_sending component

The statecharts diagram of the Message_sem_analysis component (fig.10) presents the process
of interpreting of the received message.

Fig. 10. Statecharts diagram of Message_sem_analysis component

The Message_sem_analysis component produces the data structure of the semantic
representation handled by the mechanisms of gathering knowledge of the
Knowledge_complement component and interpretation formulas of the following components:
Knowledge_complement, Action choice, Action_done, Message_choice.

Performance evaluation of protocols of multiagent information retrieval systems 451

2.2. Design
On the figure 5 there is the Agent Template Diagram. It represents the roles fulfilled by each
agent. The agent is the universal program, which realizes the same tasks by use itself belief,
uncertainty and intention knowledge gathered during the life cycle. Therefore the each
agent has the following features: flexibility in adaptation to environment changes,
possibility of increasing the number of functions, mobile data and programs, etc. The
send_receive1 and send_receive2 conversations are used to exchange the messages. The order
of these messages realizes the dynamical protocols. The behaviour of the agents will
simplify adapting their protocols to the actual meaning of the exchanged messages.

Fig. 5. Agent template diagram

The fig.6 shows the architecture diagram for each agent, which includes components
transformed from the task of roles fulfilled by the each agent.

Fig. 6. Architecture diagram for each agent

On the figure 7, it is presented statecharts diagrams of the send_receive1 and send_receive2
conversations. Each conversation consists of two statecharts diagrams (Deloach et al., 2001),
(Specification of UML): send_receive1 or send_receive2 Initiator (the left statechars diagram of
fig.7) and send_receive1 or send_receive2 Responder (the right statechars diagram of fig.7).

Fig. 7. Statecharts diagrams of send_receive1 or send_receive2 Initiator conversation (the left
statecharts diagram) and Responder conversation (the right statecharts diagram).

The statecharts diagram of the Message_receiving component (fig.8) represents the actions
executing during the receiving process.

Fig. 8. Statecharts diagram of Message_receiving component

The statecharts diagram of the Message_sending component represents the actions executing
during the sending process. The send_receive1 and send_receive2 conversations are used as the
action of the transition of the statecharts diagram of the Message_receiving (fig.8) and
Message_sending components (fig.9).
When the agent receives the msg_in message (fig.8), the send_receive1 Responder conversation
is created. When the agent wants to send the message (fig.9), the send_receive2 conversation
Initiator is created.

Fig. 9. Statecharts diagram of the Message_sending component

The statecharts diagram of the Message_sem_analysis component (fig.10) presents the process
of interpreting of the received message.

Fig. 10. Statecharts diagram of Message_sem_analysis component

The Message_sem_analysis component produces the data structure of the semantic
representation handled by the mechanisms of gathering knowledge of the
Knowledge_complement component and interpretation formulas of the following components:
Knowledge_complement, Action choice, Action_done, Message_choice.

Engineering the Computer Science and IT452

The data structure of the semantic representation defined by the following attributes
represented by the SL formulas that represents the sense of the received message:
• a term that represents the agent of the action;
• the feasibility precondition FP, which represents a condition that must hold for an agent to

be able to perform the action;
• the rational effect RE, which represents a state intended by the agent performing the

action;
• the semantic behaviour, which implements its performance by the agent.

A communication act model of the request act is presented as follows (FIPA00037, 2000):
 <i, request (j, a)>
FP: φ1
RE: φ2
where i is the agent of the act, j the recipient, request the name of the communication act, a
stands for the semantic content or propositional content1, and φ1 and φ2 are propositions.
This notational form is used for brevity, on the formal basis of ACL. The correspondence to
the standard transport syntax (FIPA00070, 2000) adopted above is illustrated by a simple
translation of the above example:
(request
 :sender i
 :receiver j
 :content
 a)
FP: FP (a) [i\j] Bi Agent (j, a) ¬ Bi Ij Done (a)
RE: Done (a)
where FP(a) [i\j] denotes the part of the FPs of a which are mental attitudes of i.

Example 1 (FIPA00037, 2000): Agent i requests j to reserve a ticket for i.
(request
:sender (agent-identifier :name i)
:receiver (set (agent-identifier :name j))
:content
"((action (agent-identifier :name j)
 (reserve-ticket LHR MUC 27-sept-97)))"
:protocol fipa-request
:language fipa-sl
:reply-with order567)

The Knowledge_complement component (fig.11) stores facts believed by the agent and
uncertain and intentional facts for this agent, according to the specific application domain.
These facts are defined as SL semantic formulas. The Knowledge_complement component can
only store and retrieve facts without actually interpreting their meaning. For instance, if an
empty component is informed that (ac12345 100) there are 100 pounds in its ac12345
account, then agent j will correctly answer a Request-When message about (Done (reserve-
ticket LHR MUC 27-sept-97, ac12345 100)) meaning about “Agent i tells agent j to notify it as
soon as a reserve-ticket occurs and there are 100 pounds in its account just before that.”.

However, it will not be able to answer a Request-Whenever message about (Done (reserve-
ticket LHR MUC 27-sept-97, (> (price-ticket) 100))) meaning about “Agent i tells agent j to
notify it whenever a reserve-ticket occurs and the price of tickets is lower than 100 before
that.”, because agent j cannot guess the semantic relationships between the ac12345 and the
price-ticket predicates. This component includes the different operations towards the belief
uncertainty and intention bases, which are needed by the interpretation process of other
components.
These knowledge bases would have the following properties:
• storing the facts believed by the agent and uncertain and intentional facts for the agent

(the knowledge_message_out state);
• providing a mechanism of listening changes in the contents of the knowledge bases by

using formulas (the knowledge_message_in state);
• initializing the process of the internal action as the response of received message or as the

initiation of the new task of the agent (the knowledge_action state).

Fig. 11. Statecharts diagram of the Knowledge_complement component

The Action_choice component (fig.12) supports choices of the internal and the ontological
actions.

Fig. 12. Statecharts diagram of the Action_choice component

Performance evaluation of protocols of multiagent information retrieval systems 453

The data structure of the semantic representation defined by the following attributes
represented by the SL formulas that represents the sense of the received message:
• a term that represents the agent of the action;
• the feasibility precondition FP, which represents a condition that must hold for an agent to

be able to perform the action;
• the rational effect RE, which represents a state intended by the agent performing the

action;
• the semantic behaviour, which implements its performance by the agent.

A communication act model of the request act is presented as follows (FIPA00037, 2000):
 <i, request (j, a)>
FP: φ1
RE: φ2
where i is the agent of the act, j the recipient, request the name of the communication act, a
stands for the semantic content or propositional content1, and φ1 and φ2 are propositions.
This notational form is used for brevity, on the formal basis of ACL. The correspondence to
the standard transport syntax (FIPA00070, 2000) adopted above is illustrated by a simple
translation of the above example:
(request
 :sender i
 :receiver j
 :content
 a)
FP: FP (a) [i\j] Bi Agent (j, a) ¬ Bi Ij Done (a)
RE: Done (a)
where FP(a) [i\j] denotes the part of the FPs of a which are mental attitudes of i.

Example 1 (FIPA00037, 2000): Agent i requests j to reserve a ticket for i.
(request
:sender (agent-identifier :name i)
:receiver (set (agent-identifier :name j))
:content
"((action (agent-identifier :name j)
 (reserve-ticket LHR MUC 27-sept-97)))"
:protocol fipa-request
:language fipa-sl
:reply-with order567)

The Knowledge_complement component (fig.11) stores facts believed by the agent and
uncertain and intentional facts for this agent, according to the specific application domain.
These facts are defined as SL semantic formulas. The Knowledge_complement component can
only store and retrieve facts without actually interpreting their meaning. For instance, if an
empty component is informed that (ac12345 100) there are 100 pounds in its ac12345
account, then agent j will correctly answer a Request-When message about (Done (reserve-
ticket LHR MUC 27-sept-97, ac12345 100)) meaning about “Agent i tells agent j to notify it as
soon as a reserve-ticket occurs and there are 100 pounds in its account just before that.”.

However, it will not be able to answer a Request-Whenever message about (Done (reserve-
ticket LHR MUC 27-sept-97, (> (price-ticket) 100))) meaning about “Agent i tells agent j to
notify it whenever a reserve-ticket occurs and the price of tickets is lower than 100 before
that.”, because agent j cannot guess the semantic relationships between the ac12345 and the
price-ticket predicates. This component includes the different operations towards the belief
uncertainty and intention bases, which are needed by the interpretation process of other
components.
These knowledge bases would have the following properties:
• storing the facts believed by the agent and uncertain and intentional facts for the agent

(the knowledge_message_out state);
• providing a mechanism of listening changes in the contents of the knowledge bases by

using formulas (the knowledge_message_in state);
• initializing the process of the internal action as the response of received message or as the

initiation of the new task of the agent (the knowledge_action state).

Fig. 11. Statecharts diagram of the Knowledge_complement component

The Action_choice component (fig.12) supports choices of the internal and the ontological
actions.

Fig. 12. Statecharts diagram of the Action_choice component

Engineering the Computer Science and IT454

The ontological actions gather the actions related to the specific application. The internal
actions gather the actions related to the response of the content of the received message or to
a specific application. The action choice is based on the interpretation of the belief
knowledge, uncertainty knowledge and intention knowledge and on the rules of FIPA- ACL
language. The semantic interpretation formulas are related to the behaviours of the agent.
They provide the interpretation mechanism of semantic SL formulas. Each semantic
interpretation formula is applicable on a specific SL pattern. The use of semantic
interpretation formulas is based on querying and updating the knowledged bases as the first
result. The second result of the interpretation is based on adding to, or removing behaviours
from the agent.

Fig. 13. Statecharts diagram of the Action_done component

The Action_done component (fig.13) executes the internal action choiced by the Action_choice
component during the interpretation process. Then it delivers the results of this action to the
Message_choice component. These results are defined in SL formulas.

Fig. 14. Statecharts diagram of the Message_choice component

The Message_choice component (fig.14) choices the communicative act as the response for the
received message or as the initialization of the interaction with other agents related to a
specific application. The communicative actions gather all the FIPA Communicative Acts.
The message choice is based on the semantic interpretation of the belief, uncertainty and
intention knowledge databases and on the rules of FIPA- ACL language. The message

choice uses the semantic interpretation formulas that are based on querying and updating
the knowledge bases as the first result. The second result of the interpretation is based on
adding to, or removing behaviours from the agent.
The example 2 resumes the example 1: if the agent is able to do the action included in the
content of the received message as the request communicative acts, it sends the agree message
to the sender agent:
<i, agree (j, <i, request>, φ))> ≡ <i, inform (j, Ii Done (<i, act>, φ))>
FP: Bi α ¬ Bi (Bifj α Uifj α)
RE: Bj α
where: α = Ii Done(<i, act>, φ)
The example 3 continues the example 1: the agent j answers that it agrees to reserve a ticket
for i, since there are sufficient funds in its account.
(agree
:sender (agent-identifier :name j)
:receiver (set (agent-identifier :name i))
:content
 "((action (agent-identifier :name j)
 (reserve-ticket LHR MUC 27-sept-97))
 (sufficient- funds ac12345))"
:in-reply-to order567
:protocol fipa-request
:language fipa-sl)

The example 4 continues the example 2: if the agent is able to do the action defined in the
content of the received message as the request communicative acts, it sends the refuse
message to the sender agent: Agent i informs j that action act is not feasible, and further that,
because of proposition φ, act has not been done and i has no intention to do act.
<i, refuse (j, <i, act>, φ)> ≡ <i, disconfirm (j, Feasible(<i, act>))>;
<i, inform (j, φ ¬ Done (<i, act>) ¬ Ii Done (<i, act>))>
FP: Bi ¬ Feasible (<i, act>) Bi (Bj Feasible (<i, act>)
 Uj Feasible (<i, act>)) Bi α ¬ Bi (Bifj α Uifj α)
RE: Bj ¬ Feasible (<i, act>) Bj α
where: α = φ ¬ Done (<i, act>) ¬ Ii Done (<i, act>)
Example 5 continues the example 3: Agent j answers that it refuses to reserve a ticket for i,
since there are insufficient funds in its account.
(refuse
:sender (agent-identifier :name j)
:receiver (set (agent-identifier :name i))
:content
"((action (agent-identifier :name j)
 (reserve-ticket LHR MUC 27-sept-97))
 (insufficient- funds ac12345))"
:in-reply-to order567
:protocol fipa-request
:language fipa-sl)

Performance evaluation of protocols of multiagent information retrieval systems 455

The ontological actions gather the actions related to the specific application. The internal
actions gather the actions related to the response of the content of the received message or to
a specific application. The action choice is based on the interpretation of the belief
knowledge, uncertainty knowledge and intention knowledge and on the rules of FIPA- ACL
language. The semantic interpretation formulas are related to the behaviours of the agent.
They provide the interpretation mechanism of semantic SL formulas. Each semantic
interpretation formula is applicable on a specific SL pattern. The use of semantic
interpretation formulas is based on querying and updating the knowledged bases as the first
result. The second result of the interpretation is based on adding to, or removing behaviours
from the agent.

Fig. 13. Statecharts diagram of the Action_done component

The Action_done component (fig.13) executes the internal action choiced by the Action_choice
component during the interpretation process. Then it delivers the results of this action to the
Message_choice component. These results are defined in SL formulas.

Fig. 14. Statecharts diagram of the Message_choice component

The Message_choice component (fig.14) choices the communicative act as the response for the
received message or as the initialization of the interaction with other agents related to a
specific application. The communicative actions gather all the FIPA Communicative Acts.
The message choice is based on the semantic interpretation of the belief, uncertainty and
intention knowledge databases and on the rules of FIPA- ACL language. The message

choice uses the semantic interpretation formulas that are based on querying and updating
the knowledge bases as the first result. The second result of the interpretation is based on
adding to, or removing behaviours from the agent.
The example 2 resumes the example 1: if the agent is able to do the action included in the
content of the received message as the request communicative acts, it sends the agree message
to the sender agent:
<i, agree (j, <i, request>, φ))> ≡ <i, inform (j, Ii Done (<i, act>, φ))>
FP: Bi α ¬ Bi (Bifj α Uifj α)
RE: Bj α
where: α = Ii Done(<i, act>, φ)
The example 3 continues the example 1: the agent j answers that it agrees to reserve a ticket
for i, since there are sufficient funds in its account.
(agree
:sender (agent-identifier :name j)
:receiver (set (agent-identifier :name i))
:content
 "((action (agent-identifier :name j)
 (reserve-ticket LHR MUC 27-sept-97))
 (sufficient- funds ac12345))"
:in-reply-to order567
:protocol fipa-request
:language fipa-sl)

The example 4 continues the example 2: if the agent is able to do the action defined in the
content of the received message as the request communicative acts, it sends the refuse
message to the sender agent: Agent i informs j that action act is not feasible, and further that,
because of proposition φ, act has not been done and i has no intention to do act.
<i, refuse (j, <i, act>, φ)> ≡ <i, disconfirm (j, Feasible(<i, act>))>;
<i, inform (j, φ ¬ Done (<i, act>) ¬ Ii Done (<i, act>))>
FP: Bi ¬ Feasible (<i, act>) Bi (Bj Feasible (<i, act>)
 Uj Feasible (<i, act>)) Bi α ¬ Bi (Bifj α Uifj α)
RE: Bj ¬ Feasible (<i, act>) Bj α
where: α = φ ¬ Done (<i, act>) ¬ Ii Done (<i, act>)
Example 5 continues the example 3: Agent j answers that it refuses to reserve a ticket for i,
since there are insufficient funds in its account.
(refuse
:sender (agent-identifier :name j)
:receiver (set (agent-identifier :name i))
:content
"((action (agent-identifier :name j)
 (reserve-ticket LHR MUC 27-sept-97))
 (insufficient- funds ac12345))"
:in-reply-to order567
:protocol fipa-request
:language fipa-sl)

Engineering the Computer Science and IT456

The process of semantic interpretation enables to simplify adapting their protocols to the
actual meaning of the exchanged messages.

3. Communication protocols

It is possible to create protocol for exchanging most appropriate messages between agents.
These messages represent the role of the agent in community of agents taking part in
conversations. The table 1 presents the properties of communicative acts.

Communitive act Information
passing

Requesting
information

Negotiation Action
performing

Error
handling

accept-proposal +
agree, cancel +
cfp +
confirm, disconfirm +
failure, not-understood +
inform, inform-if
(macro act), inform-ref
(macro act)

 +

propose +
query-if ,query-ref +
refuse +
reject-proposal +
request, request-when,
request-whenever

 +

subscribe +

Table 1. Communicative acts (Specification of FIPA, 2000)

3.1. Dependency between messages
This section presents the list of communicative acts with a concise description (tab.2). The
cancel, request, request-when, request-whenever messages can be sent by the agent fulfilling
superior role. This agent demands the execution action of the subordinate agent.
If there is the client-server relationship between agents, subscribe, cfp, accept-proposal, query-if,
query-ref messages are sent by client agent concerned with making of cooperation with
recipient agent. The recipient agent executes the task for sender agent. The client agent
sends the reject-proposal message if it is not interested in services of the recipient agent. This
is the response of the received propose message, that is sent by the recipient agent.
The inform, inform-if(macro act), inform-ref (macro act) messages are sent by agent that remains
in neutral relationship with other agents. If sender assums, that recipient agent cannot
believe to received information, then this receiver sends the confirm message to confirm
acceptance of received information. If however, the sender assums that the recipient agent
believes to received information, the receiver agent sends the disconfirm message, if it rejects
this information. Subordinate or servicer agent can send the agree message as the answer to
the request or the subscribe message from the superior or client agent. The refuse message can
be sent by the subordinate or the client as the answer of the request, subscribe or cfp message
from the superior or the client agent, if it declines execution of the action. The failure

message is sent by the subordinate agent, which cannot execute the action. In opposite case,
if executable task will end progress, the subordinate agent sends the inform message as the
result to the superior agent. Independently on the role, the each agent can send the not-
understood message if it not understand the message that other agent has just sent to it.

Communicative
acts

Description

accept proposal The action of accepting a previously submitted proposal to perform an action.
agree The action of agreeing to perform some action, possibly in the future.
cancel The action of one agent informing another agent that the first agent no longer

has the intention that the second agent performs some action.
cfp - call for
proposal

The action of calling for proposals to perform a given action.

confirm The sender informs the receiver that a given proposition is true, where the
receiver is known to be uncertain about the proposition.

disconfirm The sender informs the receiver that a given proposition is false, where the
receiver is known to believe, or believe it likely that, the proposition is true.

failure The action of telling the another agent that an action was attempted but the
attempt failed.

inform The sender informs the receiver that a given proposition is true.
inform if
(macro act)

A macro action for the agent of the action to inform the recipient whether or
not a proposition is true.

inform ref
(macro act)

A macro action for sender to inform the receiver the object which corresponds
to a descriptor, for example, a name.

not understood The sender of the act (for example, i) informs the receiver (for example, j) that
it perceived that j performed some action, but that i did not understand what j
just did. A particular common case is that i tells j that i did not understand the
message that j has just sent to i.

propose The action of submitting a proposal to perform a certain action, given certain
preconditions.

query if The action of asking another agent whether or not a given proposition is true.
query ref The action of asking another agent for the object referred to by a referential

expression.
refuse The action of refusing to perform a given action, and explaining the reason for

the refusal.
reject proposal The action of rejecting a proposal to perform some action during a

negotiation.
request The sender requests the receiver to perform some action. One important class

of uses of the request act is to request the receiver to perform another
communicative act.

request when The sender wants the receiver to perform some action when some given
proposition becomes true.

request whenever The sender wants the receiver to perform some action as soon as some
proposition becomes true and thereafter each time the proposition becomes
true again.

subscribe The act of requesting a persistent intention to notify the sender of the value of
a reference, and to notify again whenever the object identified by the
reference changes.

Table 2. Characteristics of messages of ACL language (FIPA00037, 2000)

Performance evaluation of protocols of multiagent information retrieval systems 457

The process of semantic interpretation enables to simplify adapting their protocols to the
actual meaning of the exchanged messages.

3. Communication protocols

It is possible to create protocol for exchanging most appropriate messages between agents.
These messages represent the role of the agent in community of agents taking part in
conversations. The table 1 presents the properties of communicative acts.

Communitive act Information
passing

Requesting
information

Negotiation Action
performing

Error
handling

accept-proposal +
agree, cancel +
cfp +
confirm, disconfirm +
failure, not-understood +
inform, inform-if
(macro act), inform-ref
(macro act)

 +

propose +
query-if ,query-ref +
refuse +
reject-proposal +
request, request-when,
request-whenever

 +

subscribe +

Table 1. Communicative acts (Specification of FIPA, 2000)

3.1. Dependency between messages
This section presents the list of communicative acts with a concise description (tab.2). The
cancel, request, request-when, request-whenever messages can be sent by the agent fulfilling
superior role. This agent demands the execution action of the subordinate agent.
If there is the client-server relationship between agents, subscribe, cfp, accept-proposal, query-if,
query-ref messages are sent by client agent concerned with making of cooperation with
recipient agent. The recipient agent executes the task for sender agent. The client agent
sends the reject-proposal message if it is not interested in services of the recipient agent. This
is the response of the received propose message, that is sent by the recipient agent.
The inform, inform-if(macro act), inform-ref (macro act) messages are sent by agent that remains
in neutral relationship with other agents. If sender assums, that recipient agent cannot
believe to received information, then this receiver sends the confirm message to confirm
acceptance of received information. If however, the sender assums that the recipient agent
believes to received information, the receiver agent sends the disconfirm message, if it rejects
this information. Subordinate or servicer agent can send the agree message as the answer to
the request or the subscribe message from the superior or client agent. The refuse message can
be sent by the subordinate or the client as the answer of the request, subscribe or cfp message
from the superior or the client agent, if it declines execution of the action. The failure

message is sent by the subordinate agent, which cannot execute the action. In opposite case,
if executable task will end progress, the subordinate agent sends the inform message as the
result to the superior agent. Independently on the role, the each agent can send the not-
understood message if it not understand the message that other agent has just sent to it.

Communicative
acts

Description

accept proposal The action of accepting a previously submitted proposal to perform an action.
agree The action of agreeing to perform some action, possibly in the future.
cancel The action of one agent informing another agent that the first agent no longer

has the intention that the second agent performs some action.
cfp - call for
proposal

The action of calling for proposals to perform a given action.

confirm The sender informs the receiver that a given proposition is true, where the
receiver is known to be uncertain about the proposition.

disconfirm The sender informs the receiver that a given proposition is false, where the
receiver is known to believe, or believe it likely that, the proposition is true.

failure The action of telling the another agent that an action was attempted but the
attempt failed.

inform The sender informs the receiver that a given proposition is true.
inform if
(macro act)

A macro action for the agent of the action to inform the recipient whether or
not a proposition is true.

inform ref
(macro act)

A macro action for sender to inform the receiver the object which corresponds
to a descriptor, for example, a name.

not understood The sender of the act (for example, i) informs the receiver (for example, j) that
it perceived that j performed some action, but that i did not understand what j
just did. A particular common case is that i tells j that i did not understand the
message that j has just sent to i.

propose The action of submitting a proposal to perform a certain action, given certain
preconditions.

query if The action of asking another agent whether or not a given proposition is true.
query ref The action of asking another agent for the object referred to by a referential

expression.
refuse The action of refusing to perform a given action, and explaining the reason for

the refusal.
reject proposal The action of rejecting a proposal to perform some action during a

negotiation.
request The sender requests the receiver to perform some action. One important class

of uses of the request act is to request the receiver to perform another
communicative act.

request when The sender wants the receiver to perform some action when some given
proposition becomes true.

request whenever The sender wants the receiver to perform some action as soon as some
proposition becomes true and thereafter each time the proposition becomes
true again.

subscribe The act of requesting a persistent intention to notify the sender of the value of
a reference, and to notify again whenever the object identified by the
reference changes.

Table 2. Characteristics of messages of ACL language (FIPA00037, 2000)

Engineering the Computer Science and IT458

Such dependencies between messages allow designing effective protocols of
communications, without redundancy in sent message. It is the first way of improve
performance of multiagent systems. The limitation number of messages is the second way to
correct performance of protocols.

3.2. Performance evaluation of interaction protocols
Applications working in distributed environment use the distributed data and the
distributed clients. Clients send a lot of messages during realizing operations by using e-
mail, web services, communicators programs etc. Therefore these applications generate the
large network traffic lowering performance of the internet applications.

Fig. 15. The interaction diagram of FIPA-Contract-Net protocol (FIPA00029, 2002)

In section 2, it is introduced agents, which adapt their communicative acts (FIPA00037, 2000)
to actual state of knowledge databases, main goal of application and character of
interactions between agents. These interactions have the dynamic character of protocols
based on negotiations, subscriptions, auctions. This sending proper sequence of messages is
related to the state of realized task. As a proof that the dynamic protocols can limit the
network traffic, it is presented two protocols as the products of adapting the communicative
acts. These protocols are FIPA-Contract-Net (fig.15) (FIPA00029, 2002) and user defined
protocol as the Order-Request-NET (fig.16) based on FIPA-Request-Net protocol (FIPA00026,
2002). The protocols are defined by use interaction diagram (FIPA00025, 2000), (Odell et al.,
2001). If the choices of the sequences of messages as the protocol are proper, an agent can
reduce the network traffic by sending messages only to these agents who are be able to
collaborate over executing the task.
The FIPA-Contract-Net protocol (FIPA00029, 2002) is a small modification of the original
protocol by added the reject and accepts communicative acts. The initiator agent fulfils the
role of manager in this protocol. The initiator sends a call for proposals act (cfp) to m agents.

q

p

l - q - p

These messages are received by n participants of the protocol. They send the proposal message
which specifies the task, as well as any conditions the initiator is placing upon the execution
of the task or refuse message if they decline the proposal for the initiator. The initiator
receives i the refuse messages and j=n-i the proposal acts. The participant finishes protocol if it
sends the refuse message. Therefore 2i messages generate the needlessly network traffic.
The manager evaluates j proposals according to certain function and accepts j-k (n-i-k)
proposals. This estimate of proposal messages is expressed behind assistance of price, time
etc. The initiator sends j-k accept-propose messages to accepted participant and k reject-proposal
messages to remaining participants. Therefore 3k messages generate the needlessly network
traffic.
At last the accepted participants send the result of the task by sending together n-i-k-q inform-
result and inform-done messages. If participant cannot finish the task, it sends a failure message
to the manager (initiator) - the initiator receives q failure messages. Therefore 4q messages
generate the needlessly network traffic. At last, it can be 2i+3k+4q messages generating the
needlessly network traffic.

Fig. 16. The interaction diagram of user defined Order-Request-Net protocol (FIPA00026, 2002)

The Order-Request-NET protocol is based on the FIPA-Request-Net protocol (fig.16). It
includes the informatiom about the multiplicity of participants. The initiator agent fulfils the
role of the superior in this protocol. It sends m request messages with information about
necessity of performing some action. These messages are received by n participants as
subordinates. They send agree messages if they can perform the request action or refuse
messages if they decline the request for the initiator. The initiator receives i refuse messages
and n-i agree messages. Therefore 2i messages generate the needlessly network traffic.
At last participants send the result of the task by sending together n-i-q inform-result and
inform-done messages. If the participant cannot finish the task, it sends a failure message to the
manager (initiator) - the initiator receives q failure messages. Therefore 3q messages generate
the needlessly network traffic. At last, it can be 2i+3q messages generating the needlessly
network traffic.

Performance evaluation of protocols of multiagent information retrieval systems 459

Such dependencies between messages allow designing effective protocols of
communications, without redundancy in sent message. It is the first way of improve
performance of multiagent systems. The limitation number of messages is the second way to
correct performance of protocols.

3.2. Performance evaluation of interaction protocols
Applications working in distributed environment use the distributed data and the
distributed clients. Clients send a lot of messages during realizing operations by using e-
mail, web services, communicators programs etc. Therefore these applications generate the
large network traffic lowering performance of the internet applications.

Fig. 15. The interaction diagram of FIPA-Contract-Net protocol (FIPA00029, 2002)

In section 2, it is introduced agents, which adapt their communicative acts (FIPA00037, 2000)
to actual state of knowledge databases, main goal of application and character of
interactions between agents. These interactions have the dynamic character of protocols
based on negotiations, subscriptions, auctions. This sending proper sequence of messages is
related to the state of realized task. As a proof that the dynamic protocols can limit the
network traffic, it is presented two protocols as the products of adapting the communicative
acts. These protocols are FIPA-Contract-Net (fig.15) (FIPA00029, 2002) and user defined
protocol as the Order-Request-NET (fig.16) based on FIPA-Request-Net protocol (FIPA00026,
2002). The protocols are defined by use interaction diagram (FIPA00025, 2000), (Odell et al.,
2001). If the choices of the sequences of messages as the protocol are proper, an agent can
reduce the network traffic by sending messages only to these agents who are be able to
collaborate over executing the task.
The FIPA-Contract-Net protocol (FIPA00029, 2002) is a small modification of the original
protocol by added the reject and accepts communicative acts. The initiator agent fulfils the
role of manager in this protocol. The initiator sends a call for proposals act (cfp) to m agents.

q

p

l - q - p

These messages are received by n participants of the protocol. They send the proposal message
which specifies the task, as well as any conditions the initiator is placing upon the execution
of the task or refuse message if they decline the proposal for the initiator. The initiator
receives i the refuse messages and j=n-i the proposal acts. The participant finishes protocol if it
sends the refuse message. Therefore 2i messages generate the needlessly network traffic.
The manager evaluates j proposals according to certain function and accepts j-k (n-i-k)
proposals. This estimate of proposal messages is expressed behind assistance of price, time
etc. The initiator sends j-k accept-propose messages to accepted participant and k reject-proposal
messages to remaining participants. Therefore 3k messages generate the needlessly network
traffic.
At last the accepted participants send the result of the task by sending together n-i-k-q inform-
result and inform-done messages. If participant cannot finish the task, it sends a failure message
to the manager (initiator) - the initiator receives q failure messages. Therefore 4q messages
generate the needlessly network traffic. At last, it can be 2i+3k+4q messages generating the
needlessly network traffic.

Fig. 16. The interaction diagram of user defined Order-Request-Net protocol (FIPA00026, 2002)

The Order-Request-NET protocol is based on the FIPA-Request-Net protocol (fig.16). It
includes the informatiom about the multiplicity of participants. The initiator agent fulfils the
role of the superior in this protocol. It sends m request messages with information about
necessity of performing some action. These messages are received by n participants as
subordinates. They send agree messages if they can perform the request action or refuse
messages if they decline the request for the initiator. The initiator receives i refuse messages
and n-i agree messages. Therefore 2i messages generate the needlessly network traffic.
At last participants send the result of the task by sending together n-i-q inform-result and
inform-done messages. If the participant cannot finish the task, it sends a failure message to the
manager (initiator) - the initiator receives q failure messages. Therefore 3q messages generate
the needlessly network traffic. At last, it can be 2i+3q messages generating the needlessly
network traffic.

Engineering the Computer Science and IT460

Meaning of messages and their possibility of occurrence during interactions allow to value
number of messages in extreme and average cases (Smith, 1990), (Smith & Lloyd, 2002). It
assumes that each message has the same size or the same transmission t time by network.
Average duration transmission of all messages is evaluated by using the probability p of
occurance messages in both protocols.
The cfp messages of the FIPA-Contract-Net protocol (tab.3) reach participants with the
probability p1. The refuse message is sent with the probability p2 and the propose message
with 1-p2 probability. The aceept-proposal message is sent with propability p3 and the reject-
proposal message with the probability 1-p3. At last the failure message is sent with the
probability p4, the inform-done message with the probability p5 and the inform-result message
with probability 1-p4-p5. The average duration t1 of FIPA-Contract-Net protocol is equal

t1=tm(1 + p1(3-2p2–p3+p2p3)) (1)

however, maximum time is 4tm and it is minimal equal with tm.
The Loss1 avarage of duration of messages of FIPA-Contract-Net protocol which are the types
of failure, refuse and reject-proposal messages etc. is equal

Loss1=tm p1(2p2+3(1-p2)p4) (2)

estimation
of number
of messages

The number of messages

cfp refuse propose reject-
proposal

accept-
proposal

failure inform-
done

inform-
result

total

All
messages

m i n - i k n – i - k q p n–i–k– q-p m + 3n – 2i - k

Average t1
t=1

m m p1
p2

m p1
(1-p2)

m p1
(1-p2)
p3

 m p1
(1-p2)
(1-p3)

 m p1
(1-p2)
(1-p3)
p4

m p1
(1-p2)
(1-p3)
p5

m p1
(1-p2)
(1-p3)
(1–p4-p5)

m (1 +
p1
(3-2p2-p3
+p2p3))

Maximum
p1=1 (m=n)
p2=0 (i=0)
p3=0 (k=0)
p4=0 (q=0)

m 0 m 0 m 0 mp5 m(1-p5) 4m

Minimum
p1=0 (n=0)

m 0 0 0 0 0 0 0 m

Loss1, t=1 2m p1
p2

 3m p1
(1-p2)
p3

 4m p1
(1-p2)
(1-p3)
p4

 m p1
(2p2+(1-p2)
(3p3+
4p4(1-p3)))

Table 3. Performance parameters of FIPA-Contract-Net protocol

The request message of the Order-Request-Net protocol (tab.4) reaches participants with the
probability p1. The refuse message is sent with the probability p2 and the agree message with
the probability 1-p2. At last the failure message is sent with the probability p4, the inform-done
message with the probability p5 and the inform-result message with probability 1-p4-p5
however. Average duration of protocol is equal

t2=tm(1 + p1(2-p2)) (3)
however, maximum time is 3tm and it is minimal equal with tm.
The avarage of duration of messages Loss1 of the Order-Request-Net protocol which are the
types of failure and refuse messages etc. is equal

Loss2= m p1(2p2+3(1-p2)p4) (4)

The metric of lost messages Lost1, which excludes some agents from executing the task
realizing over the FIPA-Contract-Net protocol is equal

Lost1=Loss1/t1 (5)

The metric of lost messages Lost2, which excludes some agents from executing the task
realizing over the Order-Request-Net protocol is equal

Lost2=Loss2/t2 (6)

Measure of
messages

 The number of messages

request refuse agree failure inform-done inform-result total

All
messages

m i n - i q p n – i – q - p m + 2n – i

Average t2
t=1

m m p1
p2

m p1
(1-p2)

 m p1
(1-p2)
p4

m p1
(1-p2)
p5

m p1
(1-p2)
(1–p4-p5)

m (1 + p1(2- p2))

Maximum
p1=1 (m=n)
p2=0 (i=0)
p4=0 (q=0)

m 0 m 0 mp5 m(1-p5) 3m

Minimum
p1=0 (n=0)

m 0 0 0 0 0 m

Loss2, t=1 2m p1
p2

 3m p1
(1-p2)
p4

 m p1
(2p2+3(1-p2)p4)

Table 4. Performance parameters of Order-Request-Net protocol

The table 5 presents the results of simulation experiments for estimation of the duration of
both protocols.

Performance evaluation of protocols of multiagent information retrieval systems 461

Meaning of messages and their possibility of occurrence during interactions allow to value
number of messages in extreme and average cases (Smith, 1990), (Smith & Lloyd, 2002). It
assumes that each message has the same size or the same transmission t time by network.
Average duration transmission of all messages is evaluated by using the probability p of
occurance messages in both protocols.
The cfp messages of the FIPA-Contract-Net protocol (tab.3) reach participants with the
probability p1. The refuse message is sent with the probability p2 and the propose message
with 1-p2 probability. The aceept-proposal message is sent with propability p3 and the reject-
proposal message with the probability 1-p3. At last the failure message is sent with the
probability p4, the inform-done message with the probability p5 and the inform-result message
with probability 1-p4-p5. The average duration t1 of FIPA-Contract-Net protocol is equal

t1=tm(1 + p1(3-2p2–p3+p2p3)) (1)

however, maximum time is 4tm and it is minimal equal with tm.
The Loss1 avarage of duration of messages of FIPA-Contract-Net protocol which are the types
of failure, refuse and reject-proposal messages etc. is equal

Loss1=tm p1(2p2+3(1-p2)p4) (2)

estimation
of number
of messages

The number of messages

cfp refuse propose reject-
proposal

accept-
proposal

failure inform-
done

inform-
result

total

All
messages

m i n - i k n – i - k q p n–i–k– q-p m + 3n – 2i - k

Average t1
t=1

m m p1
p2

m p1
(1-p2)

m p1
(1-p2)
p3

 m p1
(1-p2)
(1-p3)

 m p1
(1-p2)
(1-p3)
p4

m p1
(1-p2)
(1-p3)
p5

m p1
(1-p2)
(1-p3)
(1–p4-p5)

m (1 +
p1
(3-2p2-p3
+p2p3))

Maximum
p1=1 (m=n)
p2=0 (i=0)
p3=0 (k=0)
p4=0 (q=0)

m 0 m 0 m 0 mp5 m(1-p5) 4m

Minimum
p1=0 (n=0)

m 0 0 0 0 0 0 0 m

Loss1, t=1 2m p1
p2

 3m p1
(1-p2)
p3

 4m p1
(1-p2)
(1-p3)
p4

 m p1
(2p2+(1-p2)
(3p3+
4p4(1-p3)))

Table 3. Performance parameters of FIPA-Contract-Net protocol

The request message of the Order-Request-Net protocol (tab.4) reaches participants with the
probability p1. The refuse message is sent with the probability p2 and the agree message with
the probability 1-p2. At last the failure message is sent with the probability p4, the inform-done
message with the probability p5 and the inform-result message with probability 1-p4-p5
however. Average duration of protocol is equal

t2=tm(1 + p1(2-p2)) (3)
however, maximum time is 3tm and it is minimal equal with tm.
The avarage of duration of messages Loss1 of the Order-Request-Net protocol which are the
types of failure and refuse messages etc. is equal

Loss2= m p1(2p2+3(1-p2)p4) (4)

The metric of lost messages Lost1, which excludes some agents from executing the task
realizing over the FIPA-Contract-Net protocol is equal

Lost1=Loss1/t1 (5)

The metric of lost messages Lost2, which excludes some agents from executing the task
realizing over the Order-Request-Net protocol is equal

Lost2=Loss2/t2 (6)

Measure of
messages

 The number of messages

request refuse agree failure inform-done inform-result total

All
messages

m i n - i q p n – i – q - p m + 2n – i

Average t2
t=1

m m p1
p2

m p1
(1-p2)

 m p1
(1-p2)
p4

m p1
(1-p2)
p5

m p1
(1-p2)
(1–p4-p5)

m (1 + p1(2- p2))

Maximum
p1=1 (m=n)
p2=0 (i=0)
p4=0 (q=0)

m 0 m 0 mp5 m(1-p5) 3m

Minimum
p1=0 (n=0)

m 0 0 0 0 0 m

Loss2, t=1 2m p1
p2

 3m p1
(1-p2)
p4

 m p1
(2p2+3(1-p2)p4)

Table 4. Performance parameters of Order-Request-Net protocol

The table 5 presents the results of simulation experiments for estimation of the duration of
both protocols.

Engineering the Computer Science and IT462

Protocol Evalution of transmission time Duration
m=10 m=100 m=1000 m=10000

FIPA-
Contract-
Net

value of expression (1) (t=1) t1=18.76 t1=187.67 t1=1876.60 t1=18761.15
Minimum: m 10 100 1000 10000
Maximum: 4m 40 400 4000 40000

 Loss1, value of expression (3) 12.26 112.59 1127.43 11264.69
 Lost1, value of expression (5) 0.6536 0.5999 0.6008 0.6004

Order-
Request-
Net

value of expression (2) (t=1) t2=17.50 t2=175.14 t2=1751.38 t2=17510.79
Minimum: m 10 100 1000 10000
Maksimum: 3m 30 300 3000 30000

 Loss2, value of expression (4) 9.53 87.45 877.54 8756.15�

 Lost2= value of expression (6) 0.5444 0.4993 0.5011 0.5000

Table 5. Results of performance experiments of FIPA-Contract-Net protocol and user defined
protocol as the Order-Request-NET protocol

The number of messages sending over the protocols is calculated by using the generator of
uniform distribution values. The experiment relied on 100000 repetition of measurements
for number of 10, 100, 1000, 10000 agents. The time of transmission (t) of the one message is
equal with the 1 time unit. The table 5 includes values of measurements of average values
and values of maximum and minimum. Results of performance experiments in the table 5
and on the figure 17 are presented the influence of number of agents and their behaviour on
performance of the multiagent system. For example, if the interpreting mechanism detects
the relationship superior-subordinate, the Order-Request-Net protocol is better than FIPA-
Contract-Net because of smaller generated network traffic. If the interpreting mechanism
enables the selection of proper agents which are capable of executing actions of the task, the
network traffic will be smaller because the number of the refuse, failure and reject messages
can be reduced.

1

10

100

1000

10000

100000

10 100 1000 10000

Number of agents

Duration Fipa-Contract-
Net protocol,
uniform
distribution; t1

FIPA-
Contract-Net
protocol,
Loss1

Order-
Request-Net
protocol,
uniform
distribution; t2
Order-
Request-Net
protocol,
Loss2

Fig. 17. The chart of results of performance experiments of FIPA-Contract-Net protocol and
user defined protocol as the Order-Request-NET protocol

4. Conclusion

In the paper it is presented the design of multiagent system, which includes agents with
special abilities. They are able to interpret the communicative acts and they can adapt to
actual state of executing task. This is the way to choice the proper sequence of messages for
example the Order-Reqest-Net protocol instead of the FIPA-Contract-Net protocol.
The other ability of an agent is reduction of the refuse, failure, and reject etc. messages by
interpreting belief, uncertainty and intention knowledge databases. In the paper agent
reduces the messages with propabilites generated from uniform distribution. In the future, it
can complete the mechanism of interpreting messages with learning process of behaviours
of agents collaborating over the tasks. These are reasons of reduction the network traffic and
improving the performance of multiagent systems.
Results of performance experiments authenticate the influence of number of exchanging
messages between agents and agent’s abilities on performance of the multiagent system.
Therefore, if the interpreting mechanism can detect properly the relationship between agent
and their abilities, the generated network traffic can become smaller. The first reason is the
possibility of choice of the protocol with smaller duration, for example the Order-Reqest-Net
protocol instead of the FIPA-Contract-Net protocol. The second reason is the possibility of
reduction the refuse, failure, and reject etc. messages by the selection of proper agents which
are capable of executing action of the task.

5. References

Babczyński, T.; Kruczkiewicz, Z.; Magott, J. (2004). Performance Analysis of Multiagent
Industrial System, Proceedings of 8th International Workshop, CIA 2004, Cooperative
Information Agents VIII, LNAI 3191, pp. 242-256, ISBN-13 978-3-540-29046-9, Erfurth,
Germany, September, 2005, Lecture Notes in Computer Science/Lecture Notes in
Artificial Intelligence, Springer-Verlag, Berlin Heidelberg New York

Babczyński, T.; Kruczkiewicz, Z.; Magott, J. (2005). Performance Comparison of Multi-agent
Systems, Proceedings of 4th Central and Eastern European Conference on Multi-Agent
Systems, CEEMAS 2005, Multi-Agent Systems and Applications IV, LNAI 3690, pp.
612-615, ISBN 3-540-23170-6, Budapest, Hungary, September, 2005, Lecture Notes
in Computer Science/Lecture Notes in Artificial Intelligence, Springer-Verlag,
Berlin Heidelberg New York

Bennett, A. J.; Field, A. J.; Woodside, C. M. (2004). Experimental evaluation of the UML
Profile for Schedulability, Performance, and Time, In: The Unified Modelling
Language, Baar, T. et al., eds, Lecture Notes in Computer Science, pp. 143-157, Vol.
3273, Springer, ISBN 978-3-540-23307-7, Berlin Heidelberg

Camacho, D.; Aler, R.; Castro, C.; Molina, J. M. (2002). Performance evaluation of ZEUS,
JADE, and SkeletonAgent frameworks, Proceedings of the 2002 IEEE Systems, Man,
and Cybernetics Conference, on page(s): 6 pp., ISBN: 0-7803-7437-1, October 2002

Deloach, S.A.; Wood, M.F.; Sparkman, C.H. (2001), Multiagents systems engineering,
International Journal of Software Engineering and Knownledge Engineering, Vol 11, No.3
June 2001, pp. 231-258, World Scientific Publishing Company

Performance evaluation of protocols of multiagent information retrieval systems 463

Protocol Evalution of transmission time Duration
m=10 m=100 m=1000 m=10000

FIPA-
Contract-
Net

value of expression (1) (t=1) t1=18.76 t1=187.67 t1=1876.60 t1=18761.15
Minimum: m 10 100 1000 10000
Maximum: 4m 40 400 4000 40000

 Loss1, value of expression (3) 12.26 112.59 1127.43 11264.69
 Lost1, value of expression (5) 0.6536 0.5999 0.6008 0.6004

Order-
Request-
Net

value of expression (2) (t=1) t2=17.50 t2=175.14 t2=1751.38 t2=17510.79
Minimum: m 10 100 1000 10000
Maksimum: 3m 30 300 3000 30000

 Loss2, value of expression (4) 9.53 87.45 877.54 8756.15�

 Lost2= value of expression (6) 0.5444 0.4993 0.5011 0.5000

Table 5. Results of performance experiments of FIPA-Contract-Net protocol and user defined
protocol as the Order-Request-NET protocol

The number of messages sending over the protocols is calculated by using the generator of
uniform distribution values. The experiment relied on 100000 repetition of measurements
for number of 10, 100, 1000, 10000 agents. The time of transmission (t) of the one message is
equal with the 1 time unit. The table 5 includes values of measurements of average values
and values of maximum and minimum. Results of performance experiments in the table 5
and on the figure 17 are presented the influence of number of agents and their behaviour on
performance of the multiagent system. For example, if the interpreting mechanism detects
the relationship superior-subordinate, the Order-Request-Net protocol is better than FIPA-
Contract-Net because of smaller generated network traffic. If the interpreting mechanism
enables the selection of proper agents which are capable of executing actions of the task, the
network traffic will be smaller because the number of the refuse, failure and reject messages
can be reduced.

1

10

100

1000

10000

100000

10 100 1000 10000

Number of agents

Duration Fipa-Contract-
Net protocol,
uniform
distribution; t1

FIPA-
Contract-Net
protocol,
Loss1

Order-
Request-Net
protocol,
uniform
distribution; t2
Order-
Request-Net
protocol,
Loss2

Fig. 17. The chart of results of performance experiments of FIPA-Contract-Net protocol and
user defined protocol as the Order-Request-NET protocol

4. Conclusion

In the paper it is presented the design of multiagent system, which includes agents with
special abilities. They are able to interpret the communicative acts and they can adapt to
actual state of executing task. This is the way to choice the proper sequence of messages for
example the Order-Reqest-Net protocol instead of the FIPA-Contract-Net protocol.
The other ability of an agent is reduction of the refuse, failure, and reject etc. messages by
interpreting belief, uncertainty and intention knowledge databases. In the paper agent
reduces the messages with propabilites generated from uniform distribution. In the future, it
can complete the mechanism of interpreting messages with learning process of behaviours
of agents collaborating over the tasks. These are reasons of reduction the network traffic and
improving the performance of multiagent systems.
Results of performance experiments authenticate the influence of number of exchanging
messages between agents and agent’s abilities on performance of the multiagent system.
Therefore, if the interpreting mechanism can detect properly the relationship between agent
and their abilities, the generated network traffic can become smaller. The first reason is the
possibility of choice of the protocol with smaller duration, for example the Order-Reqest-Net
protocol instead of the FIPA-Contract-Net protocol. The second reason is the possibility of
reduction the refuse, failure, and reject etc. messages by the selection of proper agents which
are capable of executing action of the task.

5. References

Babczyński, T.; Kruczkiewicz, Z.; Magott, J. (2004). Performance Analysis of Multiagent
Industrial System, Proceedings of 8th International Workshop, CIA 2004, Cooperative
Information Agents VIII, LNAI 3191, pp. 242-256, ISBN-13 978-3-540-29046-9, Erfurth,
Germany, September, 2005, Lecture Notes in Computer Science/Lecture Notes in
Artificial Intelligence, Springer-Verlag, Berlin Heidelberg New York

Babczyński, T.; Kruczkiewicz, Z.; Magott, J. (2005). Performance Comparison of Multi-agent
Systems, Proceedings of 4th Central and Eastern European Conference on Multi-Agent
Systems, CEEMAS 2005, Multi-Agent Systems and Applications IV, LNAI 3690, pp.
612-615, ISBN 3-540-23170-6, Budapest, Hungary, September, 2005, Lecture Notes
in Computer Science/Lecture Notes in Artificial Intelligence, Springer-Verlag,
Berlin Heidelberg New York

Bennett, A. J.; Field, A. J.; Woodside, C. M. (2004). Experimental evaluation of the UML
Profile for Schedulability, Performance, and Time, In: The Unified Modelling
Language, Baar, T. et al., eds, Lecture Notes in Computer Science, pp. 143-157, Vol.
3273, Springer, ISBN 978-3-540-23307-7, Berlin Heidelberg

Camacho, D.; Aler, R.; Castro, C.; Molina, J. M. (2002). Performance evaluation of ZEUS,
JADE, and SkeletonAgent frameworks, Proceedings of the 2002 IEEE Systems, Man,
and Cybernetics Conference, on page(s): 6 pp., ISBN: 0-7803-7437-1, October 2002

Deloach, S.A.; Wood, M.F.; Sparkman, C.H. (2001), Multiagents systems engineering,
International Journal of Software Engineering and Knownledge Engineering, Vol 11, No.3
June 2001, pp. 231-258, World Scientific Publishing Company

Engineering the Computer Science and IT464

Dikaiakos, M.; Kyriakou, M.; Samaras, G. (2001). Performance evaluation of mobile-agent
middleware: A hierachical approach, Proceedings of the 5th IEEE International
Conference on Mobile Agents, Picco, J.P. (ed.), Lecture Notes in Computer Science
series, pp. 244-259, ISBN 978-3-540-42952-4, Springer, December 2001, Berlin
Heidelberg

FIPA00008 (2000), FIPA SL Content Language Specification. Foundation for Intelligent
Physical Agents, http://www.fipa.org/specs/fipa00008/

FIPA00025 (2000), FIPA Interaction Protocol Library Specification. Foundation for Intelligent
Physical Agents, http://www.fipa.org/specs/fipa00025/

FIPA00026 (2002), FIPA Request Interaction Protocol Specification. Foundation for
Intelligent Physical Agents

FIPA00029 (2002), FIPA Contract Net Interaction Protocol Specification. Foundation for
Intelligent Physical Agents

FIPA00037 (2000), FIPA Communicative Act Library Specification. Foundation for
Intelligent Physical Agents, http://www.fipa.org/specs/fipa00037/

FIPA00070 (2000), FIPA ACL Message Representation in String. Foundation for Intelligent
Physical Agents, http://www.fipa.org/specs/fipa00070/

http://jade.cselt.it/doc/tutorials/SemanticsProgrammerGuide.pdf
Odell, J.; Parunak, V.D.H.; Bauer, B. (2001). Representing Agent Interaction Protocols in

UML, In: Agent-Oriented Software Engineering, Ciancarini, P. and Wooldridge, M.,
Eds., pp. 121-140, Springer - Verlag, ISBN 3-540-41594-7, New York

Pautret V. (2005-2006). Jade Semantics Add-on Programmer's guide, Research & Development,
Version: 1.0, France Telecom,

Smith, C.U. (1990). Performance Engineering of Software Systems, Addison – Wesley, ISBN 0-
201-53769-9, United States of America

Smith, C.U.; Lloyd G.W. (2002). Performance Solutions, A Practical Guide to Creating Responsive,
Scalable Software, Addison - Wesley, ISBN 0-201-72229-1, Canada

Specification of FIPA, http://www.fipa.org/specs/
Specification of JADE, http://sharon.cselt.it/projects/jade/doc/
Specification of UML, http://www.uml.org/
Wooldridge, M.; Rao, A. (Eds.) (1999). Foundations of Rational Agency, Kluwer Academic

Publishers, ISBN 0-7923-5601-2, The Netherlands
Yamamoto, G.; Nakamura, Y. (1999). Architecture and performance evaluation of a massive

multi-agent system, Proceedings of the third annual conference on Autonomous Agents,
pp. 319-325, ISBN 1-58113-066-X, Seattle, 1999, ACM, New York, NY, USA

Measurement of Production Efficiency in Semiconductor Assembly House:
Approach of Data Envelopment Analysis 465

Measurement of Production Efficiency in Semiconductor Assembly
House: Approach of Data Envelopment Analysis

Chien-wen Shen, Ming-Jen Cheng

X

Measurement of Production Efficiency in
Semiconductor Assembly House: Approach of

Data Envelopment Analysis

1Chien-wen Shen, 2Ming-Jen Cheng and 3Ming-Chia Chi
1Department of Business Administration, National Central University,

300 Jhongda Road, Jhongli City, Taoyuan County 32001, Taiwan
2Graduate Institute of Management, National Kaohsiung First University of Science &

Technology, 1 University Road Yenchao, Kaohsiung County 824, Taiwan
3Advanced Semiconductor Engineering Inc., Nantze Export Processing Zone

Kaohsiung City, Taiwan

Abstract
Because semiconductor assembly plants generally apply individual indicators to monitor
manufacturing processes, this research proposes the approach of data envelopment analysis
(DEA) to evaluate production performance from the perspective of overall efficiency. Our
DEA models are composed of 3 input variables (average employee number, average labor
hours, and cost of goods sold) and 4 output items (production output, average overall
equipment effectiveness, production cycle time, and production ratio). To test the
practicability of proposed models, one semiconductor assembly company was selected to
investigate the relative efficiency of its 10 manufacturing plants. DEA-based Malmquist
productivity index was also applied to describe the productivity change over time. Findings
show that the main cause of technology inefficiency for the sample company is its
inappropriate resource allocation in the aspect of operation efficiency. From the viewpoint
of efficiency variation, the productivity of six relatively efficient plants was increasing
during 2 years of observations while the productivity of the other four plants was
decreasing at the same period. Through the analysis of slack variable and sensitivity
analysis, number of employees in the relatively inefficient manufacturing plants may cause
additional hidden costs and wastes. Our analysis results not only demonstrate the
applicability of DEA approach for the measurement of production efficiency in
semiconductor assembly industry but also provide this industry with methodology to
indentify where to improve operational performance.

Keywords: Efficiency Assessment, Data Envelopment Analysis, Malmquist Analysis

23

Engineering the Computer Science and IT466

1. Introduction

As the semiconductor assembly industry is capital-intensive, operations management
becomes one of the important issues for its business effectiveness. Especially under the
pressure of limited profit margin and customer requirements, plants have to enhance their
operating efficiency so as to improve the competitive advantage. Currently, the
manufacturing process of semiconductor assembly plant faces bottlenecks of die bond, wire
bond and potting sites. For instance, the outputs of most die bonding machines are
contricted by their actuation modes of absorption and desorption. Moreover, wire bonding
machine is constricted by the number and arc of wire bond, while potting machine is
restrained by the time of potting. In terms of cost, although employees account for 15%-20%
of total expenditure, machines of die bond, wire bond and potting sites are still the largest
investments for the semiconductor assembly house. Accordingly, management tends to
focus on enhancing man-machine ratio and simplifing SOP to reduce human cost and
improve productivity. In addition, various performance indexes are also applied routinely
to monitor operational efficiency and quality for further improvement. However, the
performance indexes adopted by the semiconductor manufacturing factories usually
consider single angle like machine breakdown or yield rate. Although this kind of method is
easy to calculate and understand, index approach has limitations because it’s unable to
identify the causes of inefficiency and to reflect the actual relative efficiency among plants.
Therefore, evaluation methods that can consider both the inputs and outputs of
manufacturing plants could provide more reliable findings for management to adjust their
production operations.
In order to bridge the gap between practical and theoretical issues in the semiconductor
manufacturing industry, this paper considered Data Envelopment Analysis (DEA) method
for performance assessment. This approach not only takes into account input-output
variables but also proves to be useful for efficiency analysis. Without specifying the
production functions in advance, we are also able to trace the sources of inefficiency for
every evaluated plant. Together with DEA-based Malmquist productivity measurement,
productivity rate of growth for each plant can be further analyzed to understand their
progress or regression during a specific period. Hence, the main purposes of this study
include the analysis of operational performance and changes for the semiconductor
assembly house, and the improvement solutions for inefficient plants assessed. In the
following discussion, we start with the brief review of past research regarding the efficiency
assessment in the electronics industry. Then section 3 describes the DEA methodology used
in this study. To validate the applicability of our proposed approach, one semiconductor
assembly company was selected to investigate the relative efficiency of its 10 manufacturing
plants. Findings of this case study are discussed in section 4. Finally, we conclude our
research in the final section.

2. Efficiency Assessment of Electronics Industry

In the electronic manufacturing industry, common methods of efficiency assessment include
machine utilization rate, regression analysis, and DEA. Leachman and Hodges (1996) used
regression analysis to study 16 wafer factories, and obtained the production cycle and yield
rate for each product line. Thore et al. (1996) applied DEA method to evaluate the cycle time

efficiency of computer manufacturing industry in the U.S., so as to find out how to improve
machine’s production rate and to maintain efficiency. Shang and Sueyoshi (1995) analyzed
the efficiency of flexible production systems, and found that DEA method could be applied
to evaluate different manufacturing systems. Their study also compares the efficiency of
different production lines and gives managers the suggestions for improvements. Beeg
(2004) used crash time and average repair time to establish the capability indicators of
machine and personnel. Besides, Beeg took into considerations the variables of production
amount, overall equipment efficiency (OEE), and production ratio as the items of outputs
for DEA models. Ertray and Ruan (2004) employed DEA method to evaluate workers’
efficiency in mobile manufacturing plants. Work hours and staff allocation are listed as the
efficiency assessment of inputs. Hosseinzadeh and Ghasemi (2007) investigated the
efficiency and productivity in telecommunication companies through DEA models and
Malmquist productivity index. Pan et al. (2008) explored the managerial and productive
technical efficiencies of Taiwan's IC design industry. They also adopted DEA models and
DEA-based Malmquist method to examine the performance of 72 companies from 2003 to
2005.
In the semiconductor industry, OEE is often employed to measure productivity (SEMI,
1999). Other common indicators include: availability efficiency, efficiency ratio, operating
efficiency, and quality efficiency (Nakajima, 1988; Leachman, 1995; Konopka, 1996).
Availability efficiency is defined by the difference between total production time and
downtime over total production time. Meanwhile, efficiency ratio is the ratio of ideal cycle
time to actual cycle time. Operating efficiency is the ratio of total production time to facility
operating time. Accordingly, we can rank performance by the cross product of efficiency
ratio and operating ratio. Additionally, quality efficiency is defined by the difference
between total production volume and total returns over total production volume. Hence,
each machine can use one of the above indicators to evaluate their respective performance.
Integrated performance index can be also computed by the average performance of all
machines. Furthermore, Thomas (2000) applied DEA approach to measure efficiency of
semiconductor manufacturing operations. Input variables in DEA models include mean
time between failures, scrap/1000 wafer moves, cycle time, and downtime. Meanwhile,
wafer moves, OEE, activity ratio (actual moves/planned moves) are output variables. Liu
and Wang (2007) also employed DEA models to assess the Malmquist productivity of
semiconductor packaging and testing firms in Taiwan. Their Malmquist productivity
considers 3 major measurements, which are technical change, frontier forward shift, and
frontier backward shift of a company over two consecutive periods. From the above review
of past studies, DEA has been proved to be a successful evaluation approach for efficiency
performance in the semiconductor industry. Hence, this study would like to further
investigate how to apply the DEA method to measure the production efficiency and
efficiency change in the semiconductor assembly industry.

3. Methodology

3.1 Decision Making Unit (DMU)

Decision making unit is any entity that is to be assessed by its abilities to convert inputs into
outputs (Charnes et al., 1978). According to Golany and Roll’s (1989) definition, DMUs must
be a group of homogeneous units, but there should be some differences between them.

Measurement of Production Efficiency in Semiconductor Assembly House:
Approach of Data Envelopment Analysis 467

1. Introduction

As the semiconductor assembly industry is capital-intensive, operations management
becomes one of the important issues for its business effectiveness. Especially under the
pressure of limited profit margin and customer requirements, plants have to enhance their
operating efficiency so as to improve the competitive advantage. Currently, the
manufacturing process of semiconductor assembly plant faces bottlenecks of die bond, wire
bond and potting sites. For instance, the outputs of most die bonding machines are
contricted by their actuation modes of absorption and desorption. Moreover, wire bonding
machine is constricted by the number and arc of wire bond, while potting machine is
restrained by the time of potting. In terms of cost, although employees account for 15%-20%
of total expenditure, machines of die bond, wire bond and potting sites are still the largest
investments for the semiconductor assembly house. Accordingly, management tends to
focus on enhancing man-machine ratio and simplifing SOP to reduce human cost and
improve productivity. In addition, various performance indexes are also applied routinely
to monitor operational efficiency and quality for further improvement. However, the
performance indexes adopted by the semiconductor manufacturing factories usually
consider single angle like machine breakdown or yield rate. Although this kind of method is
easy to calculate and understand, index approach has limitations because it’s unable to
identify the causes of inefficiency and to reflect the actual relative efficiency among plants.
Therefore, evaluation methods that can consider both the inputs and outputs of
manufacturing plants could provide more reliable findings for management to adjust their
production operations.
In order to bridge the gap between practical and theoretical issues in the semiconductor
manufacturing industry, this paper considered Data Envelopment Analysis (DEA) method
for performance assessment. This approach not only takes into account input-output
variables but also proves to be useful for efficiency analysis. Without specifying the
production functions in advance, we are also able to trace the sources of inefficiency for
every evaluated plant. Together with DEA-based Malmquist productivity measurement,
productivity rate of growth for each plant can be further analyzed to understand their
progress or regression during a specific period. Hence, the main purposes of this study
include the analysis of operational performance and changes for the semiconductor
assembly house, and the improvement solutions for inefficient plants assessed. In the
following discussion, we start with the brief review of past research regarding the efficiency
assessment in the electronics industry. Then section 3 describes the DEA methodology used
in this study. To validate the applicability of our proposed approach, one semiconductor
assembly company was selected to investigate the relative efficiency of its 10 manufacturing
plants. Findings of this case study are discussed in section 4. Finally, we conclude our
research in the final section.

2. Efficiency Assessment of Electronics Industry

In the electronic manufacturing industry, common methods of efficiency assessment include
machine utilization rate, regression analysis, and DEA. Leachman and Hodges (1996) used
regression analysis to study 16 wafer factories, and obtained the production cycle and yield
rate for each product line. Thore et al. (1996) applied DEA method to evaluate the cycle time

efficiency of computer manufacturing industry in the U.S., so as to find out how to improve
machine’s production rate and to maintain efficiency. Shang and Sueyoshi (1995) analyzed
the efficiency of flexible production systems, and found that DEA method could be applied
to evaluate different manufacturing systems. Their study also compares the efficiency of
different production lines and gives managers the suggestions for improvements. Beeg
(2004) used crash time and average repair time to establish the capability indicators of
machine and personnel. Besides, Beeg took into considerations the variables of production
amount, overall equipment efficiency (OEE), and production ratio as the items of outputs
for DEA models. Ertray and Ruan (2004) employed DEA method to evaluate workers’
efficiency in mobile manufacturing plants. Work hours and staff allocation are listed as the
efficiency assessment of inputs. Hosseinzadeh and Ghasemi (2007) investigated the
efficiency and productivity in telecommunication companies through DEA models and
Malmquist productivity index. Pan et al. (2008) explored the managerial and productive
technical efficiencies of Taiwan's IC design industry. They also adopted DEA models and
DEA-based Malmquist method to examine the performance of 72 companies from 2003 to
2005.
In the semiconductor industry, OEE is often employed to measure productivity (SEMI,
1999). Other common indicators include: availability efficiency, efficiency ratio, operating
efficiency, and quality efficiency (Nakajima, 1988; Leachman, 1995; Konopka, 1996).
Availability efficiency is defined by the difference between total production time and
downtime over total production time. Meanwhile, efficiency ratio is the ratio of ideal cycle
time to actual cycle time. Operating efficiency is the ratio of total production time to facility
operating time. Accordingly, we can rank performance by the cross product of efficiency
ratio and operating ratio. Additionally, quality efficiency is defined by the difference
between total production volume and total returns over total production volume. Hence,
each machine can use one of the above indicators to evaluate their respective performance.
Integrated performance index can be also computed by the average performance of all
machines. Furthermore, Thomas (2000) applied DEA approach to measure efficiency of
semiconductor manufacturing operations. Input variables in DEA models include mean
time between failures, scrap/1000 wafer moves, cycle time, and downtime. Meanwhile,
wafer moves, OEE, activity ratio (actual moves/planned moves) are output variables. Liu
and Wang (2007) also employed DEA models to assess the Malmquist productivity of
semiconductor packaging and testing firms in Taiwan. Their Malmquist productivity
considers 3 major measurements, which are technical change, frontier forward shift, and
frontier backward shift of a company over two consecutive periods. From the above review
of past studies, DEA has been proved to be a successful evaluation approach for efficiency
performance in the semiconductor industry. Hence, this study would like to further
investigate how to apply the DEA method to measure the production efficiency and
efficiency change in the semiconductor assembly industry.

3. Methodology

3.1 Decision Making Unit (DMU)

Decision making unit is any entity that is to be assessed by its abilities to convert inputs into
outputs (Charnes et al., 1978). According to Golany and Roll’s (1989) definition, DMUs must
be a group of homogeneous units, but there should be some differences between them.

Engineering the Computer Science and IT468

Thus, this study took 10 independent factories (denote Pi, i = 1,…,10) of a certain
semiconductor assembly company in Taiwan as the target of assessment. Monthly data of
activities were retrieved from the manufacturing execution system during the period of
2005/01-2006/12. These 10 factories generally had common manufacturing machines. For
example, the same type of wire bonder machines can produce lead frame and BGA products.
Factories could support each other and do cross feeding. P1, P2, P3, P4, P5 and P6 factories
mainly manufactured consumptive IC products, the general logic and IC control lead-frame
products, such as PDIP, PLCC, QFP, and TQFP; while P7, P8, P9 and P10 factories mainly
manufactured graphics chip, CPU, LCD driver chip and other mid and high-end BGA
products, such as BGA, TFBGA, QFN, and FBGA.

3.2 Inputs and Outputs
To select the input variables and output variables for the DEA models used in this study,
factors that affect overall production processes, costs, operating time, product quality, and
machine efficiency were under our considerations. Based on the results of past research and
on-site investigation of engineers, three input variables were chosen and are summarized as
follows:

(1) Average employee number: the average number of employees per month;
(2) Average labor hour: the average work hours per month;
(3) Average cost of goods sold: the average cost of goods sold divided by the net sales

per month.
All of the input data were collected from the personnel database of target manufacturer for
each plant.
Besides, the output variables of DEA models are defined as follows:

(1) Production output: the actual production of each factory per month;
(2) Average OEE: OEE = Availability Ratio x Performance Ratio x Quality Ratio,

where availability ratio is the share of the actual production time and the planned
production time, performance ratio is the loss of production due to under-
utilization of the machinery, quality ratio is the amount of the production that has
to be discharged or scrapped;

(3) Production cycle time: time it takes for production personnel to make the product
available for shipment to the customer;

(4) Production ratio: the actual delivery of each factory per month divided by the
planed delivery.

All of the output observations were collected from the manufacturing execution system of
each plant.

3.3 Research Models
The basic DEA model of efficiency analysis is composed of the inputs and outputs of DMUs. This
approach tends to reduce the multiple-output/multiple-input situation to a single ‘virtual'
output and ‘virtual’ input. The ratio of single output to single input for a particular DMU, which
is a function of the multipliers, forms the objective function for optimization. Because DEA
approach is empirically-oriented and has no a priori assumptions like other approaches, it has
been applied to a number of studies involving efficient frontier estimation. To encounter different
problem issues, there is a variety of alternate DEA models to evaluating performance. The CCR

model with constant returns to scale (Charnes et al., 1978) and the BCC model with variable
returns to scale (Banker et al., 1984) were applied in this study to evaluate efficiency performance
among manufacturing plants of semiconductor assembly house. Suppose we have m different
inputs and s outputs for n DMUs. The CCR model can be described by

1 1

1

1

. .

0

, , 0; 1, , ; 1, , ; 1, , ;

m s

k i r
i r

n

j ij ik i
j

n

j rj r rk
j

ik ik i

rk rk r

j i r

Min h s s

s t

X X s

Y s Y

X X s
Y Y s

s s j n i m r s R

(1)

The mathematical meaning of Eq. (1) is to get the minimum value of hk in restriction
conditions, where Yrj is r-th output for plant j, Xij is i-th input for plant j, si- is slack variable,
and sr+ is surplus variable. The optimal solution of θ must be positive and yield an efficiency
score for a specific DMU. The necessary and sufficient condition of every DMU with relative
efficiency is θ = 1 and si- = sr+= 0. However, CCR model is assumed to be the linear
programming model with constant returns to scale, which is not necessarily in line with the
actual situation of industry. Therefore, Banker et al. (1984) replaced with variable returns to
scale, that is, Σλ＝1 was added into the above formula and get the BCC model in Eq. (2):

1 1

1

1

1

. .

0

1

, , 0; 1, , ; 1, , ; 1, , ;

m s

k i r
i r

n

j ij ik i
j

n

j rj r rk
j

n

j
j

ik ik i

rk rk r

j i r

Min h s s

s t

X X s

Y s Y

X X s
Y Y s

s s j n i m r s R

(2)

After solving the technical efficiency values based on CCR and BCC models specified in Eq.
(1) and (2), scale efficiency (SE) is obtained, which is the ratio of two values. SE = 1
represents scale efficiency and SE < 1 represents scale inefficiency, where SE can be divided
into increasing returns to scale (IRS) and decreasing returns to scale (DRS). Σλ = 1 implies
constant returns to scale, Σλ > 1 indicates IRS, and Σλ < 1 describes DRS.
In order to find out the real value of comparative efficiency in different periods, and solve the
shortcomings of assessed unit, this study used Malmquist productivity analysis as the basis for
measurement and comparison. This approach can show the changes in technical efficiency and
technical change process with the definition of Malmquist index specified in Eq. (3):

Measurement of Production Efficiency in Semiconductor Assembly House:
Approach of Data Envelopment Analysis 469

Thus, this study took 10 independent factories (denote Pi, i = 1,…,10) of a certain
semiconductor assembly company in Taiwan as the target of assessment. Monthly data of
activities were retrieved from the manufacturing execution system during the period of
2005/01-2006/12. These 10 factories generally had common manufacturing machines. For
example, the same type of wire bonder machines can produce lead frame and BGA products.
Factories could support each other and do cross feeding. P1, P2, P3, P4, P5 and P6 factories
mainly manufactured consumptive IC products, the general logic and IC control lead-frame
products, such as PDIP, PLCC, QFP, and TQFP; while P7, P8, P9 and P10 factories mainly
manufactured graphics chip, CPU, LCD driver chip and other mid and high-end BGA
products, such as BGA, TFBGA, QFN, and FBGA.

3.2 Inputs and Outputs
To select the input variables and output variables for the DEA models used in this study,
factors that affect overall production processes, costs, operating time, product quality, and
machine efficiency were under our considerations. Based on the results of past research and
on-site investigation of engineers, three input variables were chosen and are summarized as
follows:

(1) Average employee number: the average number of employees per month;
(2) Average labor hour: the average work hours per month;
(3) Average cost of goods sold: the average cost of goods sold divided by the net sales

per month.
All of the input data were collected from the personnel database of target manufacturer for
each plant.
Besides, the output variables of DEA models are defined as follows:

(1) Production output: the actual production of each factory per month;
(2) Average OEE: OEE = Availability Ratio x Performance Ratio x Quality Ratio,

where availability ratio is the share of the actual production time and the planned
production time, performance ratio is the loss of production due to under-
utilization of the machinery, quality ratio is the amount of the production that has
to be discharged or scrapped;

(3) Production cycle time: time it takes for production personnel to make the product
available for shipment to the customer;

(4) Production ratio: the actual delivery of each factory per month divided by the
planed delivery.

All of the output observations were collected from the manufacturing execution system of
each plant.

3.3 Research Models
The basic DEA model of efficiency analysis is composed of the inputs and outputs of DMUs. This
approach tends to reduce the multiple-output/multiple-input situation to a single ‘virtual'
output and ‘virtual’ input. The ratio of single output to single input for a particular DMU, which
is a function of the multipliers, forms the objective function for optimization. Because DEA
approach is empirically-oriented and has no a priori assumptions like other approaches, it has
been applied to a number of studies involving efficient frontier estimation. To encounter different
problem issues, there is a variety of alternate DEA models to evaluating performance. The CCR

model with constant returns to scale (Charnes et al., 1978) and the BCC model with variable
returns to scale (Banker et al., 1984) were applied in this study to evaluate efficiency performance
among manufacturing plants of semiconductor assembly house. Suppose we have m different
inputs and s outputs for n DMUs. The CCR model can be described by

1 1

1

1

. .

0

, , 0; 1, , ; 1, , ; 1, , ;

m s

k i r
i r

n

j ij ik i
j

n

j rj r rk
j

ik ik i

rk rk r

j i r

Min h s s

s t

X X s

Y s Y

X X s
Y Y s

s s j n i m r s R

(1)

The mathematical meaning of Eq. (1) is to get the minimum value of hk in restriction
conditions, where Yrj is r-th output for plant j, Xij is i-th input for plant j, si- is slack variable,
and sr+ is surplus variable. The optimal solution of θ must be positive and yield an efficiency
score for a specific DMU. The necessary and sufficient condition of every DMU with relative
efficiency is θ = 1 and si- = sr+= 0. However, CCR model is assumed to be the linear
programming model with constant returns to scale, which is not necessarily in line with the
actual situation of industry. Therefore, Banker et al. (1984) replaced with variable returns to
scale, that is, Σλ＝1 was added into the above formula and get the BCC model in Eq. (2):

1 1

1

1

1

. .

0

1

, , 0; 1, , ; 1, , ; 1, , ;

m s

k i r
i r

n

j ij ik i
j

n

j rj r rk
j

n

j
j

ik ik i

rk rk r

j i r

Min h s s

s t

X X s

Y s Y

X X s
Y Y s

s s j n i m r s R

(2)

After solving the technical efficiency values based on CCR and BCC models specified in Eq.
(1) and (2), scale efficiency (SE) is obtained, which is the ratio of two values. SE = 1
represents scale efficiency and SE < 1 represents scale inefficiency, where SE can be divided
into increasing returns to scale (IRS) and decreasing returns to scale (DRS). Σλ = 1 implies
constant returns to scale, Σλ > 1 indicates IRS, and Σλ < 1 describes DRS.
In order to find out the real value of comparative efficiency in different periods, and solve the
shortcomings of assessed unit, this study used Malmquist productivity analysis as the basis for
measurement and comparison. This approach can show the changes in technical efficiency and
technical change process with the definition of Malmquist index specified in Eq. (3):

Engineering the Computer Science and IT470

2/1

1
0

111
0

0

11
0

0),(
),(

),(
),(

ttt

ttt

ttt

ttt

yx
yx

yx
yxM

 (3)

where),(11
0

 ttt yx denotes the relative efficiency of a particular DMU in period t + 1
against the performance of those DMUs in period t. Productivity M0 > 1 implies that the
productivity is improved over time whereas the productivity is declined when M0 < 1. This
approach not only reveals patterns of productivity change but also identifies the strategy
shifts of individual plant.

4. Results

4.1 Efficiency analysis
Table 1 and 2 summarize the efficiency scores evaluated by the CCR and BCC models
respectively for each plant in year 2005 and 2006. The CCR model assumes constant returns
to scale while the BCC model allows for variable returns to scale.

DMU Efficiency Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

P1
CCR 0.815 1 0.692 0.682 0.682 0.701 0.701 0.701 0.701 0.701 0.700 0.700
BCC 1 1 1 1 1 1 1 1 1 1 1 1
SE 0.815 1 0.692 0.682 0.682 0.701 0.701 0.701 0.701 0.701 0.700 0.700

P2
CCR 1 1 1 1 1 1 1 1 1 1 1 1
BCC 1 1 1 1 1 1 1 1 1 1 1 1
SE 1 1 1 1 1 1 1 1 1 1 1 1

P3
CCR 1 1 1 1 1 1 1 1 1 1 1 1
BCC 1 1 1 1 1 1 1 1 1 1 1 1
SE 1 1 1 1 1 1 1 1 1 1 1 1

P4
CCR 1 1 1 1 1 1 1 1 1 1 1 1
BCC 1 1 1 1 1 1 1 1 1 1 1 1
SE 1 1 1 1 1 1 1 1 1 1 1 1

P5
CCR 1 1 1 1 1 1 1 1 1 1 1 1
BCC 1 1 1 1 1 1 1 1 1 1 1 1
SE 1 1 1 1 1 1 1 1 1 1 1 1

P6
CCR 0.819 0.790 0.802 0.802 0.802 0.846 0.846 0.917 0.917 0.917 0.914 0.914
BCC 1 1 1 1 1 1 1 1 1 1 1 1
SE 0.819 0.790 0.802 0.802 0.802 0.846 0.846 0.917 0.917 0.917 0.914 0.914

P7
CCR 1 1 1 1 1 1 1 1 1 1 1 1
BCC 1 1 1 1 1 1 1 1 1 1 1 1
SE 1 1 1 1 1 1 1 1 1 1 1 1

P8
CCR 0.745 0.629 0.612 0.612 0.612 0.612 0.610 0.612 0.648 0.648 0.691 0.741
BCC 1 1 0.98 0.932 0.933 0.933 1 1 1 1 1 1
SE 0.745 0.629 0.624 0.656 0.656 0.656 0.610 0.612 0.648 0.648 0.691 0.741

P9
CCR 0.860 0.831 0.829 0.818 0.818 0.812 0.806 0.806 0.829 0.829 0.824 0.827
BCC 1 1 1 1 1 1 1 1 1 1 1 1
SE 0.860 0.831 0.829 0.818 0.818 0.812 0.806 0.806 0.829 0.829 0.824 0.827

P10
CCR 0.809 0.832 0.847 0.813 0.813 0.916 0.916 0.916 0.916 0.916 0.916 0.919
BCC 1 0.907 1 1 1 1 1 1 1 1 1 1
SE 0.809 0.916 0.847 0.813 0.813 0.916 0.916 0.916 0.916 0.916 0.916 0.919

Table 1. The efficiency scores of DMUs in 2005

DMU Efficiency Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

P1
CCR 0.701 0.679 0.734 0.811 0.785 0.785 0.801 0.867 0.857 0.815 0.835 0.810
BCC 1 1 1 1 1 1 1 1 1 1 1 1
SE 0.701 0.679 0.734 0.811 0.785 0.785 0.801 0.867 0.857 0.815 0.835 0.810

P2
CCR 1 1 1 1 1 1 1 1 1 1 1 1
BCC 1 1 1 1 1 1 1 1 1 1 1 1
SE 1 1 1 1 1 1 1 1 1 1 1 1

P3
CCR 1 1 1 1 1 1 1 1 1 1 1 1
BCC 1 1 1 1 1 1 1 1 1 1 1 1
SE 1 1 1 1 1 1 1 1 1 1 1 1

P4
CCR 1 1 1 0.986 1 1 1 1 1 1 1 1
BCC 1 1 1 0.996 1 1 1 1 1 1 1 1
SE 1 1 1 0.989 1 1 1 1 1 1 1 1

P5
CCR 1 1 1 1 1 1 1 1 1 1 1 1
BCC 1 1 1 1 1 1 1 1 1 1 1 1
SE 1 1 1 1 1 1 1 1 1 1 1 1

P6
CCR 0.916 0.828 0.828 0.828 0.828 0.828 0.862 0.863 0.843 0.863 0.833 0.859
BCC 1 1 1 1 1 1 1 1 1 1 1 1
SE 0.916 0.828 0.828 0.828 0.828 0.828 0.862 0.863 0.843 0.863 0.833 0.859

P7
CCR 1 1 1 1 1 1 1 1 1 1 1 1
BCC 1 1 1 1 1 1 1 1 1 1 1 1
SE 1 1 1 1 1 1 1 1 1 1 1 1

P8
CCR 0.714 0.628 0.627 0.605 0.605 0.599 0.637 0.612 0.640 0.640 0.657 0.647
BCC 1 1 1 1 1 1 1 1 1 1 1 1
SE 0.714 0.628 0.627 0.605 0.605 0.599 0.637 0.612 0.640 0.640 0.657 0.647

P9
CCR 0.808 0.766 0.752 0.752 0.752 0.753 0.752 0.762 0.766 0.681 0.681 0.708
BCC 1 1 1 1 1 1 1 1 1 1 1 1
SE 0.808 0.766 0.752 0.752 0.752 0.753 0.752 0.762 0.766 0.681 0.681 0.708

P10
CCR 0.916 0.922 0.921 0.921 0.888 0.889 0.874 0.864 0.874 0.826 0.846 0.840
BCC 1 1 1 1 1 1 1 1 1 1 1 1
SE 0.916 0.922 0.921 0.921 0.888 0.889 0.874 0.864 0.874 0.826 0.846 0.840

Table 2. The efficiency scores of DMUs in 2006

If taking the time interval of month for analysis, plants P2, P3, P4, P5 and P7 are efficient in
CCR Model during the observation period. On the other hand, plants P1, P6, P8, P9, and P10
are inefficient for all 24 months. In terms of factory analysis, plant P1 has only one month
achieving technical efficiency, and the rest are scale inefficiency. Besides, plants P2, P3, P4,
P5 and P7 all have scale efficiency. But plants P6, P8, P9 and P10 are scale inefficiency.
From the SE analysis, the study found that plants P2, P3, P5 and P7 maintained efficient
during the observation period, whereas plants P6, P8, P9 and P10 had no scale efficiency for
24 months. But the SE inefficiency factories all had efficiency value of 1 in the BCC model.
This phenomenon implies that their inefficiency is possibly from the influence of scale
inefficiency. Additionally, the efficiency scale of plant P1 is 1 in only one month while its
performance remains inefficient for the remaining 23 months. This finding also indicates the
possibility of scale inefficiency. Therefore, reducing the scale of production can improve
scale inefficiency.
Moreover, although plant P4 had technical and scale inefficiency only in April 2006, it had
the overall relative efficiency of 1 for the rest of observations. The main reason is the input

Measurement of Production Efficiency in Semiconductor Assembly House:
Approach of Data Envelopment Analysis 471

2/1

1
0

111
0

0

11
0

0),(
),(

),(
),(

ttt

ttt

ttt

ttt

yx
yx

yx
yxM

 (3)

where),(11
0

 ttt yx denotes the relative efficiency of a particular DMU in period t + 1
against the performance of those DMUs in period t. Productivity M0 > 1 implies that the
productivity is improved over time whereas the productivity is declined when M0 < 1. This
approach not only reveals patterns of productivity change but also identifies the strategy
shifts of individual plant.

4. Results

4.1 Efficiency analysis
Table 1 and 2 summarize the efficiency scores evaluated by the CCR and BCC models
respectively for each plant in year 2005 and 2006. The CCR model assumes constant returns
to scale while the BCC model allows for variable returns to scale.

DMU Efficiency Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

P1
CCR 0.815 1 0.692 0.682 0.682 0.701 0.701 0.701 0.701 0.701 0.700 0.700
BCC 1 1 1 1 1 1 1 1 1 1 1 1
SE 0.815 1 0.692 0.682 0.682 0.701 0.701 0.701 0.701 0.701 0.700 0.700

P2
CCR 1 1 1 1 1 1 1 1 1 1 1 1
BCC 1 1 1 1 1 1 1 1 1 1 1 1
SE 1 1 1 1 1 1 1 1 1 1 1 1

P3
CCR 1 1 1 1 1 1 1 1 1 1 1 1
BCC 1 1 1 1 1 1 1 1 1 1 1 1
SE 1 1 1 1 1 1 1 1 1 1 1 1

P4
CCR 1 1 1 1 1 1 1 1 1 1 1 1
BCC 1 1 1 1 1 1 1 1 1 1 1 1
SE 1 1 1 1 1 1 1 1 1 1 1 1

P5
CCR 1 1 1 1 1 1 1 1 1 1 1 1
BCC 1 1 1 1 1 1 1 1 1 1 1 1
SE 1 1 1 1 1 1 1 1 1 1 1 1

P6
CCR 0.819 0.790 0.802 0.802 0.802 0.846 0.846 0.917 0.917 0.917 0.914 0.914
BCC 1 1 1 1 1 1 1 1 1 1 1 1
SE 0.819 0.790 0.802 0.802 0.802 0.846 0.846 0.917 0.917 0.917 0.914 0.914

P7
CCR 1 1 1 1 1 1 1 1 1 1 1 1
BCC 1 1 1 1 1 1 1 1 1 1 1 1
SE 1 1 1 1 1 1 1 1 1 1 1 1

P8
CCR 0.745 0.629 0.612 0.612 0.612 0.612 0.610 0.612 0.648 0.648 0.691 0.741
BCC 1 1 0.98 0.932 0.933 0.933 1 1 1 1 1 1
SE 0.745 0.629 0.624 0.656 0.656 0.656 0.610 0.612 0.648 0.648 0.691 0.741

P9
CCR 0.860 0.831 0.829 0.818 0.818 0.812 0.806 0.806 0.829 0.829 0.824 0.827
BCC 1 1 1 1 1 1 1 1 1 1 1 1
SE 0.860 0.831 0.829 0.818 0.818 0.812 0.806 0.806 0.829 0.829 0.824 0.827

P10
CCR 0.809 0.832 0.847 0.813 0.813 0.916 0.916 0.916 0.916 0.916 0.916 0.919
BCC 1 0.907 1 1 1 1 1 1 1 1 1 1
SE 0.809 0.916 0.847 0.813 0.813 0.916 0.916 0.916 0.916 0.916 0.916 0.919

Table 1. The efficiency scores of DMUs in 2005

DMU Efficiency Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

P1
CCR 0.701 0.679 0.734 0.811 0.785 0.785 0.801 0.867 0.857 0.815 0.835 0.810
BCC 1 1 1 1 1 1 1 1 1 1 1 1
SE 0.701 0.679 0.734 0.811 0.785 0.785 0.801 0.867 0.857 0.815 0.835 0.810

P2
CCR 1 1 1 1 1 1 1 1 1 1 1 1
BCC 1 1 1 1 1 1 1 1 1 1 1 1
SE 1 1 1 1 1 1 1 1 1 1 1 1

P3
CCR 1 1 1 1 1 1 1 1 1 1 1 1
BCC 1 1 1 1 1 1 1 1 1 1 1 1
SE 1 1 1 1 1 1 1 1 1 1 1 1

P4
CCR 1 1 1 0.986 1 1 1 1 1 1 1 1
BCC 1 1 1 0.996 1 1 1 1 1 1 1 1
SE 1 1 1 0.989 1 1 1 1 1 1 1 1

P5
CCR 1 1 1 1 1 1 1 1 1 1 1 1
BCC 1 1 1 1 1 1 1 1 1 1 1 1
SE 1 1 1 1 1 1 1 1 1 1 1 1

P6
CCR 0.916 0.828 0.828 0.828 0.828 0.828 0.862 0.863 0.843 0.863 0.833 0.859
BCC 1 1 1 1 1 1 1 1 1 1 1 1
SE 0.916 0.828 0.828 0.828 0.828 0.828 0.862 0.863 0.843 0.863 0.833 0.859

P7
CCR 1 1 1 1 1 1 1 1 1 1 1 1
BCC 1 1 1 1 1 1 1 1 1 1 1 1
SE 1 1 1 1 1 1 1 1 1 1 1 1

P8
CCR 0.714 0.628 0.627 0.605 0.605 0.599 0.637 0.612 0.640 0.640 0.657 0.647
BCC 1 1 1 1 1 1 1 1 1 1 1 1
SE 0.714 0.628 0.627 0.605 0.605 0.599 0.637 0.612 0.640 0.640 0.657 0.647

P9
CCR 0.808 0.766 0.752 0.752 0.752 0.753 0.752 0.762 0.766 0.681 0.681 0.708
BCC 1 1 1 1 1 1 1 1 1 1 1 1
SE 0.808 0.766 0.752 0.752 0.752 0.753 0.752 0.762 0.766 0.681 0.681 0.708

P10
CCR 0.916 0.922 0.921 0.921 0.888 0.889 0.874 0.864 0.874 0.826 0.846 0.840
BCC 1 1 1 1 1 1 1 1 1 1 1 1
SE 0.916 0.922 0.921 0.921 0.888 0.889 0.874 0.864 0.874 0.826 0.846 0.840

Table 2. The efficiency scores of DMUs in 2006

If taking the time interval of month for analysis, plants P2, P3, P4, P5 and P7 are efficient in
CCR Model during the observation period. On the other hand, plants P1, P6, P8, P9, and P10
are inefficient for all 24 months. In terms of factory analysis, plant P1 has only one month
achieving technical efficiency, and the rest are scale inefficiency. Besides, plants P2, P3, P4,
P5 and P7 all have scale efficiency. But plants P6, P8, P9 and P10 are scale inefficiency.
From the SE analysis, the study found that plants P2, P3, P5 and P7 maintained efficient
during the observation period, whereas plants P6, P8, P9 and P10 had no scale efficiency for
24 months. But the SE inefficiency factories all had efficiency value of 1 in the BCC model.
This phenomenon implies that their inefficiency is possibly from the influence of scale
inefficiency. Additionally, the efficiency scale of plant P1 is 1 in only one month while its
performance remains inefficient for the remaining 23 months. This finding also indicates the
possibility of scale inefficiency. Therefore, reducing the scale of production can improve
scale inefficiency.
Moreover, although plant P4 had technical and scale inefficiency only in April 2006, it had
the overall relative efficiency of 1 for the rest of observations. The main reason is the input

Engineering the Computer Science and IT472

imbalance between average employee number and average labor hours. After adjusting the
related imbalanced variables, the overall relative efficiency was recovered to 1. Meanwhile,
plant P8 has similar situation like plant P4. It had technical and scale inefficiency from
March to July in 2005 and the rest had the overall relative efficiency of 1. After adjusting
related variables, the overall relative efficiency can be recovered to 1. Similar implication can
be inferred for plant P10. Therefore, although each factory couldn’t use input resource
effectively to achieve the output with scale efficiency in a short time, it can still achieve
efficiency if related variables were adjusted. This information provides an important
managerial impact on resource control of manufacturing plants.

4.2 Analysis of Slacks and Returns to Scale
We further performed the analysis of slack variables to understand the improvements of
inefficient DMUs on inputs. Meanwhile, returns to scale analysis was applied to identify
whether a proportional change in inputs result in the same proportional change in outputs.
IRS indicates that proportional changes in inputs result in a more than proportional changes
in outputs. On the other hand, DRS implies the opposite changes in outputs. Therefore, after
analysis of slacks and returns to scale, this study summarizes the influential elements of the
efficiency in each inefficient factory as follows:

(1) P1 is DRS, which should be improved through reducing its input of resources,
especially the control of employee number and labor hours.

(2) P6 is DRS, which should be improved through reducing its input of resources,
especially the control of employee number.

(3) P8 is DRS, which should be improved through reducing its input of resources,
especially the control of employee number and labor hour.

(4) P9 is DRS, which should be improved through reducing its input of resources,
especially the control of labor hour.

(5) P10 is DRS, which should be improved through reducing its input of resources,
especially the control of employee number and average cost of goods sold.

4.3 Sensitivity Analysis
The sensitivity analysis is mainly to get CCR overall efficiency of each assessed factory
through respectively removing inputs and outputs. The resulted value is compared with the
original input-output efficiency. Sensibility analysis can be used to understand the impact of
each variable on efficiency and to find out the sources of efficiency and inefficiency for each
unit assessed. After sensitive analysis, the findings of this study are as follows:

(1) When deleting "average employee number": P8’s efficiency is significantly
reduced by about 10%, so average employee number is the advantage to enhance
the overall efficiency. P4’s efficiency decreases significantly only in 6 months. Its
efficiency scores are among 0.98-0.99, which results in decreased overall efficiency.

(2) When deleting "average labor hour": The efficiency scores of P6, P8, and P10 are
reduced by 1%, 1% and 5% respectively. Because plant P4’s efficiency decreases
significantly only in 3 months, it can explore whether the labor hour is excessive
in the period.

(3) When deleting "average cost of goods sold": P2’s efficiency values are reduced by
about 15%. Meanwhile, P4’s efficiency decreases to 0.98 significantly only in one

month, and the rest months are not affected. Similarly, P5’s efficiency decreases
significantly only in 6 months. Thus, the average cost of goods sold has a
significant impact on efficiency score.

(4) When deleting "production output": P2’s efficiency values are reduced by about
50%, P6 was about 30%, P7 was about 77%, P8 was about 10%, P9 was about 30 %,
and P10 was about 40%. Moreover, P3’s efficiency decreases significantly only in 9
months, which are among 0.93-0.97. Hence, the production output also has a
significant impact on efficiency score.

(5) When deleting "average OEE": P4’s efficiency decreases significantly in 2 months,
which are among 0.98-0.99. Its efficiency scores are not affected for the rest of
months. So the average OEE is the advantage to enhance the overall efficiency.

(6) When deleting "production cycle time": P4’s efficiency decreases to 0.98
significantly in one month, and the rest are not affected. So the production cycle
time is the advantage to enhance the overall efficiency.

(7) When deleting "production ratio": P4’s efficiency decreases to 0.99 significantly in
2 months, and the rest are not affected. So the production ratio is the advantage to
enhance the overall efficiency.

Therefore when deleting average employee number, labor hour and production output,
more than half of factories are affected (P2, P6, P7, P8, P9 and P10) and their efficiency scores
decrease. Accordingly, these three variables are advantages enhancing the overall efficiency.

4.4 Malmquist Analysis
Finally, Malmquist productivity measure was used by this study to compare the efficiency
value of each factory at different times. Table 3 shows the result of total factor productivity
change (TFPC), technical efficiency change (TEC), and technical change (TC) in assembly
factories.

Factory TFPC, TEC, TC
P1 TFPC ↑, TEC ↑, TC ↑
P2 TFPC ↑, TEC ↑, TC ↑
P3 TFPC ↑, TEC ↑, TC ↑
P4 TFPC ↑, TEC ↑, TC ↑
P5 TFPC ↑, TEC ↑, TC ↑
P6 TFPC ↓, TEC ↓, TC ↓
P7 TFPC ↑, TEC ↑, TC ↑
P8 TFPC ↓, TEC ↑, TC ↓
P9 TFPC ↓, TEC ↓, TC ↓

P10 TFPC ↓, TEC ↓, TC ↑
Table 3. The Malmquist Productivity Measure results of each assembly factory
Note: ↑represents progress; ↓represents backward

According to the results of Table 3, plants P1, P2, P3, P4, P5, and P7 have TFPC sustained
progress, showing an improvement in productivity. On the other hand, plants P6, P8, P9
and P10 show a backward trend, which means the recession in productivity. Moreover,
plants P1, P2, P3, P4, P5, P7 and P8 have enhancing changes in technical efficiency, showing

Measurement of Production Efficiency in Semiconductor Assembly House:
Approach of Data Envelopment Analysis 473

imbalance between average employee number and average labor hours. After adjusting the
related imbalanced variables, the overall relative efficiency was recovered to 1. Meanwhile,
plant P8 has similar situation like plant P4. It had technical and scale inefficiency from
March to July in 2005 and the rest had the overall relative efficiency of 1. After adjusting
related variables, the overall relative efficiency can be recovered to 1. Similar implication can
be inferred for plant P10. Therefore, although each factory couldn’t use input resource
effectively to achieve the output with scale efficiency in a short time, it can still achieve
efficiency if related variables were adjusted. This information provides an important
managerial impact on resource control of manufacturing plants.

4.2 Analysis of Slacks and Returns to Scale
We further performed the analysis of slack variables to understand the improvements of
inefficient DMUs on inputs. Meanwhile, returns to scale analysis was applied to identify
whether a proportional change in inputs result in the same proportional change in outputs.
IRS indicates that proportional changes in inputs result in a more than proportional changes
in outputs. On the other hand, DRS implies the opposite changes in outputs. Therefore, after
analysis of slacks and returns to scale, this study summarizes the influential elements of the
efficiency in each inefficient factory as follows:

(1) P1 is DRS, which should be improved through reducing its input of resources,
especially the control of employee number and labor hours.

(2) P6 is DRS, which should be improved through reducing its input of resources,
especially the control of employee number.

(3) P8 is DRS, which should be improved through reducing its input of resources,
especially the control of employee number and labor hour.

(4) P9 is DRS, which should be improved through reducing its input of resources,
especially the control of labor hour.

(5) P10 is DRS, which should be improved through reducing its input of resources,
especially the control of employee number and average cost of goods sold.

4.3 Sensitivity Analysis
The sensitivity analysis is mainly to get CCR overall efficiency of each assessed factory
through respectively removing inputs and outputs. The resulted value is compared with the
original input-output efficiency. Sensibility analysis can be used to understand the impact of
each variable on efficiency and to find out the sources of efficiency and inefficiency for each
unit assessed. After sensitive analysis, the findings of this study are as follows:

(1) When deleting "average employee number": P8’s efficiency is significantly
reduced by about 10%, so average employee number is the advantage to enhance
the overall efficiency. P4’s efficiency decreases significantly only in 6 months. Its
efficiency scores are among 0.98-0.99, which results in decreased overall efficiency.

(2) When deleting "average labor hour": The efficiency scores of P6, P8, and P10 are
reduced by 1%, 1% and 5% respectively. Because plant P4’s efficiency decreases
significantly only in 3 months, it can explore whether the labor hour is excessive
in the period.

(3) When deleting "average cost of goods sold": P2’s efficiency values are reduced by
about 15%. Meanwhile, P4’s efficiency decreases to 0.98 significantly only in one

month, and the rest months are not affected. Similarly, P5’s efficiency decreases
significantly only in 6 months. Thus, the average cost of goods sold has a
significant impact on efficiency score.

(4) When deleting "production output": P2’s efficiency values are reduced by about
50%, P6 was about 30%, P7 was about 77%, P8 was about 10%, P9 was about 30 %,
and P10 was about 40%. Moreover, P3’s efficiency decreases significantly only in 9
months, which are among 0.93-0.97. Hence, the production output also has a
significant impact on efficiency score.

(5) When deleting "average OEE": P4’s efficiency decreases significantly in 2 months,
which are among 0.98-0.99. Its efficiency scores are not affected for the rest of
months. So the average OEE is the advantage to enhance the overall efficiency.

(6) When deleting "production cycle time": P4’s efficiency decreases to 0.98
significantly in one month, and the rest are not affected. So the production cycle
time is the advantage to enhance the overall efficiency.

(7) When deleting "production ratio": P4’s efficiency decreases to 0.99 significantly in
2 months, and the rest are not affected. So the production ratio is the advantage to
enhance the overall efficiency.

Therefore when deleting average employee number, labor hour and production output,
more than half of factories are affected (P2, P6, P7, P8, P9 and P10) and their efficiency scores
decrease. Accordingly, these three variables are advantages enhancing the overall efficiency.

4.4 Malmquist Analysis
Finally, Malmquist productivity measure was used by this study to compare the efficiency
value of each factory at different times. Table 3 shows the result of total factor productivity
change (TFPC), technical efficiency change (TEC), and technical change (TC) in assembly
factories.

Factory TFPC, TEC, TC
P1 TFPC ↑, TEC ↑, TC ↑
P2 TFPC ↑, TEC ↑, TC ↑
P3 TFPC ↑, TEC ↑, TC ↑
P4 TFPC ↑, TEC ↑, TC ↑
P5 TFPC ↑, TEC ↑, TC ↑
P6 TFPC ↓, TEC ↓, TC ↓
P7 TFPC ↑, TEC ↑, TC ↑
P8 TFPC ↓, TEC ↑, TC ↓
P9 TFPC ↓, TEC ↓, TC ↓

P10 TFPC ↓, TEC ↓, TC ↑
Table 3. The Malmquist Productivity Measure results of each assembly factory
Note: ↑represents progress; ↓represents backward

According to the results of Table 3, plants P1, P2, P3, P4, P5, and P7 have TFPC sustained
progress, showing an improvement in productivity. On the other hand, plants P6, P8, P9
and P10 show a backward trend, which means the recession in productivity. Moreover,
plants P1, P2, P3, P4, P5, P7 and P8 have enhancing changes in technical efficiency, showing

Engineering the Computer Science and IT474

an improvement in technical efficiency. But plants P6, P9 and P10 have recession in technical
efficiency with no improvement in TEC. Besides, plants P1, P2, P3, P4, P5, P7 and P10 have
enhancing technical changes, showing an improvement in production technology. However,
plants P6, P8, P9 and P10 have recession in production technology with no improvement
in TC.

4.5 Summary
This study conducted efficiency analysis, returns to scale analysis, analysis of slacks
variable, sensitivity analysis and Malmquist productivity index analysis to assess the
efficiency of 10 semiconductor assembly factories. The results are summarized as follows:

(1) Efficiency analysis: Plants P2, P3, P4, P5, and P7 have efficiency in 24 months. But
plants P1, P6, P8, P9, and P10 have scale inefficiency in 24 months. Besides, plants
P8 and P10 have a total of five months with technical and scale inefficiency.

(2) Analysis of slacks variable and returns to scale: plants P2, P3, P4, P5 and P7 have
achieved returns to scale while plants P1, P6, P8, P9 and P10 are DRS.

(3) Sensitivity analysis: when deleting "production output", plants P2, P6, P7, P8, P9
and P10 have significantly decreased efficiency scores.

(4) Malmquist productivity index analysis: plants P1, P2, P3, P4, P5, and P7 have
continued progress in TFPC, showing an improvement in productivity. But plants
P6, P8, P9 and P10 have backward trend, which means the productivity has
recession.

5. Conclusions
According to our empirical test in a semiconductor assembly house, this study found that
the applications of DEA method could improve the shortcomings of single performance
measurements with the considerations of influential inputs and outputs during the
manufacturing processes. DEA approach also proves to provide constructive suggestions to
enhance resource allocation. For example in our case company, the managers can reduce the
corresponding resource if the employee number or labor hour is found over-allocated from
DEA results. Together with the Malmquist productivity measure, engineers are able to
assess the patterns of productivity change after strategy shifts. This also helps management
to evaluate whether or not such shifts are making progress. As for future studies, the same
research methods and input elements could be used to assess the efficiency among different
semiconductor assembly plants for the other company. Robustness of DEA approach for
semiconductor assembly house can be verified then. More important factors may be
included in DEA models to enhance its practicability for semiconductor assembly house.
Models other than CCR and BCC can be explored to extend the explanation power of DEA
approach.

6. References

Banker, R. D.; Charnes, A. & Cooper, W. W. (1984). Some models for estimating technical
and scale inefficiencies in data envelopment analysis. Management Science, Vol. 30,
No. 9, pp. 1078-1092.

Beeg, T. (2004). Wafer fab cycle forecast under changing loading situations, IEEE/SEMI
Advanced Semiconductor Manufacturing Conference and workshop, pp. 339-343, May
2004.

Charnes, A.; Cooper, W. W. & Rhodes, E. (1978). Measuring the efficiency of decision
making units. European Journal of Operational Research, Vol. 2, No. 6, pp. 29-444.

Ertray, T. & Ruan, D. (2005). Data envelopment analysis based decision model for optimal
operator allocation in CMS. European Journal of Operational Research, Vol. 164, pp.
800-810.

Golany, B. & Roll, Y. (1989). An application procedure for DEA. OMEGA: International
Journal of Management Science, Vol. 17, No, 3, pp. 237-250.

Hosseinzadeh, F. & Ghasemi, M. V. (2007). Malmquist productivity index on interval data in
telecommunication firms, application of data envelopment analysis. Applied
Mathematical Sciences, Vol. 1, No. 15, pp. 711-722.

Konopka, J. (1996). Improving output in semiconductor manufacturing environments. Ph.
D. Dissertation, Arisona Graduate College.

Leachman, R. C. (1995), Benchmarking manufacturing performance in the semiconductor
industry. Production and Operations Management, Vol. 4, No. 3, pp. 201-216.

Leachman, R. C. & Hodges, D. A. (1996). Benchmarking semiconductor manufacturing, IEEE
Transaction on Semiconductor Manufacturing, Vol. 7, pp. 158-169.

Liu, F. H. & Wang, P. H. (2007). DEA Malmquist productivity measure: Taiwanese
semiconductor companies. International Journal of Production Economics, Vol. 112,
367-379.

Nakajima, S. (1988). Introduction to total Productive Maintenance, Productivity Press,
Cambridge, MA.

Pan, W., Feng, Y., Huang, Y., and Chen, Y. (2008). Performance review of Taiwanese IC
design industry: DEA-based Malmquist productivity measure. WSEAS Transactions
on Computers, Vol. 7, No. 8, pp. 1291-1299.

SEMI, (1999). Standard for definition and measurement of equipment reliability, availability,
and maintainability.

Shang, J. & Sueyoshi, T. (1995). Theory and methodology: A unified framework for the
selection of a flexible manufacturing system. European Journal of Operational
Research, Vol. 85, pp. 297-315.

Thomas, H. R. (2000). Schedule acceleration, work flow, and labour productivity. Journal of
Construction Engineering and Management, Vol. 123 No. 2, pp. 181-8.

Thore, S. P. F.; Ruefli, T. W. & Yue, P. (1996). DEA and the management of the product cycle:
The U.S. computer industry, Computer Ops Res., Vol. 23, No. 4, pp. 341-356.

Measurement of Production Efficiency in Semiconductor Assembly House:
Approach of Data Envelopment Analysis 475

an improvement in technical efficiency. But plants P6, P9 and P10 have recession in technical
efficiency with no improvement in TEC. Besides, plants P1, P2, P3, P4, P5, P7 and P10 have
enhancing technical changes, showing an improvement in production technology. However,
plants P6, P8, P9 and P10 have recession in production technology with no improvement
in TC.

4.5 Summary
This study conducted efficiency analysis, returns to scale analysis, analysis of slacks
variable, sensitivity analysis and Malmquist productivity index analysis to assess the
efficiency of 10 semiconductor assembly factories. The results are summarized as follows:

(1) Efficiency analysis: Plants P2, P3, P4, P5, and P7 have efficiency in 24 months. But
plants P1, P6, P8, P9, and P10 have scale inefficiency in 24 months. Besides, plants
P8 and P10 have a total of five months with technical and scale inefficiency.

(2) Analysis of slacks variable and returns to scale: plants P2, P3, P4, P5 and P7 have
achieved returns to scale while plants P1, P6, P8, P9 and P10 are DRS.

(3) Sensitivity analysis: when deleting "production output", plants P2, P6, P7, P8, P9
and P10 have significantly decreased efficiency scores.

(4) Malmquist productivity index analysis: plants P1, P2, P3, P4, P5, and P7 have
continued progress in TFPC, showing an improvement in productivity. But plants
P6, P8, P9 and P10 have backward trend, which means the productivity has
recession.

5. Conclusions
According to our empirical test in a semiconductor assembly house, this study found that
the applications of DEA method could improve the shortcomings of single performance
measurements with the considerations of influential inputs and outputs during the
manufacturing processes. DEA approach also proves to provide constructive suggestions to
enhance resource allocation. For example in our case company, the managers can reduce the
corresponding resource if the employee number or labor hour is found over-allocated from
DEA results. Together with the Malmquist productivity measure, engineers are able to
assess the patterns of productivity change after strategy shifts. This also helps management
to evaluate whether or not such shifts are making progress. As for future studies, the same
research methods and input elements could be used to assess the efficiency among different
semiconductor assembly plants for the other company. Robustness of DEA approach for
semiconductor assembly house can be verified then. More important factors may be
included in DEA models to enhance its practicability for semiconductor assembly house.
Models other than CCR and BCC can be explored to extend the explanation power of DEA
approach.

6. References

Banker, R. D.; Charnes, A. & Cooper, W. W. (1984). Some models for estimating technical
and scale inefficiencies in data envelopment analysis. Management Science, Vol. 30,
No. 9, pp. 1078-1092.

Beeg, T. (2004). Wafer fab cycle forecast under changing loading situations, IEEE/SEMI
Advanced Semiconductor Manufacturing Conference and workshop, pp. 339-343, May
2004.

Charnes, A.; Cooper, W. W. & Rhodes, E. (1978). Measuring the efficiency of decision
making units. European Journal of Operational Research, Vol. 2, No. 6, pp. 29-444.

Ertray, T. & Ruan, D. (2005). Data envelopment analysis based decision model for optimal
operator allocation in CMS. European Journal of Operational Research, Vol. 164, pp.
800-810.

Golany, B. & Roll, Y. (1989). An application procedure for DEA. OMEGA: International
Journal of Management Science, Vol. 17, No, 3, pp. 237-250.

Hosseinzadeh, F. & Ghasemi, M. V. (2007). Malmquist productivity index on interval data in
telecommunication firms, application of data envelopment analysis. Applied
Mathematical Sciences, Vol. 1, No. 15, pp. 711-722.

Konopka, J. (1996). Improving output in semiconductor manufacturing environments. Ph.
D. Dissertation, Arisona Graduate College.

Leachman, R. C. (1995), Benchmarking manufacturing performance in the semiconductor
industry. Production and Operations Management, Vol. 4, No. 3, pp. 201-216.

Leachman, R. C. & Hodges, D. A. (1996). Benchmarking semiconductor manufacturing, IEEE
Transaction on Semiconductor Manufacturing, Vol. 7, pp. 158-169.

Liu, F. H. & Wang, P. H. (2007). DEA Malmquist productivity measure: Taiwanese
semiconductor companies. International Journal of Production Economics, Vol. 112,
367-379.

Nakajima, S. (1988). Introduction to total Productive Maintenance, Productivity Press,
Cambridge, MA.

Pan, W., Feng, Y., Huang, Y., and Chen, Y. (2008). Performance review of Taiwanese IC
design industry: DEA-based Malmquist productivity measure. WSEAS Transactions
on Computers, Vol. 7, No. 8, pp. 1291-1299.

SEMI, (1999). Standard for definition and measurement of equipment reliability, availability,
and maintainability.

Shang, J. & Sueyoshi, T. (1995). Theory and methodology: A unified framework for the
selection of a flexible manufacturing system. European Journal of Operational
Research, Vol. 85, pp. 297-315.

Thomas, H. R. (2000). Schedule acceleration, work flow, and labour productivity. Journal of
Construction Engineering and Management, Vol. 123 No. 2, pp. 181-8.

Thore, S. P. F.; Ruefli, T. W. & Yue, P. (1996). DEA and the management of the product cycle:
The U.S. computer industry, Computer Ops Res., Vol. 23, No. 4, pp. 341-356.

Engineering the Computer Science and IT476

Portable ID Management Framework for Security Enhancement of Virtual Machine Monitors 477

Portable ID Management Framework for Security Enhancement of
Virtual Machine Monitors

Manabu Hirano, Takeshi Okuda, Eiji Kawai, Takahiro Shinagawa, Hideki Eiraku, Kouichi
Tanimoto, Shoichi Hasegawa, Takashi Horie, Seiji Mune, Kazumasa Omote, Kenichi
Kourai, Yoshihiro Oyama, Kenji Kono, Shigeru Chiba, Yasushi Shinjo, Kazuhiko Kato and
Suguru Yamaguchi

X

Portable ID Management Framework for Security
Enhancement of Virtual Machine Monitors

Manabu Hirano1), Takeshi Okuda2), Eiji Kawai9),

Takahiro Shinagawa3), Hideki Eiraku3), Kouichi Tanimoto3),
Shoichi Hasegawa3), Takashi Horie3), Seiji Mune3), Kazumasa Omote4),

Kenichi Kourai5), Yoshihiro Oyama6), Kenji Kono7), Shigeru Chiba8),
Yasushi Shinjo3), Kazuhiko Kato3), and Suguru Yamaguchi2)

1) Toyota National College of Technology,
2) Nara Institute of Science and Technology (NAIST),

3) University of Tsukuba, 4) Japan Institute of Science and Technology (JAIST),
 5) Kyusyu Institute of Technology, 6) The University of Electro-communications,

7) Keio University, 8) Tokyo Institute of Technology,
9) National Institute of Information and Communications Technology

Japan

1. Introduction

Most governmental and commercial organizations are processing a massive amount of data
everyday. In such organizations, end-users' computers are physically distributed and they
can be moved outside of organizations. Therefore, it is difficult to monitor, and enforce
security policies to these distributed end-users’ computers. Although a security
administrator in organizations can install monitoring software, an end-user can remove and
bypass this kind of software on conventional operating systems. Most existing commercial
operating systems cannot enforce a mandatory security policy to end-users. This chapter
shows a security policy enforcement mechanism based on a virtual machine monitor
(VMM).

A VMM is a technology to encapsulate an operating system, which was originally
developed for mainframe computers like IBM VM/370 (Seawright & MacKinnon, 1979).
Original VMM mechanism was intended to support legacy software of mainframe
computers in new hardware. An ideal VMM technology provides complete isolation of
virtual machines (VMs) (Madnick & Donovan, 1973). This feature enables us to separate
domains with different security levels in a same physical machine. A layer of a VMM can,
without modifying a guest operating system, provide useful and strong security functions
transparently for client and server computers. We call this kind of VMM system ``a secure
VMM''. A concept of a secure VMM is useful to insert a security layer without modifying
existing operating systems. In this chapter, we use terms, both VMM and hypervisor, to

24

Engineering the Computer Science and IT478

express this mediation software. In particular, a hypervisor means a bare-metal VMM which
does not need a host operating system.

In recent research, some VMM systems designed for security-purposes have been proposed
as follows.

sHype. sHype (Secure Hypervisor) (Sailer et al., 2005) is developed by IBM Research. The
purpose of the sHype project is to construct a secure foundation for server platforms. sHype
provides an access control and an isolation mechanism of virtual resources in hypervisor
software. sHype is intended to provide a mandatory access control (MAC) for inter-VM
communication of server VM coalitions. sHype is implemented on Xen hypervisor and
rHype (Research Hypervisor). sHype implementation supports some major security policy
mechanisms such as Chinese wall policy and the simple Type Enforcement (TE) policy.
Main components of sHype are an access control module for virtual resources and inter-VM
communication, hypervisor mediation hooks, callback functions and a policy management
VM.

NetTop. NetTop is designed by NSA (Meushaw & Simard, 2000). NetTop is constructed
with commercial off-the-shelf technology, VMware products and SELinux as a host
operating system. NetTop provides security mechanisms using isolation of VMs, and it is
based on reliability of a host operating system and VMM software. NetTop project also
states the importance of trusted BIOS because all host platform security is dependent on an
initial boot-up process. NetTop can provide a transparent VPN VM and a Filtering VM to
protect and filter communication channels of end-users’ OS like Microsoft Windows.
NetTop is intended to be deployed in a governmental environment. NetTop also provides a
secure data transfer mechanism, called the “Regrade” server protocol, between two VMs
with different security levels. The regrade server achieves data transfer based on a token-
based user identity and a regrade policy. It can also check and sanitize malicious content,
and record audit logs. NetTop also provides a transparent storage encryption service.

Terra. Terra architecture provides a trusted virtual machine monitor (TVMM) that isolates
and protects each virtual machine (Garfinkel et al., 2003). Terra architecture is designed to
construct a trusted computing platform based on a VMM technology. Terra architecture
supports a remote attestation mechanism to establish a trusted path. The trusted path is
achieved by attestation certificate chains for BIOS, a boot loader and a VM image. Terra also
supports an encrypted disk and an integrity-checked disk in the VMM layer. A prototype
implementation of Terra architecture employs the VMware ESX server product and python
scripts.

BitVisor. We are developing novel secure VMM software called BitVisor (Shinagawa et al.,
2009). The first version of BitVisor has been released to the public in March 2008. BitVisor
has been developed by 6 universities and college, companies with the help of NISC
(National Information Security Center), Japan. BitVisor can be downloaded as complete
source codes. Developers can download and extend source codes of this novel security
software. BitVisor provides transparent security functions like a built-in IPsec-VPN module
with IKEv1 (RFC4301 and RFC2409) and a storage encryption module based on XTS-AES
algorithm (IEEE1619 standard) in the VMM layer. The IPsec-VPN module enables users to
establish VPN without modifying guest operating systems. The IPsec-VPN module provides

Portable ID Management Framework for Security Enhancement of Virtual Machine Monitors 479

express this mediation software. In particular, a hypervisor means a bare-metal VMM which
does not need a host operating system.

In recent research, some VMM systems designed for security-purposes have been proposed
as follows.

sHype. sHype (Secure Hypervisor) (Sailer et al., 2005) is developed by IBM Research. The
purpose of the sHype project is to construct a secure foundation for server platforms. sHype
provides an access control and an isolation mechanism of virtual resources in hypervisor
software. sHype is intended to provide a mandatory access control (MAC) for inter-VM
communication of server VM coalitions. sHype is implemented on Xen hypervisor and
rHype (Research Hypervisor). sHype implementation supports some major security policy
mechanisms such as Chinese wall policy and the simple Type Enforcement (TE) policy.
Main components of sHype are an access control module for virtual resources and inter-VM
communication, hypervisor mediation hooks, callback functions and a policy management
VM.

NetTop. NetTop is designed by NSA (Meushaw & Simard, 2000). NetTop is constructed
with commercial off-the-shelf technology, VMware products and SELinux as a host
operating system. NetTop provides security mechanisms using isolation of VMs, and it is
based on reliability of a host operating system and VMM software. NetTop project also
states the importance of trusted BIOS because all host platform security is dependent on an
initial boot-up process. NetTop can provide a transparent VPN VM and a Filtering VM to
protect and filter communication channels of end-users’ OS like Microsoft Windows.
NetTop is intended to be deployed in a governmental environment. NetTop also provides a
secure data transfer mechanism, called the “Regrade” server protocol, between two VMs
with different security levels. The regrade server achieves data transfer based on a token-
based user identity and a regrade policy. It can also check and sanitize malicious content,
and record audit logs. NetTop also provides a transparent storage encryption service.

Terra. Terra architecture provides a trusted virtual machine monitor (TVMM) that isolates
and protects each virtual machine (Garfinkel et al., 2003). Terra architecture is designed to
construct a trusted computing platform based on a VMM technology. Terra architecture
supports a remote attestation mechanism to establish a trusted path. The trusted path is
achieved by attestation certificate chains for BIOS, a boot loader and a VM image. Terra also
supports an encrypted disk and an integrity-checked disk in the VMM layer. A prototype
implementation of Terra architecture employs the VMware ESX server product and python
scripts.

BitVisor. We are developing novel secure VMM software called BitVisor (Shinagawa et al.,
2009). The first version of BitVisor has been released to the public in March 2008. BitVisor
has been developed by 6 universities and college, companies with the help of NISC
(National Information Security Center), Japan. BitVisor can be downloaded as complete
source codes. Developers can download and extend source codes of this novel security
software. BitVisor provides transparent security functions like a built-in IPsec-VPN module
with IKEv1 (RFC4301 and RFC2409) and a storage encryption module based on XTS-AES
algorithm (IEEE1619 standard) in the VMM layer. The IPsec-VPN module enables users to
establish VPN without modifying guest operating systems. The IPsec-VPN module provides

encrypted communication and mutual authentication functions between distributed end-
point computers and a VPN gateway. The transparent storage encryption function can force
the use of encrypted storages (ex. ATA hard disk drives and USB thumb drives) in end-
point computers to prevent information leak cases.

As described above, there are many secure VMM systems. This chapter presents a portable
ID management framework for secure VMM systems. The proposed ID management
framework provides useful services to VMM software. For instance, the proposed portable
ID management framework provides a user authentication function using PKI-based ID
cards and a user ID based authorization function for transparent security services in a VMM
layer.

In the following sections, we first describe a basic concept of a secure VMM. Then, we show
a design and a prototype implementation of the proposed portable ID management
framework for secure VMM systems. Then, we present our novel secure VMM software
called BitVisor and its integration with the proposed portable ID management framework.

2. Overview of Secure VMM Systems

Security frameworks using a VMM technology are based on an isolation mechanism of that
technology. Each VM works on same VMM cannot influence the other VMs. For this
mechanism, we can separate the purpose of each isolated VM. For example, one VM can
connect to the Internet, but another VM can restrict network connections except for intranet
accesses. NetTop takes this approach to reduce the number of physical machines for
different purposes and different security levels in a governmental environment. We can
construct isolated domains with different security levels as different VMs using the VMM
technology.

NetTop and Terra support a transparent storage encryption mechanism. The advantage of
this mechanism is that it does not require modifying the guest operating system. The secure
VMM layer can provide storage encryption and decryption automatically. Even a guest
operating system is attacked; an encryption key is not leaked – on the assumption that a
secure VMM layer is strongly protected from untrusted guest operating systems and other
malicious actions. NetTop also provides a transparent VPN function for guest operating
systems using a VPN gateway VM. It has the same effect as two physical separated
machines, an end-user machine and an administrator-controlled VPN gateway server
machine.

Figure 1 illustrates a basic concept of a secure VMM architecture. Secure VMM systems have
the following features: (1) thin, light-weight, and minimum overhead for security processing
with high performance and high testability; (2) a trusted bootstrap architecture and an
attestation mechanism for each component (e.g. BIOS codes, a boot-loader, VMM software
and VM images). We need a measured launch mechanism using Intel’s TXT (Trusted
Execution Technology) hardware, formerly known as LaGrande, and TPM (Trusted
Platform Module) chip to check software integrity at the boot time; (3) a strong isolation
mechanism for each VM; (4) a mandatory access control (MAC) function based on an access
control list (ACL) or a security policy (e.g. the Chinese wall policy and the Type

Engineering the Computer Science and IT480

Enforcement policy). The MAC function basically consists of a policy decision point (PDP), a
policy enforcement point (PEP; i.e. hook points for virtual/physical resources), and a policy
management function to update distributed policy files; (5) transparent security functions
like automatic storage encryption and encrypted communication channel using a VPN
function; and (6) a protection mechanism against run-time attacks to VMM software.

VMM

Hook points for
virtual/physical

resources Policy decision point

Policy manager

VMM core functions
(resource mediation mechanisms for multiple VMs)

Guest OS #1

VM #1

Guest OS #1 Guest OS #1

Physical hardware

(3) Strong isolation of VMs

Policy enforcement point

Accesses for physical
hardware resources

Intel’s TXT hardware

TPM chip

(2) Trusted bootstrap
architecture

(measured launch
mechanism)

(4) MAC

(5) Transparent
security

functions

(6) Protection
mechanisms

against run-time
attacks

(1) Thin and light weight VMM

VM #1 VM #1

Fig. 1. Basic concept of a secure VMM architecture

A key component of secure VMM systems is MAC functions. The secure VMM software can
control virtual/physical resources of each VM. In this chapter, the word resource refers to
devices like a NIC which handles network packets and a USB thumb drive which holds a
user’s data. As shown in Figure 1, secure VMM systems hooks I/O data of these devices and
they enforce security policies in the PEP. The policy manager updates and validates a
security policy which is distributed by a central policy distribution server in an organization.
The PDP processes an authorization decision for VM operations and sends the result to the
PEP. Finally, the PEP enforces security policies based on retrieved authorization result.

The foundation of a MAC function is dependent on there being only one administrator that
can access a management function of a secure VMM system. We have to prevent that an
end-user cannot bypass the administrator-controlled secure VMM layer. Secure VMM
systems provides a policy enforcement mechanism for end-users’ computers based on above
methods.

3. ID Management Problems in a VMM Layer

In existing secure VMM systems, a VM entity is identified by VMM software, and a secure
VMM enforces a security policy based on the each VM identity (VM ID). However, to
deploy a secure VMM system as a policy enforcement mechanism, we need to manage a
user-identity in a secure VMM system. Figure 2 shows access control models of a secure
VMM system. The figure (A) shows an access control model based on a VM ID only. The
figure (B) shows an access control model based on both a VM ID and a user identity (User

Portable ID Management Framework for Security Enhancement of Virtual Machine Monitors 481

Enforcement policy). The MAC function basically consists of a policy decision point (PDP), a
policy enforcement point (PEP; i.e. hook points for virtual/physical resources), and a policy
management function to update distributed policy files; (5) transparent security functions
like automatic storage encryption and encrypted communication channel using a VPN
function; and (6) a protection mechanism against run-time attacks to VMM software.

VMM

Hook points for
virtual/physical

resources Policy decision point

Policy manager

VMM core functions
(resource mediation mechanisms for multiple VMs)

Guest OS #1

VM #1

Guest OS #1 Guest OS #1

Physical hardware

(3) Strong isolation of VMs

Policy enforcement point

Accesses for physical
hardware resources

Intel’s TXT hardware

TPM chip

(2) Trusted bootstrap
architecture

(measured launch
mechanism)

(4) MAC

(5) Transparent
security

functions

(6) Protection
mechanisms

against run-time
attacks

(1) Thin and light weight VMM

VM #1 VM #1

Fig. 1. Basic concept of a secure VMM architecture

A key component of secure VMM systems is MAC functions. The secure VMM software can
control virtual/physical resources of each VM. In this chapter, the word resource refers to
devices like a NIC which handles network packets and a USB thumb drive which holds a
user’s data. As shown in Figure 1, secure VMM systems hooks I/O data of these devices and
they enforce security policies in the PEP. The policy manager updates and validates a
security policy which is distributed by a central policy distribution server in an organization.
The PDP processes an authorization decision for VM operations and sends the result to the
PEP. Finally, the PEP enforces security policies based on retrieved authorization result.

The foundation of a MAC function is dependent on there being only one administrator that
can access a management function of a secure VMM system. We have to prevent that an
end-user cannot bypass the administrator-controlled secure VMM layer. Secure VMM
systems provides a policy enforcement mechanism for end-users’ computers based on above
methods.

3. ID Management Problems in a VMM Layer

In existing secure VMM systems, a VM entity is identified by VMM software, and a secure
VMM enforces a security policy based on the each VM identity (VM ID). However, to
deploy a secure VMM system as a policy enforcement mechanism, we need to manage a
user-identity in a secure VMM system. Figure 2 shows access control models of a secure
VMM system. The figure (A) shows an access control model based on a VM ID only. The
figure (B) shows an access control model based on both a VM ID and a user identity (User

ID). In the latter case, secure VMM software first authenticates a user and identified her or
his user ID. Then, secure VMM software enforces a security policy using the user ID.

In the conventional system like the figure (A), a user authentication mechanism is still
dependent on a guest operating system (e.g. Windows Logon and UNIX-like OS’s password
mechanism). Conventional secure VMM systems cannot handle the mapping between a VM
ID and a user ID of a guest OS. From the usability and the security, ID management
mechanisms on multiple guest operating systems on multiple VMs are not efficient, because
the administrator have to maintain multiple user IDs on multiple guest operating systems
on each VM.

 VM #1 VM #2

Access control
based on

a VM ID only

Secure VMM

(a) Access control based on a VM ID

Accesses for virtual resources

Accesses for physical resources

VM #1 VM #2

Secure VMM

(b) Access control based on
a user ID and a VM ID

Accesses for virtual resources

Accesses for physical resources

Secure VMM authenticates users

Access control based on
both a user ID and a VM ID

PEP PEP

Fig. 2. Access control models of a secure VMM system

Secure VMM layer can provide many security functions transparently to upper guest
operating systems. Employing user identification and authentication in a VMM layer has
many advantages. First, a secure VMM will be able to control many VMM functions based
on a user ID, like a VM boot operation and disk encryption. Furthermore, access control of
virtual/physical devices will be effective using an authenticated user ID because a security
administrator in most organizations prefers a user ID-based authorization, instead of a VM
ID-based authorization only. The user ID-based authorization also enables a secure VMM to
record audit logs based on the user ID. An audit log is an essential component of security
systems. Audit logs also achieve non-repudiation of users’ actions on an administrator-
controlled secure VMM system. In the following sections, we describe a method to integrate
a proposed portable ID management framework based on a PKI-based smart card (ID card)
into secure VMM systems.

4. Portable ID Management Framework for Secure VMM Systems

Figure 3 shows a design of the proposed portable ID management framework for secure
VMM systems. We assume that each employees of an organization has their PKI-based ID
cards. We mainly employ PKI technology to manage an employee’s identity of an
organization. For instance, governments in Belgium, France and many countries are
considering a national ID card system based on PKI to authenticate citizens’ identities. ID
management based on a PKI technology is growing in the public sector world wide. We

Engineering the Computer Science and IT482

show a method to integrate PKI-based authentication and authorization mechanisms into
secure VMM systems to enforce security policies for distributed end-users’ computers.

 Our proposed smart card stores the secure VMM application we developed. Middleware
layers in a secure VMM system support PKCS#11 APIs, PC/SC (Personal Computer/Smart
Card) APIs, and the minimum cryptographic APIs. The proposed portable ID management
framework libraries also include a USB CCID (Chip/smart Card Interface Devices) device
driver for generic smart card readers. The secure VMM ID management library provides
user authentication functions based on PKI-based ID card and authorization functions based
on a security policy. The proposed ID management framework libraries also provide a
standard ID/password authentication API. These functions can be used to authorize VM
operations based on an authenticated user ID.

Secure VMM
ID management library

PKCS #11
library
PC/SC
library

USB CCID
smart card driver

VM

VMM
operations

Security policy
enforcement and

access control
for I/O devices

PEP
(Security hooks
for I/O devices)

PKCSVM

CRLSVM

User ID based authorization
User ID based
authorization

Secure VMM

VM boot management

Storage
encryption and
VPN functions

PKCUSER PrivateKeyUSER

EncryptionKeys AuthKeys

Smart card communication channel via a smart card reader (APDU exchange)

Secure VMM
application

ID management framework libraries
Data area to be protected

Smart card

Fig. 3. Design of the portable ID management framework for secure VMM systems

In addition, the secure VMM software can enforce storage encryption/decryption services
to guest operating systems transparently. An encryption key (EncryptionKeyUSER) is stored
in the user’s smart card. Secure VMM software encrypts and decrypts storages using the
encryption keys. Each encryption key is associated with the user’s identity. Therefore, an
attacker without a valid smart card cannot decrypt a user’s storage. Secure VMM software
also provides a VPN service in hook points of a physical NIC device. PKI-based
authentication functions can be used for the initial user authentication between a user’s
machine and a VPN gateway machine.

Figure 4 shows the details of user authentication of the proposed ID management
framework. The user authentication function employs a simple challenge and response
mechanism. First, a user inputs a PIN number of her or his smart card, and the smart card
authenticates the user. Then, authentication data are exchanged between the smart card and
the ID management framework libraries in secure VMM software. Secure VMM software
sends a challenge as R, and the smart card then returns the user’s Public Key Certificate
(PKCUSER) and the signature of R ({R}USER) generated by the user’s private key
(PrivateKeyUSER). The ID management framework libraries validate retrieved PKCUSER using

Portable ID Management Framework for Security Enhancement of Virtual Machine Monitors 483

show a method to integrate PKI-based authentication and authorization mechanisms into
secure VMM systems to enforce security policies for distributed end-users’ computers.

 Our proposed smart card stores the secure VMM application we developed. Middleware
layers in a secure VMM system support PKCS#11 APIs, PC/SC (Personal Computer/Smart
Card) APIs, and the minimum cryptographic APIs. The proposed portable ID management
framework libraries also include a USB CCID (Chip/smart Card Interface Devices) device
driver for generic smart card readers. The secure VMM ID management library provides
user authentication functions based on PKI-based ID card and authorization functions based
on a security policy. The proposed ID management framework libraries also provide a
standard ID/password authentication API. These functions can be used to authorize VM
operations based on an authenticated user ID.

Secure VMM
ID management library

PKCS #11
library
PC/SC
library

USB CCID
smart card driver

VM

VMM
operations

Security policy
enforcement and

access control
for I/O devices

PEP
(Security hooks
for I/O devices)

PKCSVM

CRLSVM

User ID based authorization
User ID based
authorization

Secure VMM

VM boot management

Storage
encryption and
VPN functions

PKCUSER PrivateKeyUSER

EncryptionKeys AuthKeys

Smart card communication channel via a smart card reader (APDU exchange)

Secure VMM
application

ID management framework libraries
Data area to be protected

Smart card

Fig. 3. Design of the portable ID management framework for secure VMM systems

In addition, the secure VMM software can enforce storage encryption/decryption services
to guest operating systems transparently. An encryption key (EncryptionKeyUSER) is stored
in the user’s smart card. Secure VMM software encrypts and decrypts storages using the
encryption keys. Each encryption key is associated with the user’s identity. Therefore, an
attacker without a valid smart card cannot decrypt a user’s storage. Secure VMM software
also provides a VPN service in hook points of a physical NIC device. PKI-based
authentication functions can be used for the initial user authentication between a user’s
machine and a VPN gateway machine.

Figure 4 shows the details of user authentication of the proposed ID management
framework. The user authentication function employs a simple challenge and response
mechanism. First, a user inputs a PIN number of her or his smart card, and the smart card
authenticates the user. Then, authentication data are exchanged between the smart card and
the ID management framework libraries in secure VMM software. Secure VMM software
sends a challenge as R, and the smart card then returns the user’s Public Key Certificate
(PKCUSER) and the signature of R ({R}USER) generated by the user’s private key
(PrivateKeyUSER). The ID management framework libraries validate retrieved PKCUSER using

a trust anchor certificate for a secure VMM (PKCSVM). The ID management framework
libraries check certificate revocation status by a Certificate Revocation List (CRLSVM). If the
authentication is successful, then a secure VMM will be able to enforce security policy based
on a user ID in the secure VMM layer. As a result, administrator-controlled secure VMM
software with the ID management framework libraries provides the fundamental part of an
end-point policy enforcement mechanism in an organization.

 ID management
framework libraries

 in secure VMM software
Smart card User

PKCSVM

CRLSVM

PKCUSER

PrivateKeyUSER

PIN authentication

sends a challenge, R

returns a signature {R}USER
and PKCUSER

returns an authentication result

User operations over the secure VMM software
Access control

based on
an authenticated

user ID

Fig. 4. User authentication between the ID management framework libraries and a user

5. Implementation of the Portable ID Management Framework Libraries

We have implemented the portable ID management framework libraries shown in Figure 3.
Table 1 shows the hardware and software environment for the implementation. Because the
portable ID management framework libraries have middleware software and device drivers
completely, the libraries can run on the hardware directly without the help of operating
systems and specific external libraries. As a result, we can integrate our portable ID
management framework libraries into any VMM and hypervisor software. We employ
eLWISE smart card manufactured by NTT Communications. The eLWISE smart cards are
employed as Japanese national ID cards (i.e. the Basic Resident Register system in Japan).
We have implemented secure VMM libraries compatible with PKCS#11 interfaces. We have
merged our portable ID management framework libraries with BitVisor.

6. BitVisor

In section 1, we have described BitVisor briefly. BitVisor is a bare metal hypervisor. In the
following sections, we use not VMM but hypervisor because BitVisor does not need host
operating system. For the same reason, we also use not secure VMM but secure hypervisor in
the following sections. BitVisor employs CPUs and chipsets supporting Intel Virtualization
Technology (Intel VT) or AMD-V. We have presented a detailed design and implementation
of BitVisor in the previous paper (Shinagawa et al., 2009). BitVisor supports both 32 bit and
64 bit mode. Current version of BitVisor can run Windows XP/Vista, Linux, and FreeBSD as
a guest OS. BitVisor can run only one guest OS at the same time. However, BitVisor achieves
very small code sizes and light weight performance. These characteristics are suitable for a

Engineering the Computer Science and IT484

foundation of security policy enforcement. This section shows highlights of BitVisor
architecture.

Smart card NTT Communications eLWISE
(ISO/IEC 14443 and 7816)

Smart card reader Axalto Reflex USB v3
 (ISO/IEC 7816)

PC Intel VT or AMD-V support
Hypervisor BitVisor
Compiler gcc

Table 1. Software and hardware used in the implementation

First, why do we need to develop a novel hypervisor for security purpose? The purpose of
BitVisor is to provide a foundation of security policy enforcement for end-point client
computers. There are several implementations of general-purpose hypervisors like Xen and
VMware. Although these hypervisors provide general purpose and stable VM execution
environments, they are not specialized for security purpose. BitVisor is originally designed
for security purpose. If a hypervisor has vulnerabilities, attackers compromise the
hypervisor and gain the control of the secure hypervisor software. Therefore, we have to
prevent attacks to hypervisors. In general, the large code size of hypervisor causes poor
testability and much vulnerability. For instance, VMKernel of VMware ESX server has 200
KLOC (Kilo-lines of codes) (VMware, 2005) and Xen hypervisor has 100 KLOC (Murray et
al., 2008). BitVisor (version 0.8) has only 30 KLOC. BitVisor employs a two-step execution
mechanism to reduce the code size of core hypervisor (Hirano et al., 2009). Thin hypervisors
like BitVisor provide the low risk of vulnerabilities and high testability.

Guest OS

BitVisor

Parapass
through
drivers

Security
services

Policy enforcement based
on each security policy and
an authenticated user ID.

Hardware

Device drivers

Data I/O and
Control I/O

Pass-through I/O
Intercepted I/O

Fig. 5. Parapass-through architecture of BitVisor

Figure 5 shows basic architecture of BitVisor. BitVisor employs parapass-through
architecture to process I/O devices. In this architecture, most accesses from a guest OS are
passed through BitVisor simply. Therefore, it can provide high performance like native
hardware. Some I/O data from specific devices are intercepted by parapass-through drivers.
BitVisor can hook I/O data and apply security policies in conjunction with the parapass-
through drivers. BitVisor can enforce security services like a storage encryption function and
a VPN function based on each security policy. Intercepted I/O are divided into data I/O

Portable ID Management Framework for Security Enhancement of Virtual Machine Monitors 485

foundation of security policy enforcement. This section shows highlights of BitVisor
architecture.

Smart card NTT Communications eLWISE
(ISO/IEC 14443 and 7816)

Smart card reader Axalto Reflex USB v3
 (ISO/IEC 7816)

PC Intel VT or AMD-V support
Hypervisor BitVisor
Compiler gcc

Table 1. Software and hardware used in the implementation

First, why do we need to develop a novel hypervisor for security purpose? The purpose of
BitVisor is to provide a foundation of security policy enforcement for end-point client
computers. There are several implementations of general-purpose hypervisors like Xen and
VMware. Although these hypervisors provide general purpose and stable VM execution
environments, they are not specialized for security purpose. BitVisor is originally designed
for security purpose. If a hypervisor has vulnerabilities, attackers compromise the
hypervisor and gain the control of the secure hypervisor software. Therefore, we have to
prevent attacks to hypervisors. In general, the large code size of hypervisor causes poor
testability and much vulnerability. For instance, VMKernel of VMware ESX server has 200
KLOC (Kilo-lines of codes) (VMware, 2005) and Xen hypervisor has 100 KLOC (Murray et
al., 2008). BitVisor (version 0.8) has only 30 KLOC. BitVisor employs a two-step execution
mechanism to reduce the code size of core hypervisor (Hirano et al., 2009). Thin hypervisors
like BitVisor provide the low risk of vulnerabilities and high testability.

Guest OS

BitVisor

Parapass
through
drivers

Security
services

Policy enforcement based
on each security policy and
an authenticated user ID.

Hardware

Device drivers

Data I/O and
Control I/O

Pass-through I/O
Intercepted I/O

Fig. 5. Parapass-through architecture of BitVisor

Figure 5 shows basic architecture of BitVisor. BitVisor employs parapass-through
architecture to process I/O devices. In this architecture, most accesses from a guest OS are
passed through BitVisor simply. Therefore, it can provide high performance like native
hardware. Some I/O data from specific devices are intercepted by parapass-through drivers.
BitVisor can hook I/O data and apply security policies in conjunction with the parapass-
through drivers. BitVisor can enforce security services like a storage encryption function and
a VPN function based on each security policy. Intercepted I/O are divided into data I/O

and control I/O. BitVisor can intercept control I/O and record it to audit logs in the
hypervisor layer. BitVisor can intercept data I/O to inspect and encrypt them.

A parapass-through driver of BitVisor has essential codes only to enforce security services.
A device driver on the guest OS executes most tasks other than security processing.
Therefore, a parapass-through driver can keep the small code size. To employ a new device
to monitor and encrypt, BitVisor needs this small parapass-through driver and its security
service library only. Other general purpose hypervisors need much larger code sizes of the
new device because of its architecture.

BitVisor also intercepts memory accesses using shadow paging to isolate memory area o f
each device. BitVisor employs a novel scheme called shadow DMA (Direct Memory Access)
descriptors. Shadow DMA descriptors enable us to intercept data transferred by a DMA
mechanism. By employing shadow DMA descriptors, we can prevent attacks using a DMA
mechanism from guest OSs.

Fig. 6. Start screen of BitVisor

Figure 6 shows a start screen of BitVisor. BitVisor has been developed by 6 universities and
college, and many companies with the help of NISC (National Information Security Center),
Japan. BitVisor can be downloaded from http://sourceforge.net/projects/bitvisor/.

7. Integration of Portable ID Management Framework and BitVisor

We have integrated the proposed portable ID management framework libraries to BitVisor.
The portable ID management framework libraries are not dependent on other external
libraries and system calls of host operating systems. Therefore, we can integrate the ID
management framework libraries into BitVisor directly. The libraries can run with bare
metal hypervisors on the hardware directly without the help of host operating systems.

Figure 7 shows the relation between the proposed portable ID management framework
libraries and security services of BitVisor. The proposed ID management framework
provides the following functions to BitVisor: (1) a PKI-based user authentication function

Engineering the Computer Science and IT486

using smart card to start a BitVisor system (a simple ID/password authentication function is
also provided), (2) a storage function of encryption keys in smart cards (BitVisor provides an
XTS-AES storage encryption service), (3) a PKI-based user authentication function using
smart cards for IPsec-VPN/IKEv1 service, and (4) a periodical checking mechanism to verify
user’s presence. The final feature can be used to detect illegal physical access to the end-
point computers. If a user removes her or his smart card from the smart card reader,
BitVisor detects it and immediately shuts down the BitVisor system.

The portable ID management framework libraries support both contact and contact-less
smart cards (ISO/IEC 7816 and 14443) for BitVisor. As shown in Figure 3, the portable ID
management framework libraries are constructed as layered libraries. If other service
provider needs to handle other smart card and reader products, the provider has to develop
a new CCID driver. If a provider needs to customize partitions of smart cards, the provider
also has to develop customized PKCS#11 libraries.

Core hypervisor

Security service
#1 IPsec-VPN with

IKEv1

Security service #2
XTS-AES storage

encryption

Security service #3
ID management

framework

Other security services:
VM boot management,
policy enforcement, etc

Intel Pro/1000 NIC
parapass-through

driver

USB UHCI and MSDs
parapass-through

driver

ATA
parapass-through

driver

Fig. 7. Portable ID management framework libraries and security services of BitVisor

8. Two-step Execution Mechanism for Thin Secure Hypervisors

This section shows a method to minimize the core portion of BitVisor software. A trusted
computing base (TCB) is a component to enhance the security of existing operating systems.
We employ hypervisors to construct a TCB. In general, the complexity of hypervisors is not
preferable to construct a TCB. Some researchers have proposed tiny hypervisors specialized
for security-purpose. Murray et al. propose a mechanism to reduce the complexity of Xen
hypervisor to construct a TCB (Murray et al., 2008). SecVisor is developed as a tiny
hypervisor that ensures code integrity for commodity OS kernels (Seshadri et al., 2007).
SecVisor has small code size, only 1,112 LOC (Lines of code), for the run-time portion using
CPU-supported virtualization. Xia et al. shows a small hypervisor called Palacious VMM
(Xia et al., 2008). Palacious VMM hooks I/O operations between device drivers on a guest
OS and physical hardware. The core of Palacious VMM has 20 KLOC and the additional
part to hook I/O operations has 10 KLOC. As described above, the code size of a TCB is one
of the important aspects to evaluate whether reliable security mechanisms or not.

We have proposed the two-step execution mechanism in the previous paper (Hirano et al.,
2009). Figure 8 shows the flow of the proposed two-step execution mechanism. Our
proposal is intended to reduce the code sizes of the run-time portion of BitVisor as possible.
Basic idea is simple, we separate a conventional hypervisor-based TCB into the following
two parts: (1) a thin hypervisor with minimum security services and (2) a special guest OS

Portable ID Management Framework for Security Enhancement of Virtual Machine Monitors 487

using smart card to start a BitVisor system (a simple ID/password authentication function is
also provided), (2) a storage function of encryption keys in smart cards (BitVisor provides an
XTS-AES storage encryption service), (3) a PKI-based user authentication function using
smart cards for IPsec-VPN/IKEv1 service, and (4) a periodical checking mechanism to verify
user’s presence. The final feature can be used to detect illegal physical access to the end-
point computers. If a user removes her or his smart card from the smart card reader,
BitVisor detects it and immediately shuts down the BitVisor system.

The portable ID management framework libraries support both contact and contact-less
smart cards (ISO/IEC 7816 and 14443) for BitVisor. As shown in Figure 3, the portable ID
management framework libraries are constructed as layered libraries. If other service
provider needs to handle other smart card and reader products, the provider has to develop
a new CCID driver. If a provider needs to customize partitions of smart cards, the provider
also has to develop customized PKCS#11 libraries.

Core hypervisor

Security service
#1 IPsec-VPN with

IKEv1

Security service #2
XTS-AES storage

encryption

Security service #3
ID management

framework

Other security services:
VM boot management,
policy enforcement, etc

Intel Pro/1000 NIC
parapass-through

driver

USB UHCI and MSDs
parapass-through

driver

ATA
parapass-through

driver

Fig. 7. Portable ID management framework libraries and security services of BitVisor

8. Two-step Execution Mechanism for Thin Secure Hypervisors

This section shows a method to minimize the core portion of BitVisor software. A trusted
computing base (TCB) is a component to enhance the security of existing operating systems.
We employ hypervisors to construct a TCB. In general, the complexity of hypervisors is not
preferable to construct a TCB. Some researchers have proposed tiny hypervisors specialized
for security-purpose. Murray et al. propose a mechanism to reduce the complexity of Xen
hypervisor to construct a TCB (Murray et al., 2008). SecVisor is developed as a tiny
hypervisor that ensures code integrity for commodity OS kernels (Seshadri et al., 2007).
SecVisor has small code size, only 1,112 LOC (Lines of code), for the run-time portion using
CPU-supported virtualization. Xia et al. shows a small hypervisor called Palacious VMM
(Xia et al., 2008). Palacious VMM hooks I/O operations between device drivers on a guest
OS and physical hardware. The core of Palacious VMM has 20 KLOC and the additional
part to hook I/O operations has 10 KLOC. As described above, the code size of a TCB is one
of the important aspects to evaluate whether reliable security mechanisms or not.

We have proposed the two-step execution mechanism in the previous paper (Hirano et al.,
2009). Figure 8 shows the flow of the proposed two-step execution mechanism. Our
proposal is intended to reduce the code sizes of the run-time portion of BitVisor as possible.
Basic idea is simple, we separate a conventional hypervisor-based TCB into the following
two parts: (1) a thin hypervisor with minimum security services and (2) a special guest OS

for security preprocessing. Thus, we introduce an additional TCB domain for security
preprocessing as the special guest OS runs on a hypervisor.

We can move the many tasks from BitVisor to the special guest OS. For example, the special
guest OS can execute the following tasks before booting a target guest OS to be protected: (a)
a PKI-based user authentication function using a PKI-based smart card for VM boot
operations, and (b) an acquisition function of encryption keys for future encryption services
from a smart card, and (c) an acquisition function of user certificates for VPN services from a
smart card. We have also designed a data passing part between the special guest OS and
BitVisor using kexec system call of Linux OS. By employing the proposed two-step execution
mechanism, we have reduced approximately 8.5 % of LOC in run-time portion of BitVisor in
total. Especially, we have reduced 24.5 % of LOC of ID management framework libraries.

Hardware

Step 1 Step 2

Data
passing

Timeline

permits smart card
reader connection only

Accesses via
parapass-through
drivers

Guest OS
to be

protected

boot
loader

shuts down
and boots
guest OS

A special guest OS
for security preprocessing

Linux kernel and RAM disk

This line indicates entire TCB components

Thin secure hypervisor (BitVisor with minimum security services)

init program

Fig. 8. Flow of the proposed two-step execution mechanism for thin secure hypervisors

To guarantee the authenticity of the special guest OS (the special guest OS consists of the
minimum Linux kernel, initial RAM disk and init program only), we can introduce a
measured launch mechanism based on a TCG extended boot loader (Sailer et al., 2004) like
TrustedGrub. We can also guarantee the authenticity of BIOS codes and the first part of TCG
extended boot loader using Intel TXT (Trusted Execution Technology) hardware and TPM
chip.

9. Future Direction

We have described a basic concept of BitVisor and its portable ID management framework.
From the perspective of IT resource management, these basic TCB components can be used
as a policy enforcement mechanism for distributed end-point computers in organizations.
Current version of BitVisor provides an XTS-AES storage encryption function and an IPsec-
VPN function to prevent information leak cases. We must consider further security services
to prevent information leak cases via other I/O devices. Policy management problem and
certificate management problem are also important to deploy the proposal to real
governmental and commercial organizations. Moreover, we need further on-site
verifications of the prototype implementation. We have to improve the source codes
continuously to prevent attacks to their potential vulnerabilities and increase the usability.

Engineering the Computer Science and IT488

10. Conclusion

This chapter has shown the portable ID management framework for secure hypervisors. We
have introduced an architectural overview of the novel secure hypervisor software called
BitVisor. We have shown the design and the prototype implementation of the portable ID
management framework libraries and BitVisor. The source codes of BitVisor including the
portable ID management framework libraries can be downloaded from the following web
sites, http://sourceforge.net/projects/bitvisor/.

11. References

Garfinkel, T.; Pfaff, B.; Chow, J.; Rosenblum, M. & Boneh, D. (2003). Terra: a virtual
machine-based platform for trusted computing, Proceedings of the ACM Symposium
on Operating Systems Principles, pp. 193–206

Hirano, M.; Okuda, T.; Kawai, E. & Yamaguchi, S. (2007). Design and Implementation of a
Portable ID Management Framework for a Secure Virtual Machine Monitor, Journal
of Information Assurance and Security, Vol.2, No.3, pp.211-216

Hirano, M.; Shinagawa, T.; Eiraku, H.; Hasegawa, S.; Omote, K.; Tanimoto, K.; Horie, T.;
Mune, S.; Kato, K.; Okuda, T.; Kawai, E. and Yamaguchi, S. (2009). A Two-step
Execution Mechanism for Thin Secure Hypervisors, In Proceedings of the 3rd
International Conference on Emerging Security Information, Systems and Technologies

Madnick, S. & Donovan, J. (1973). Application and analysis of the virtual machine approach
to information system security and isolation, Proceedings of the workshop on virtual
computer systems, pp.210-224, ACM Press

Meushaw, R. & Simard, D. (2000). NetTop: Commercial Technology in High Assurance
Applications, National Security Agency Tech Trend Notes, pp. 3-9

Murray, D. G.; Milos, G. and Hand, S. (2008). Improving Xen security through
disaggregation. In Proceedings of the Fourth ACM SIGPLAN/SIGOPS international
Conference on Virtual Execution Environments, pp.151-160

Sailer, R.; Zhang, X.; Jaeger, T. and Doorn, L. V. (2004). Design and Implementation of a
TCG-based Integrity Measurement Architecture, In Proceedings of thirteenth USENIX
Security Symposium, pp.223-238

Sailer, R.; Jaeger, T.; Valdez, E.; Caceres, R.; Perez, R.; Berger, S.; Griffin, J. & Doorn, L.
(2005). Building a MAC-Based Security Architecture for the Xen Open-Source
Hypervisor, Proceedings of ACSAC 2005, IEEE CS, pp. 276-285

Seawright, L. & MacKinnon, R. (1979). VM/370 - a study of multiplicity and usefulness, IBM
Systems journal, pp.4-17

Seshadri, A.; Luk, M.; Qu, N. and Perrig, A. (2007). SecVisor: a tiny hypervisor to provide
lifetime kernel code integrity for commodity OSes. In Proceedings of Twenty-First
ACM SIGOPS Symposium on Operating Systems Principles, pp.335-350

Shinagawa, T.; Eiraku, H.; Tanimoto, K.; Omote, K.; Hasegawa, S.; Horie, T.; Hirano, M.;
Kourai, K.; Oyama, Y.; Kawai, E.; Kono, K.; Chiba, S.; Shinjo, Y. & Kato, K. (2009).
BitVisor: A Thin Hypervisor for Enforcing I/O Device Security, Proceedings of the
2009 ACM SIGPLAN/SIGOPS International Conference on Virtual Execution
sEnvironments, pp.121-130

Xia, L.; Lange J. and Dinda, P. A. (2008). Towards Virtual Passthrough I/O on Commodity
Devices., USENIX Workshop on I/O Virtualization

Task Jitter Measurement in Multi-purpose Real-time Systems 489

Task Jitter Measurement in Multi-purpose Real-time Systems

Pavel Moryc and Jindrich Cernohorsky

X

Task Jitter Measurement in Multi-purpose
Real-time Systems

Pavel Moryc and Jindrich Cernohorsky

Technical University of Ostrava
Czech Republic

1. Introduction. Scope and problem definition

1.1 Real-time task and its physical realization.
A real-time task is a task, which meets its prescribed deadline. (More precisely, it is a task,
which benefit depends on its execution time.)
A control system is a computing system used to control a production technology (fig. 1).
Usually, a production technology includes many interacting sub-processes, which all need
to be controlled. A real-time task runs in parallel with other real-time tasks and interacts
with them. This type of parallelism can be called predictable.

Fig. 1. Technology control

However, another type of parallelism can be seen in the controlled technology as well. The
nature of the controlled technology is not fully known, and can only be described with
statistical methods. Hence, it is not possible to fully plan, how the technology will be
controlled, but from time to time it is necessary to interrupt the currently running control
task, and to react on an unplanned urgent condition.
A production system works for years, and during that time, it enters its various conditions
repeatedly. Thus, planned system operation means periodicity, while required reactions on
unplanned conditions (errors, hazards, etc.) present aperiodicity. The aperiodicity naturally

25

Engineering the Computer Science and IT490

stems from noise, disturbances, delays, and all other unpredictable phenomena in the real
world.
A very simple control system can be realized as a monolithic block having no vertical layers,
but usually, a layered structure involving both hardware and software layers is applied.
Typically, three domains of control can be recognized in the layered control system
structure:

• real-time task. It is a realization of a control algorithm, which controls the
technology. Its precise execution is a goal of the control system. But, the control
task itself is a pure design abstraction, which has to use services provided by
underlying system layers.

• operating system. The real-time operating system provides resources that support
control algorithm realization, and make possible that the control algorithm meets
its deadline. The operating system is a design abstraction as well.

• hardware. The hardware physically realizes the control task algorithm and the
operating system algorithm.

The real-time task directly uses not the basic resources provided by the hardware, but the
virtual resources provided by the operating system. Hence, the operating system can
significantly mitigate or amplify adverse effects of the hardware used. The quality of the
control system is assessed as its ability to support specified accuracy of control, which first
of all implies the ability to keep specified deadlines.
A real-time operating system is an operating system, which supplies resources that support
the execution of a given real-time task on the specified hardware this way, the real-time task
meets deadlines required by the controlled technology.
A real-time operating system should not enforce strict rules that nature cannot meet, but
rather provide resources that help to smooth the conflicts. As these resources are supplied
by the operating system, they are called virtual. Their quality depends not only on quality of
the operating system itself, but also on the quality of the underlying hardware resources.
The periodic task is designed to handle deterministic events. Hence, its basic characteristics
are its starting time and its deadline.
The aperiodic task is designed to interrupt the periodic task and handle an unplanned,
urgent, or even emergency event. Thus, its basic and most important characteristic is the
delay between the time when action is required and the time when it is started. This delay is
called latency.
Jitter is a variable deviation from ideal timing event. Scheduling jitter is the delay between
the time when a periodic task is scheduled to be started, and the time when the task is
started. Interrupt latency is the delay between the time when the interrupt is triggered and
the time when the interrupt service routine is started. The interrupt latency varies, and
therefore, it shows jitter. Kernel latency is defined as the delay between a nominal time
when a periodic task shall be switched to the running state, and the actual time when the
periodic task is switched to the running state (see Ripoll, 2001).
Both the virtual and hardware resources that support real-time task realization are
standardized in the POSIX 1003.13 specification, which defines four resource profiles that
can be used to design control systems. A higher profile extends the lower one (see tab. 1).

Task Jitter Measurement in Multi-purpose Real-time Systems 491

stems from noise, disturbances, delays, and all other unpredictable phenomena in the real
world.
A very simple control system can be realized as a monolithic block having no vertical layers,
but usually, a layered structure involving both hardware and software layers is applied.
Typically, three domains of control can be recognized in the layered control system
structure:

• real-time task. It is a realization of a control algorithm, which controls the
technology. Its precise execution is a goal of the control system. But, the control
task itself is a pure design abstraction, which has to use services provided by
underlying system layers.

• operating system. The real-time operating system provides resources that support
control algorithm realization, and make possible that the control algorithm meets
its deadline. The operating system is a design abstraction as well.

• hardware. The hardware physically realizes the control task algorithm and the
operating system algorithm.

The real-time task directly uses not the basic resources provided by the hardware, but the
virtual resources provided by the operating system. Hence, the operating system can
significantly mitigate or amplify adverse effects of the hardware used. The quality of the
control system is assessed as its ability to support specified accuracy of control, which first
of all implies the ability to keep specified deadlines.
A real-time operating system is an operating system, which supplies resources that support
the execution of a given real-time task on the specified hardware this way, the real-time task
meets deadlines required by the controlled technology.
A real-time operating system should not enforce strict rules that nature cannot meet, but
rather provide resources that help to smooth the conflicts. As these resources are supplied
by the operating system, they are called virtual. Their quality depends not only on quality of
the operating system itself, but also on the quality of the underlying hardware resources.
The periodic task is designed to handle deterministic events. Hence, its basic characteristics
are its starting time and its deadline.
The aperiodic task is designed to interrupt the periodic task and handle an unplanned,
urgent, or even emergency event. Thus, its basic and most important characteristic is the
delay between the time when action is required and the time when it is started. This delay is
called latency.
Jitter is a variable deviation from ideal timing event. Scheduling jitter is the delay between
the time when a periodic task is scheduled to be started, and the time when the task is
started. Interrupt latency is the delay between the time when the interrupt is triggered and
the time when the interrupt service routine is started. The interrupt latency varies, and
therefore, it shows jitter. Kernel latency is defined as the delay between a nominal time
when a periodic task shall be switched to the running state, and the actual time when the
periodic task is switched to the running state (see Ripoll, 2001).
Both the virtual and hardware resources that support real-time task realization are
standardized in the POSIX 1003.13 specification, which defines four resource profiles that
can be used to design control systems. A higher profile extends the lower one (see tab. 1).

Profile No. Profile Name

PSE 51 Minimal
PSE 52 Controller
PSE 53 Dedicated
PSE 54 Multi-purpose

Table 1. POSIX 1003.13 profiles

1.2 Multi-purpose real-time system
A multi-purpose real-time system can be defined as a resource set specified by the POSIX
1003.13 PSE 54 profile. It can be realized as an embedded PC computer, running multi-
purpose operating system. The multi-purpose operating system can be based on a general-
purpose operating system (e.g. Linux or Windows).
It has been measured (Ripoll, 2001), that the Linux kernel latency can reach up to several
hundreds of milliseconds. It is evident, that such latency makes the system unusable in most
technology control applications. This problem is well known, and basically, there solutions
were proposed:

• low-latency kernel,
• preemptible kernel,
• hardware abstraction layer.

Low-latency kernel cannot be preempted by task. It is designed as a non-preemptible
(monolithic) block, but with the intention to minimize latencies and jitters of API services
typically used by real-time tasks.
Preemptible kernel can be preempted by task. Preemptivity by task means, that while a task
is being serviced by the kernel, another task can successfully call a kernel API service and
preempt the current flow of the kernel operation. This type of preemptivity is called
reentrancy. However, at least some parts of the kernel cannot be made reentrant. Moreover,
the idea of preemptivity itself does not imply, that the kernel is deterministically
preemptible, i.e. the kernel latency and its jitter are kept acceptably low.
Hardware abstraction layer (HAL, fig. 2) is a software layer installed between the hardware
and the operating system kernel. It is built as a module that is plugged into the operating
system kernel. It receives timer interrupts and sends virtual (software) interrupts to the
general-purpose operating system kernel, thus providing a virtual (slower) clock for the
general-purpose operating system. This can be seen as a cycle stealing. Because the HAL
microkernel can postpone the general-purpose kernel operation, it can make spare time to
run real-time tasks. Obviously, latencies and jitters of the HAL layer must be kept low
enough by design. In this publication, we will focus on the HAL based solutions only.

1.3 Multi-purpose real-time system based on Hardware Abstraction Layer
The HAL-based multi-purpose real-time system architecture is obtained from the general-
purpose operating system by installing the HAL layer into the general-purpose operating
system kernel space (see figure 2). In the Linux environment, the HAL layer is called
RTLinux microkernel.

Engineering the Computer Science and IT492

T1 to Tn – non real-time tasks Rt1 to Rtn – real-time tasks

Fig. 2. POSIX PSE-54 multi-purpose system constructed as real-time extension of general-
purpose system by adding hardware abstraction layer.

As the RTLinux Free source code is available, it can be analyzed. Basically, it catches
interrupts from hardware, and sends them to the Linux kernel as software interrupts. The
software interrupts are special signals with low latencies, i.e. with very short times of
delivery. However, other software interrupts can preempt and postpone their delivery. If
the microkernel is heavily loaded, many internal and external signals can wait in queues for
delivery, and their delivery times could significantly vary.
The microkernel runs in the kernel space, as a kernel module. It shares the kernel space with
the rest of the kernel and with the real-time tasks. The safety barriers between the kernel, the
microkernel, and the real-time tasks are thin. It can be supposed, that a more safe solution
would adversely affect both the microkernel and the kernel real-time characteristics, their
overhead, latency and jitter.
It can be concluded, that the system must be forethoughtfully tested. However, a number of
possible iterations in an industrial technology design process is rather limited, and each
such iteration can be quite expensive. Hence, a model architecture that makes possible to
simulate and verify system behavior in various design stages is needed.

2. Existing measurement methods

First, existing measurement methods were studied. (Ripoll, 2001) is only partially focused
on tasks jitter measurement under RTLinux, but it can provide at least a starting point. More
details on yet existing approaches were found in (Proctor, 2001), and (Dougan, 2004). Taking
these approaches and experience into consideration, a model architecture design has been
approached.

Task Jitter Measurement in Multi-purpose Real-time Systems 493

T1 to Tn – non real-time tasks Rt1 to Rtn – real-time tasks

Fig. 2. POSIX PSE-54 multi-purpose system constructed as real-time extension of general-
purpose system by adding hardware abstraction layer.

As the RTLinux Free source code is available, it can be analyzed. Basically, it catches
interrupts from hardware, and sends them to the Linux kernel as software interrupts. The
software interrupts are special signals with low latencies, i.e. with very short times of
delivery. However, other software interrupts can preempt and postpone their delivery. If
the microkernel is heavily loaded, many internal and external signals can wait in queues for
delivery, and their delivery times could significantly vary.
The microkernel runs in the kernel space, as a kernel module. It shares the kernel space with
the rest of the kernel and with the real-time tasks. The safety barriers between the kernel, the
microkernel, and the real-time tasks are thin. It can be supposed, that a more safe solution
would adversely affect both the microkernel and the kernel real-time characteristics, their
overhead, latency and jitter.
It can be concluded, that the system must be forethoughtfully tested. However, a number of
possible iterations in an industrial technology design process is rather limited, and each
such iteration can be quite expensive. Hence, a model architecture that makes possible to
simulate and verify system behavior in various design stages is needed.

2. Existing measurement methods

First, existing measurement methods were studied. (Ripoll, 2001) is only partially focused
on tasks jitter measurement under RTLinux, but it can provide at least a starting point. More
details on yet existing approaches were found in (Proctor, 2001), and (Dougan, 2004). Taking
these approaches and experience into consideration, a model architecture design has been
approached.

3. Designed measurement methods

As it has been yet mentioned before, the real-time task and the operating system resources
are mere abstractions, and the overall architecture including hardware must be taken into
consideration. Hence, the effort has been focused not on the formal approach only, but on its
applicability as well. A measurement architecture (a control system model) has been
designed and realized. The design has been intended tightly connected with an application
study. Therefore, it can be assumed, that obtained results will be useful for engineering
practice.

3.1 Generalized data acquisition program
The multi-purpose real-time system is typically used in applications, where both real-time
and non-real-time tasks co-exist in one computing system. Many of these applications are
interfaces between dedicated real-time and non-real-time IT levels. As a representative case,
a data acquisition system has been chosen. Based on that case, a model architecture has been
created. The data acquisition system has been reasonably simplified, generalized, and
extended with additional diagnostic timestamp outputs.
The obtained model architecture (fig. 3) contains and integrates resources, which make
possible to apply a defined workload to the system, as well as to measure, how the
workload task is executed on the system. Its core part is a model of a real-time task, named
RT-golem.

Fig. 3. RT-golem architecture

The RTLinux microkernel creates two separate software areas. First, it is a real-time space
(compare fig. 2), in which real-time tasks run. Second, it is a non-real time task space, which
contains the non-real-time Linux kernel space, and the Linux application space. (As it has
been yet noted (see section 1), the real-time task space is realized inside the kernel space,
and barriers between the two task spaces are realized by software means only). The RT-
golem contains a periodic task, and an interrupt service routine. The periodic task
represents the generalized data acquisition task, which in each instance measures its starting
time and its finishing time, and sends the time stamps to a mass storage device (a hard disk).

Engineering the Computer Science and IT494

In general, it would be possible to process the values either online, at the time in which they
were being produced, or offline, after the simulation has been finished. The RT-golem
operation creates a basic load in the system. Both theory and experience require testing
under load, however, on certain PC hardware architectures, more jitter has been observed
under less workload (Proctor, 2001). Hence, it has been decided to minimize the inevitable
basic load caused by the measurement device as possible, and the offline data processing
has been used. RTLinux itself does not provide a resource, which makes possible to access
hard disk directly. Therefore, data has to be transferred from the real-time space to the non-
real-time space first, and it can be stored to the hard disk using standard Linux API kernel
calls then.
The interrupt service routine (ISR) is designed to support the ISR latency measurement. For
the ISR latency measurement, a new method has been designed (Moryc, 2007). It is called
the saturation method.

3.2 Interrupt latency measurement
Interrupt latency is one of the most important real-time system characteristics, as it describes
the system ability to react to (and upon) unplanned conditions. A saturation method has
been designed for measuring interrupt latency (see fig. 4). A rectangle-wave signal from a
precise X-tal driven signal generator enters the system hardware input and triggers an
interrupt request. The request is further processed by the system, and at the end, the control
is given to the interrupt service routine. As the input signal is periodic and its period is
stable, the interrupt service routine is run periodically, and it is possible to observe a time
interval between two successive ISR routine starts, and its jitter. When the incoming
interrupt rate is boosted, the time between two successive ISR routine starts decreases, until
the saturation point is reached. Then, the minimum time between two successive ISR starts
equals to the interrupt latency. It consists of latency times caused both by hardware and
software resources. Since the saturation presents the maximum IRQ rate load on the
measured system that it is capable to accept, the method is expected to provide comparable
results across various hardware platforms.

Fig. 4. ISR latency saturation method

Task Jitter Measurement in Multi-purpose Real-time Systems 495

In general, it would be possible to process the values either online, at the time in which they
were being produced, or offline, after the simulation has been finished. The RT-golem
operation creates a basic load in the system. Both theory and experience require testing
under load, however, on certain PC hardware architectures, more jitter has been observed
under less workload (Proctor, 2001). Hence, it has been decided to minimize the inevitable
basic load caused by the measurement device as possible, and the offline data processing
has been used. RTLinux itself does not provide a resource, which makes possible to access
hard disk directly. Therefore, data has to be transferred from the real-time space to the non-
real-time space first, and it can be stored to the hard disk using standard Linux API kernel
calls then.
The interrupt service routine (ISR) is designed to support the ISR latency measurement. For
the ISR latency measurement, a new method has been designed (Moryc, 2007). It is called
the saturation method.

3.2 Interrupt latency measurement
Interrupt latency is one of the most important real-time system characteristics, as it describes
the system ability to react to (and upon) unplanned conditions. A saturation method has
been designed for measuring interrupt latency (see fig. 4). A rectangle-wave signal from a
precise X-tal driven signal generator enters the system hardware input and triggers an
interrupt request. The request is further processed by the system, and at the end, the control
is given to the interrupt service routine. As the input signal is periodic and its period is
stable, the interrupt service routine is run periodically, and it is possible to observe a time
interval between two successive ISR routine starts, and its jitter. When the incoming
interrupt rate is boosted, the time between two successive ISR routine starts decreases, until
the saturation point is reached. Then, the minimum time between two successive ISR starts
equals to the interrupt latency. It consists of latency times caused both by hardware and
software resources. Since the saturation presents the maximum IRQ rate load on the
measured system that it is capable to accept, the method is expected to provide comparable
results across various hardware platforms.

Fig. 4. ISR latency saturation method

3.3 RT-golem development and evaluation
The model architecture design and development process had been iterative, and the model
had been verified after each step had been finished. Analyzing the verification results, it has
been recognized, that a measurement tool, which encompasses the whole range of typical
RTLinux resources and provides a deeper insight, is needed. Based on the RTLinux analysis,
the following important RTLinux characteristics have been identified:

• scheduler precision (measured as task starting time jitter),
• interrupt latency time,
• execution time of typically used API services,
• pipe write and read operations,
• shared memory write and read operations,
• thread switching time, and
• I/O port read and write access time.

(The I/O access is included here, as it presents the basic (and sometimes the only) method of
communication with many I/O cards. Nonetheless, it shall be avoided as possible, as it
bypasses the operating system, which causes a potential for significant problems.) During
the iterative design and development process, the RT-golem has been evolved from a mere
data acquisition task to an advanced measurement tool. The advanced version of RT-golem
consists of a periodic task, and an interrupt service routine. The periodic task includes two
threads. It is possible to set priority and period of both threads, as well as to disable one or
more parts of the task. This way, it is possible to balance the workload that the RT-golem
causes inside of the model architecture.

4. Experimental setup

A set of measurements has been designed and performed. The periodic task starting time
and finishing time jitters have been measured, under different system workload conditions:

• basic load (operating system kernel, standard daemons, RT-golem test task),
• basic load and additional non-real-time load (routine that copies short files),
• basic load and additional real-time load (additional 15 RT-golem tasks).

on two test systems (see tab. 2) :
• PC Dell GX 280,
• PC no name.

The source code of the RTLinux scheduler contains a comment suggesting that this
scheduler should not be used for scheduling more than 10 tasks. For the verification of the
scheduler behavior, an experiment was designed, where the system is heavily loaded with
additional 15 RT-golem workload tasks, and the RT-golem test task jitter is measured. The
additional 15 RT-golem tasks have been configured that way, they have created maximum
acceptable load for the system, that is, the highest load at which the Linux kernel yet does
not report lost timer interrupts.

Experimental results are given and discussed in details later (see section 6, Experimental
results discussion, and section 9, Conclusion and future work). Briefly, they have shown,
that:

• The implemented simple RTLinux scheduler manages to handle more tasks than it
was suggested by its authors.

Engineering the Computer Science and IT496

• The Linux kernel operation increases the amount of internal RTLinux microkernel
signals, which in turn increases the RTLinux microkernel latency. This influence is
measurable and significant.

• The influence of the hardware on the real-time characteristics of the operating
system virtual resources is measurable and significant.

• The jitter values can be sorted by their amplitude into classes (Proctor, 2001).

Operating system
 Linux kernel v. 2.2.19
 RTLinux microkernel RTLinux Free v. 3.1

Hardware
PC DELL GX 280
 CPU Intel P4 at 3.0 GHz, 1 MB of L2 cache
 RAM 1024 MB (only 64 MB used by Linux)
 HDD SAMSUNG SV0842D, 75 GB, SATA
 WDC WD800JD-75JNC0, 8 GB, ATA-66
PC no name
 CPU Intel P4 at 2.4 GHz, 32 K of L1 cache
 mainboard MSI 865 PE Neo2-P
 RAM 256 MB (only 64 MB used by Linux)
 HDD Seagate Barracuda ST380011A, 80 GB, ATA-100
 Maxtor WDC WD100EB-00BHF0, 10 GB, ATA-66

Table 2. Test systems details

5. Win-golem, a RT-golem port to MS-Windows

After the RT-golem method has been evaluated by experiments, it has been required to port
it to another target environment, based on Microsoft Windows and RTX for Microsoft
Windows Real-time Extension, and to perform comparison of both real-time environments
(RTLinux and RTX for Microsoft Windows).
First, the new intended target platform had been analyzed. The RTX microkernel is similar
to the RTLinux microkernel in functionality, but different in realization. RTX is a proprietary
solution, hence we have to rely on its description supplied by the vendor (Cherepov, 2002).
The RTX microkernel supports real-time tasks, which are called RTSS (real-time subsystem)
threads. It is interconnected with the Windows kernel via two access paths. The first access
path is created in the Windows HAL, and the second one is the interface for connecting
device drivers. Basically, it is necessary to modify the Windows HAL, because:

• interrupt isolation between the Windows kernel and the RTSS threads has to be
added,

• high-speed clocks and timers need to be supported,
• shutdown handlers need to be provided.

The two interconnection points between Windows kernel and RTX microkernel mentioned
above make possible to realize connection between the RTX microkernel and the Windows
kernel, providing the same functionality as the interface between the RTLinux microkernel

Task Jitter Measurement in Multi-purpose Real-time Systems 497

• The Linux kernel operation increases the amount of internal RTLinux microkernel
signals, which in turn increases the RTLinux microkernel latency. This influence is
measurable and significant.

• The influence of the hardware on the real-time characteristics of the operating
system virtual resources is measurable and significant.

• The jitter values can be sorted by their amplitude into classes (Proctor, 2001).

Operating system
 Linux kernel v. 2.2.19
 RTLinux microkernel RTLinux Free v. 3.1

Hardware
PC DELL GX 280
 CPU Intel P4 at 3.0 GHz, 1 MB of L2 cache
 RAM 1024 MB (only 64 MB used by Linux)
 HDD SAMSUNG SV0842D, 75 GB, SATA
 WDC WD800JD-75JNC0, 8 GB, ATA-66
PC no name
 CPU Intel P4 at 2.4 GHz, 32 K of L1 cache
 mainboard MSI 865 PE Neo2-P
 RAM 256 MB (only 64 MB used by Linux)
 HDD Seagate Barracuda ST380011A, 80 GB, ATA-100
 Maxtor WDC WD100EB-00BHF0, 10 GB, ATA-66

Table 2. Test systems details

5. Win-golem, a RT-golem port to MS-Windows

After the RT-golem method has been evaluated by experiments, it has been required to port
it to another target environment, based on Microsoft Windows and RTX for Microsoft
Windows Real-time Extension, and to perform comparison of both real-time environments
(RTLinux and RTX for Microsoft Windows).
First, the new intended target platform had been analyzed. The RTX microkernel is similar
to the RTLinux microkernel in functionality, but different in realization. RTX is a proprietary
solution, hence we have to rely on its description supplied by the vendor (Cherepov, 2002).
The RTX microkernel supports real-time tasks, which are called RTSS (real-time subsystem)
threads. It is interconnected with the Windows kernel via two access paths. The first access
path is created in the Windows HAL, and the second one is the interface for connecting
device drivers. Basically, it is necessary to modify the Windows HAL, because:

• interrupt isolation between the Windows kernel and the RTSS threads has to be
added,

• high-speed clocks and timers need to be supported,
• shutdown handlers need to be provided.

The two interconnection points between Windows kernel and RTX microkernel mentioned
above make possible to realize connection between the RTX microkernel and the Windows
kernel, providing the same functionality as the interface between the RTLinux microkernel

and the Linux kernel (compare fig. 4, fig. 5). The communication interface between
Windows and the RTX kernel implements a low-latency client-server mechanism, which
includes both buffers and Service Request Interrupts (SRI). Due to the communication
interface, a subset of Windows application programming interfaces (API) services is callable
from within a RTSS thread. It includes APIs for storing data to file, thus real-time pipes are
neither needed nor available in the API services set. However, we can reasonably suppose,
that similar IPC mechanisms are necessary to provide similar functionality, no matter
whether they are hidden for the programmer. Some of the Windows APIs available from the
RTSS threads are listed as non-deterministic, i.e. they can cause significant jitter when called
from a RTSS thread. High-speed (and high resolution) clocks are needed for realization of
precise real-time timers. Within a RTSS thread, time is recognized with 100 ns step and
resolution. Shutdown handler is a mechanism delivering more robustness to the real-time
RTSS subsystem when the Windows subsystem is crashed or regularly shut down.
It can be summarized, that following significant differences from RTLinux exist:

• no real-time pipes or their equivalents are available in the API service set,
• it is possible to call a subset of Windows API services directly from a RTX (RTSS)

real-time task,
• time is recognized with 100 ns resolution,
• Windows-controlled interrupts are masked while the RTX (RTSS) real-time task

runs,
• a real-time interrupt routine has two mandatory parts, which can be seen as the

upper and bottom ISR part,
• it is possible to implement a shutdown handler as the last resort resource.

Fig. 5. Win-golem architecture

As the RTLinux and RTX operating environments are functionally similar and their key
resources are almost the same, it can be supposed, that the RT-golem architecture design can
be adapted for the jitter measurement in the RTX operating environment as well. After the
target environment analysis had been performed, the realization issues have been
approached. The RT-golem is written in C language, thus it should be easily portable.
Nonetheless, both the environments contain many non-portable extensions, and as a result,
the design had to be partially re-written. The RT-golem task re-written for the RTX

Engineering the Computer Science and IT498

environment is called Win-golem. For the RTX environment properties evaluation, it has
been used the same experimental setup as described in section 4 (Experimental setup).

6. Experimental results

Experimental results are given below. For the evaluation, hundreds of data sets and graphs
have been used, but here only a handful of them, which contains typical or interesting cases,
is meaningful to be presented. The graphs are often arranged in pairs for easy comparison.
(In the pair, the left graph is referred to as fig. x a, while the right graph is referred to as fig.
x b.) There are presented relative starting time (RST) graphs, relative finishing time (RFT)
graphs, and statistical evaluation graphs. Relative starting time is the time when the given
instance of a periodic task starts, measured from the previous instance starting time.
Because of the relative starting time definition given above, the relative starting time jitter
graph consists of spikes oscillating up and down around the nominal value (fig.6, fig. 7).

 T – period (relative starting time (RST) nominal value

RST1,..RSTn – relative starting time of the 1-st,..n-th instance

Fig. 6. Relative starting time measurement

The instance's relative finishing time is measured from this instance's relative starting time. The
statistical evaluation graphs present statistical measures comparison bar graphs, showing mean
vs. median comparisons, and standard deviation vs. interquartile range (IQR) comparisons. The
graphs provide useful information on typical values as well as outlying values importance in the
sample, but further statistical evaluation could be needed (see section 7.2).

7. Experimental results evaluation

7.1 Intuitive evaluation
It can be concluded from the presented experimental results, that the benchmark periodic
task relative starting time jitter (kernel latency jitter) is significantly lesser on the RTX-based
measurement architectures, than on the RTLinux Free-based architectures (fig. 7, 9, 13). The
median of the task finishing time is approximately the same within the applied range of test
architectures and workloads. Under RTLinux Free, the port write time median value is ca.
15% less than the port read time median value, but under RTX both medians are the same
(fig. 11). Similarly to the task starting time, task finishing time shows lesser jitter on the RTX-
based architectures (fig. 8, 10, 14). Evaluating the RTLinux Free-based measurement
architecture, it has been observed on the graphs presented above, that most of the jitter
instances are near the best-case values, but sometimes significantly higher spikes occur.

Task Jitter Measurement in Multi-purpose Real-time Systems 499

environment is called Win-golem. For the RTX environment properties evaluation, it has
been used the same experimental setup as described in section 4 (Experimental setup).

6. Experimental results

Experimental results are given below. For the evaluation, hundreds of data sets and graphs
have been used, but here only a handful of them, which contains typical or interesting cases,
is meaningful to be presented. The graphs are often arranged in pairs for easy comparison.
(In the pair, the left graph is referred to as fig. x a, while the right graph is referred to as fig.
x b.) There are presented relative starting time (RST) graphs, relative finishing time (RFT)
graphs, and statistical evaluation graphs. Relative starting time is the time when the given
instance of a periodic task starts, measured from the previous instance starting time.
Because of the relative starting time definition given above, the relative starting time jitter
graph consists of spikes oscillating up and down around the nominal value (fig.6, fig. 7).

 T – period (relative starting time (RST) nominal value

RST1,..RSTn – relative starting time of the 1-st,..n-th instance

Fig. 6. Relative starting time measurement

The instance's relative finishing time is measured from this instance's relative starting time. The
statistical evaluation graphs present statistical measures comparison bar graphs, showing mean
vs. median comparisons, and standard deviation vs. interquartile range (IQR) comparisons. The
graphs provide useful information on typical values as well as outlying values importance in the
sample, but further statistical evaluation could be needed (see section 7.2).

7. Experimental results evaluation

7.1 Intuitive evaluation
It can be concluded from the presented experimental results, that the benchmark periodic
task relative starting time jitter (kernel latency jitter) is significantly lesser on the RTX-based
measurement architectures, than on the RTLinux Free-based architectures (fig. 7, 9, 13). The
median of the task finishing time is approximately the same within the applied range of test
architectures and workloads. Under RTLinux Free, the port write time median value is ca.
15% less than the port read time median value, but under RTX both medians are the same
(fig. 11). Similarly to the task starting time, task finishing time shows lesser jitter on the RTX-
based architectures (fig. 8, 10, 14). Evaluating the RTLinux Free-based measurement
architecture, it has been observed on the graphs presented above, that most of the jitter
instances are near the best-case values, but sometimes significantly higher spikes occur.

Fig. 7. RT-golem and Win-golem results comparison: periodic task starting time, PC Dell,
basic workload only

Fig. 8. RT-golem and Win-golem results comparison: periodic task finishing time, PC Dell,
basic workload only

Fig. 9. RT-golem and Win-golem results comparison: periodic task starting time, PC Dell,
basic and additional workload (copying files)

Engineering the Computer Science and IT500

Fig. 10. RT-golem and Win-golem results comparison: periodic task finishing time, PC Dell,
basic and additional workload (copying files)

Fig. 11. RT-golem and Win-golem results comparison: execution time means vs. medians,
PC Dell, basic and additional workload (copying files)

Fig. 12. RT-golem and Win-golem results comparison: execution time standard deviations
vs. interquartile ranges, PC Dell, basic and additional workload (copying files)

Task Jitter Measurement in Multi-purpose Real-time Systems 501

Fig. 10. RT-golem and Win-golem results comparison: periodic task finishing time, PC Dell,
basic and additional workload (copying files)

Fig. 11. RT-golem and Win-golem results comparison: execution time means vs. medians,
PC Dell, basic and additional workload (copying files)

Fig. 12. RT-golem and Win-golem results comparison: execution time standard deviations
vs. interquartile ranges, PC Dell, basic and additional workload (copying files)

Fig. 13. RT-golem and Win-golem results comparison: periodic task starting time, PC no
name, basic and additional workload (copying files)

Fig. 14. RT-golem and Win-golem results comparison: periodic task finishing time, PC no
name, basic and additional workload (copying files)

Fig. 15. Interrupt service routine starting time, RT-golem, PC Dell

Engineering the Computer Science and IT502

These spikes can form typical patterns (relative starting time measurement, fig. 7a, 13a), or
can be observed randomly (fig. 10a, fig 14a), but in any case their amplitude is typical for the
underlying system layers. Evaluating the RTX and Windows-based architecture,
significantly less spikes have been found (fig. 7b compared to fig. 7a, fig. 13b compared to
fig. 13a), or none at all.
Last but not least, interrupt latency measurements have been evaluated (see fig. 15). On the
left frame (fig. 15 a) can be seen the ISR starting time jitter at input signal frequency of
10kHz, while the right frame (fig. 15 b) provides the ISR starting time graph at input signal
frequency of 650 kHz, when the saturation condition is reached. In both cases, the same
hardware (PC Dell) as well as the same operating system (RTLinux) has been used.
Apparently, the load conditions are very different, but the observed spikes have the same
amplitude of ca. 25 msecs. It can be concluded, the spikes are independent on the workload,
and they characterize the measurement architecture.

7.2 Statistical evaluation
Background
All task jitter instances that occurred or will occur in given measurement architecture under
given load are considered a population, and measured task jitter instances represent a
known sample drawn from this population. It can be formulated a null hypothesis about the
population, that the population can be described with given distribution, as well as the
alternative hypothesis to the aforementioned null hypothesis. Then, it can be tested, whether
it is reasonable to reject the alternative hypothesis in favor of the null hypothesis. If it has
been not possible to reject the alternative hypothesis, it could be expected, that the null
hypothesis is valid and true, but it is not possible to be ever sure of that, because of type I
and type II errors existence. The type I error (α, significance level) means the probability that
the true null hypothesis is rejected in favor of the false alternative hypothesis, while the type
II error (β) means the probability that the false null hypothesis is not rejected in favor of the
true alternative hypothesis. Unfortunately, it is not possible to minimize both the type I and
type II errors simultaneously. In engineering applications, usually it is chosen α=0.05. When
the resulting β value is not sufficiently low, it can be lowered by changing the test statistic
used, or by drawing larger sample from the population.

Application
The instances of a real-time task shall be started in intervals specified by the task period, and
not affected by previous system state or by previous system activity. Thus, they shall be
independent to each other. If they can be described with Poisson distribution, they are
sufficiently independent to each other. It has been formulated the hypothesis, that the task
instance starting times follow Poisson distribution, and the hypothesis has been tested using
χ2 test. Results are given in table 3.

Task Jitter Measurement in Multi-purpose Real-time Systems 503

These spikes can form typical patterns (relative starting time measurement, fig. 7a, 13a), or
can be observed randomly (fig. 10a, fig 14a), but in any case their amplitude is typical for the
underlying system layers. Evaluating the RTX and Windows-based architecture,
significantly less spikes have been found (fig. 7b compared to fig. 7a, fig. 13b compared to
fig. 13a), or none at all.
Last but not least, interrupt latency measurements have been evaluated (see fig. 15). On the
left frame (fig. 15 a) can be seen the ISR starting time jitter at input signal frequency of
10kHz, while the right frame (fig. 15 b) provides the ISR starting time graph at input signal
frequency of 650 kHz, when the saturation condition is reached. In both cases, the same
hardware (PC Dell) as well as the same operating system (RTLinux) has been used.
Apparently, the load conditions are very different, but the observed spikes have the same
amplitude of ca. 25 msecs. It can be concluded, the spikes are independent on the workload,
and they characterize the measurement architecture.

7.2 Statistical evaluation
Background
All task jitter instances that occurred or will occur in given measurement architecture under
given load are considered a population, and measured task jitter instances represent a
known sample drawn from this population. It can be formulated a null hypothesis about the
population, that the population can be described with given distribution, as well as the
alternative hypothesis to the aforementioned null hypothesis. Then, it can be tested, whether
it is reasonable to reject the alternative hypothesis in favor of the null hypothesis. If it has
been not possible to reject the alternative hypothesis, it could be expected, that the null
hypothesis is valid and true, but it is not possible to be ever sure of that, because of type I
and type II errors existence. The type I error (α, significance level) means the probability that
the true null hypothesis is rejected in favor of the false alternative hypothesis, while the type
II error (β) means the probability that the false null hypothesis is not rejected in favor of the
true alternative hypothesis. Unfortunately, it is not possible to minimize both the type I and
type II errors simultaneously. In engineering applications, usually it is chosen α=0.05. When
the resulting β value is not sufficiently low, it can be lowered by changing the test statistic
used, or by drawing larger sample from the population.

Application
The instances of a real-time task shall be started in intervals specified by the task period, and
not affected by previous system state or by previous system activity. Thus, they shall be
independent to each other. If they can be described with Poisson distribution, they are
sufficiently independent to each other. It has been formulated the hypothesis, that the task
instance starting times follow Poisson distribution, and the hypothesis has been tested using
χ2 test. Results are given in table 3.

workload applied χ2 test result
basic load and additional RT load HA rejected in favor to Ho
basic load and additional non-RT load HA not rejected
Ho : The task instance starting times follow Poisson distribution.
HA : The task instance starting times do not follow Poisson distribution.
Significance level: α=0.05.
Measurement architecture: PC Dell GX 280 (see tab 2.), RT Linux

Table 3. χ2 test results

8. Feasibility Study

Based on the outcomes, it has been designed and realized a data acquisition system for
physical model of a steel flow in an interladle.

Fig. 16. Steel flow model

In the model, the steel flow is simulated by a gas flow in a liquid environment. The data
acquisition system consists of

 pressure and flow rate sensors,
 measurement subsystem,
 control and visualization subsystem.

It is required by the end-user, that both the gas flow and the gas pressure are acquired once
per two microseconds, with maximum tolerance of +/- 100 µsecs. The control and
visualization subsystem shall provide:

Engineering the Computer Science and IT504

 control of the measurement subsystem via rcmd utility,
 graphical presentation of currently measured values,
 graphical presentation of previously acquired values stored in database.

At the beginning of the design process, it has been intended, that the measurement sub-
system will be built using industrial PC (Pentium P2 Celeron 333 MHz), and ICP-DAS 823
A/D card, which were available.
Most of the design and verification effort has been concentrated on the measurement
subsystem, as the subsystem contains the core of the design, and has to meet relatively strict
deadlines. At early design stages, it has been concentrated on the question, whether the
intended hardware will fit the deadline specifications. Series of simulations have been
performed using the RT-golem architecture ported on the target hardware. The task has
been configured as close to the intended target design as possible, and various workload
conditions have been used to get the possibly most adverse results (see fig. 17, the blue, red
and yellow curves). It is commonly supposed, that the worst jitter is produced when the
system is heavily loaded, but due to cache loading and flushing effects, the system behavior
under lower workloads needs to be examined too (Proctor, 2001).

blue - RT-golem, basic workload only
red - RT-golem, basic and real-time workload
yellow - RT-golem, basic and non-real-time workload
cyan - Steel flow model realization, real workload

Fig. 17. Steel flow model: measurement task relative starting time jitter, simulation vs.
realization

The control of the measurement system is realized using the rcmd protocol, as both the
computers are connected with a cross-wired Ethernet cable in secure environment. The
measured data messages delivery is realized using the Microsoft Server Message Block
(SMB) protocol.
The control and visualization subsystem ensures experiment control and supplies results
visualization. It’s typical latency has been stipulated to meet a common human reaction time
(which is not less than 200 msecs). The visualization subsystem displays flow vs. time and

Task Jitter Measurement in Multi-purpose Real-time Systems 505

 control of the measurement subsystem via rcmd utility,
 graphical presentation of currently measured values,
 graphical presentation of previously acquired values stored in database.

At the beginning of the design process, it has been intended, that the measurement sub-
system will be built using industrial PC (Pentium P2 Celeron 333 MHz), and ICP-DAS 823
A/D card, which were available.
Most of the design and verification effort has been concentrated on the measurement
subsystem, as the subsystem contains the core of the design, and has to meet relatively strict
deadlines. At early design stages, it has been concentrated on the question, whether the
intended hardware will fit the deadline specifications. Series of simulations have been
performed using the RT-golem architecture ported on the target hardware. The task has
been configured as close to the intended target design as possible, and various workload
conditions have been used to get the possibly most adverse results (see fig. 17, the blue, red
and yellow curves). It is commonly supposed, that the worst jitter is produced when the
system is heavily loaded, but due to cache loading and flushing effects, the system behavior
under lower workloads needs to be examined too (Proctor, 2001).

blue - RT-golem, basic workload only
red - RT-golem, basic and real-time workload
yellow - RT-golem, basic and non-real-time workload
cyan - Steel flow model realization, real workload

Fig. 17. Steel flow model: measurement task relative starting time jitter, simulation vs.
realization

The control of the measurement system is realized using the rcmd protocol, as both the
computers are connected with a cross-wired Ethernet cable in secure environment. The
measured data messages delivery is realized using the Microsoft Server Message Block
(SMB) protocol.
The control and visualization subsystem ensures experiment control and supplies results
visualization. It’s typical latency has been stipulated to meet a common human reaction time
(which is not less than 200 msecs). The visualization subsystem displays flow vs. time and

pressure vs. time online graphs. Its design consists of two periodic threads, the first one
timed at sample rate, and the second one timed at display rate. It is necessary to adjust both
the sample and display rates on the given hardware to achieve optimum performance. On
the used Dell notebook (Pentium 4 Celeron at 2.4 GHz), the sample rate has been set to 10
msecs, while the display rate has been set to 100 msecs.
During the commissioning process, ca. 100 measurements were made under various
possible working conditions specified, and the measurement and visualization system has
been found meeting the requirements (see fig. 17, the cyan curve).

9. Conclusion. Future work

9.1 Results discussion
It can be supposed, that the significant worst-case jitter spikes observed in the experiments
with RTLinux Free are caused by cache writing and flushing effects. (Proctor, 2001)
suggested the same conclusion, what can be seen as another argument supporting this
opinion. But, as the measurements are performed on the top of the hardware and software
stack, and the virtual resources presented to the measurement task by the operating system
API services are quite distant to the resources presented to the operating system by the
hardware (more precisely, by the part of the operating system realized in hardware), it is not
possible to validate such hypothesis by methods described here. The mere absence of this
phenomenon on both test architectures using the RTX operating system can imply, that the
RTX microkernel prevents the hardware from flushing the cache arbitrarily. Moreover, some
further tracks can be given. (Cherepov, 2004) notes that video drivers are the most cache
demanding part of the Windows operating system, and in the RTX platform evaluation kit,
video is used as a workload. Video is a real-time task as well as a RTX microkernel (RTSS)
task. Thus, the conflict between a video and a real-time RTSS task can be seen as the conflict
between two real-time cache-demanding tasks, which can lead to swapping the RTSS task
code out of the cache. Unfortunately, the RTX microkernel source code is not freely
available, and therefore it is not possible to verify the tracks given above with the code
analysis. However, the aforementioned discussion can suggest, that the mechanism of
locking the real-time code in the hardware cache is worthy to be studied and implemented.

9.2 Applicability in engineering practice
In most today applications, it is used a PLC for technology control or data acquisition, and a
PC with the Microsoft Windows for data visualization. However, a fully PC-based
technology control and visualization system can be considered as well. In the present time,
RTLinux and RTX-based control system solutions are yet recognized by business vendors
(e.g. Siemens WinAC platform). The published method of jitter measurement in
multipurpose real-time systems has been successfully applied, and it is ready to be used in
similar designs.

9.3 Vision. Future work
The outcomes of the published work are going to be used in Experimental real-time
database testing system (see Acknowledgement below). The proposed benchmark methods
yet have been used to evaluate possible platforms for the real-time database realization, and
two more applications are intended:

Engineering the Computer Science and IT506

• RT-golem port on QNX,
• design and realization of a communication architecture, which makes possible to

measure time needed for various TCP/IP communication steps and phases.
It can be suggested, that real-time databases will present an interesting field of study.
Applications in flight supporting devices, mobile communication devices, speech
recognition systems, and many other areas can be foreseen.

10. Acknowledgement

This research has been performed at the Technical University of Ostrava, Faculty of
Electrical Engineering and Computer Science, Department of Measurement and Control,
Centre for Applied Cybernetics, and supported by the Ministry of Education, Youth and
Sports of the Czech Republic under Project 1M0567.

11. References

Cherepov, M. et. al. (2002). Hard Real-Time with Ardence RTX on Microsoft Windows XP
and Windows XP Embedded, source: www. ardence.com

Dougan, C. & Mwaikambo, Z. (2004). Lies, Misdirection and Real-time Measurements,
source: www.rtl.com

Krol V., Pokorny J., & Cernohorsky, J. (2006). Architecture of experimental real-time
databases for embedded systems, Proceedings of IFAC Workshop on Programmable
Devices and Embedded Systems PDeS 2006, pp. 384-388, ISBN 80-214-3130-X, Brno,
Czech Republic, Feb. 2006

Krol V., Pokorny J. (2006). Design of V4DB - Experimental Real-Time Database System, The 32-nd
Anunual Conference of the IEEE Industrial Electronics Socienty, Paris, France, Nov.
2006

Moryc, P. & Cernohorsky, J. (2007). Task jitter measurement under RTLinux operating
system, Proceedings of the International Multiconference on Computer Science and
Information Technology, pp. 849-852, ISSN 1896-7094, Wisla, Poland, 15.-17. Oct. 2007

Moryc, P. & Cernohorsky, J. (2008). Task jitter measurement under RTLinux and RTX
operating systems, comparison of RTLinux and RTX operating environments,
Proceedings of the International Multiconference on Computer Science and Information
Technology, pp. 703-709, ISBN 978-60810-14-9, ISSN 1896-7094, Wisla, Poland, Oct.
2008

Moryc, P. & Cernohorsky, J. (2009). Task jitter measurement under RTLinux operating
system, Journal of Automation, Mobile Robotics and Intelligent Systems, Vol. 4, 01/2009,
pp. 62-65, ISSN 1897-8649

Pokorny J., Franek Z. (2008). Databases in Real-Time: Experimental Research. IT&T 8-th
International Conference on Information Technology and Telecommunications,
ISSN 1649-1246, Galway, Ireland, 2008.

Proctor, F.M. (2001). Measuring Performance in Real-Time Linux, Proceedings of the Third
Real-Time Linux Workshop, Milan, Italy, Oct. 2001

Ripoll I. et al. (2001). WP1: RTOS State of the Art Analysis: Deliverable D1.1: RTOS Analysis,
OCERA, source: www.ocera.org

	Preface
	Extensions of Deductive Concept in Logic Programming and Some Applications
	Ivana Berkovic, Biljana Radulovic and Petar Hotomski
	Regular Language Induction with Grammar-based Classifier System
	Olgierd Unold
	Fault Localization Models Using Dependences
	Safeeullah Soomro, Abdul Hameed Memon, Asif Ali Shah and Wajiha Shah
	Assisted form filling
	Łukasz Bownik, Wojciech Górka and Adam Piasecki
	Transatlantic Engineering Programs: An Experience in International Cooperation
	Andrew J. Kornecki, Wojciech Grega, Thomas B. Hilburn, Jean-Marc Thririet, Miroslav Sveda, Ondrei Rysavy and Adam Pilat
	Methodology To Develop Alternative Makespan Algorithm For Re-entrant Flow Shop Using Bottleneck Approach
	Salleh Ahmad Bareduan and Sulaiman Hj Hasan
	Flexible Design by Contract
	Koen Vanderkimpen and Eric Steegmans
	Application of semantic networks in natural language issues
	Wojciech Górka, Adam Piasecki and Łukasz Bownik
	Towards the Methodological Harmonization of Passive Testing Across ICT Communities
	Krzysztof M. Brzeziński
	Application of Automata Based Approach for Specification of Model Transformation Strategies
	Anna Derezińska and Jacek Zawłocki
	Dissociation of Colloidal Silver into Ionic Form through Membrane under Electric Field
	Kuo-Hsiung Tseng, Chih-Yu Liao, Der-Chi Tien and Tsing-Tshih Tsung
	SOA and supporting software processes integrated with self-organizing business networks
	Francesco Rago
	Algebraic Algorithms for Image Tomographic Reconstruction from Incomplete Projection Data
	Nadiya Gubareni
	Templates for Communicating Information about Software Requirements and Software Problems
	Mira Kajko-Mattsson
	Ontological description of gene groups by the multi-attribute statistically significant logical rules
	Aleksandra Gruca and Marek Sikora
	Mathematical modeling of the Internet survey
	Getka-Wilczyńska Elżbieta
	Toward Personalized RSS Retrieval Service: The Effect of Using User’s Context
	Haesung Lee and Joonhee Kwon
	Client-based Relay Infrastructure for WiMAX MAN Networks
	Gierłowski, Woźniak and Nowicki
	The Decoding Algorithms as Techniques for Creation the Anomaly Based Intrusion Detection Systems
	Evgeniya Nikolova and Veselina Jecheva
	Transition Parameters For Successful Reuse Business
	Jasmine K.S.
	Interactivity of 3D social Internet as a marketing tool
	Urszula Świerczyńska-Kaczor
	Performance evaluation of protocols of multiagent information retrieval systems
	Zofia Kruczkiewicz
	Measurement of Production Efficiency in Semiconductor Assembly House: Approach of Data Envelopment Analysis
	Chien-wen Shen, Ming-Jen Cheng
	Portable ID Management Framework for Security Enhancement of Virtual Machine Monitors
	Manabu Hirano, Takeshi Okuda, Eiji Kawai, Takahiro Shinagawa, Hideki Eiraku, Kouichi Tanimoto, Shoichi Hasegawa, Takashi Horie, Seiji Mune, Kazumasa Omote, Kenichi Kourai, Yoshihiro Oyama, Kenji Kono, Shigeru Chiba, Yasushi Shinjo, Kazuhiko Kato and Sugur
	Task Jitter Measurement in Multi-purpose Real-time Systems
	Pavel Moryc and Jindrich Cernohorsky

